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Abstract
In many areas of neuroscience and biological data
analysis, it is desired to reveal common patterns
among a group of subjects. Such analyses play im-
portant roles e.g., in detecting functional brain net-
works from fMRI scans and in identifying brain
regions which show increased activity in response
to certain stimuli. Group level techniques usu-
ally assume that all subjects in the group behave
according to a single statistical model, or that devi-
ations from the common model have simple para-
metric forms. Therefore, complex subject-specific
deviations from the common model severely im-
pair the performance of such methods. In this
paper, we propose nonparametric algorithms for
estimating the common covariance matrix and
the common density function of several variables
in a heterogeneous group of subjects. Our esti-
mates converge to the true model as the number of
subjects tends to infinity, under very mild condi-
tions. We illustrate the effectiveness of our meth-
ods through extensive simulations as well as on
real-data from fMRI scans and from arterial blood
pressure and photoplethysmogram measurements.

1. Introduction
Revealing common statistical behaviors among a group of
subjects is fundamental to neuroscience and bio-medical
data analysis. For example, in functional magnetic res-
onance imaging (fMRI) research (Bullmore et al., 1996;
Smith et al., 2011; Varoquaux & Craddock, 2013), group
level analyses are used for detecting brain networks from
resting-state recordings (Fox et al., 2005), for detecting
activities of specific regions in response to various stim-
uli (Haxby et al., 2001), for studying the connectivity of a
specific brain region to other regions through seed based
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analysis (Hagler et al., 2006), etc. Group analyses often
rely on the assumption that all subjects in the group behave
according to the same statistical model. For example, to esti-
mate the covariance (or partial covariance) matrix of several
variables, a popular approach is to average the covariance
matrices estimated for each of the individual subjects in the
group (Power et al., 2011). This is done using either the
Euclidean mean (arithmetic average) or the intrinsic (Rie-
mannian) mean (Förstner & Moonen, 2003), (Fletcher &
Joshi, 2007), which respects the geometry of the manifold
of positive definite matrices (Varoquaux et al., 2010a).

Real data, however, rarely conform to this assumption. Of-
ten times, each subject in a group deviates from the common
model in a different way. For example, it has been shown
that estimates of connectivity patterns from fMRI scans,
tend to vary significantly between subjects (Moussa et al.,
2012). Subject-specific deviations may even be more domi-
nant than the common model itself. Therefore, if ignored,
these deviations may severely degrade the quality of the esti-
mate of the common model. This phenomenon is illustrated
in Fig. 1 in the context of nonparametric density estimation
of two variables (brain regions). In this example, the de-
viations from the common model are additive and have a
different distribution for each subject. Thus, as can be seen
on the right, kernel density estimation (KDE) applied to the
entire group, fails to reveal the common behavior.

Approaches for accounting for subject-specific deviations of-
ten make limiting assumptions. For example, in the context
of covariance estimation, (Varoquaux et al., 2010b) assumed
that the precision matrices of all subjects in the group have
the same sparsity pattern, and proposed a modified graph
Lasso technique (Friedman et al., 2008) for simultaneously
estimating those matrices. In (Marrelec et al., 2006), the
authors assumed that each subject’s samples follow a Gaus-
sian distribution with a covariance matrix that follows an
inverse Wishart distribution around the group covariance. In
the context of regression, a popular strategy is to use a linear
mixed-effects model (Friston et al., 2005; Chen et al., 2013),
which relies on a Gaussian distribution assumption for the
subject specific factors. Similar lines of work include group-
level independent component analysis (ICA) (Calhoun et al.,
2001; Beckmann & Smith, 2005; Varoquaux et al., 2010c),
dictionary learning (Varoquaux et al., 2011; Mensch et al.,
2016), and causal structure estimation (Ramsey et al., 2010).
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Figure 1. The common model estimation problem. Multiple measurements are collected from a group of subjects (500 in this simulation).
The samples of the jth subject are viewed as realizations of a random vector xj , assumed to decompose as u+ vj . The random vector u
is a component common to all subjects (pdf shown at the top right), whereas {vj} are subject-specific factors, each of which may have a
different distribution. The goal is to estimate statistical properties of the common component u. As opposed to naive density estimation
based on all samples from all subjects (middle right), our approach manages to unveil the fine structure of the common pdf (bottom right).

In this paper we present non-parametric methods for esti-
mating a common model in the presence of subject-specific
noise factors. Specifically, we present a common-covariance
estimation algorithm and a common probability density
function (pdf) estimation method, both of which do not as-
sume any particular form for the underlying distributions.
Our only assumption is that the subject-specific noise fac-
tors are additive and have diverse distributions (otherwise
they could be considered part of the common model). In
this setting, the Euclidean and Riemannian mean estimates
do not approach the true covariance matrix as the number of
subjects grows. In contrast, we prove that our estimate does
converge to the true covariance under very mild assump-
tions. We verify the advantages of our approach through
extensive experiments on simulated and on real data.

2. Problem formulation
Let u ∈ Rd be a random vector, which represents the com-
mon source of variability across a group of subjects. For
example, in Fig. 1, u ∈ R2 is distributed according to the
‘ground truth’ density function (top right). Let xj ∈ Rd be a
random vector, which represents the jth subject in the group
(in Fig. 1, the jth scatter plot shows realizations of xj). We
assume the additive model

xj = u+ vj , (1)

where {vj} are random vectors that are independent of u
and represent subject-specific factors. Generally, each vj
has a different distribution (had they been distributed identi-
cally, they would have been part of the common model).

Given realizations of xj , for j = 1 . . .m, our goal is to
estimate statistical properties of the common component u.

In particular, we are interested in estimating either the co-
variance matrix Σu or the full pdf pu of u.

Obviously, the performance in those estimation tasks will
generally depend on both the number of subjects m and
the number of samples per subject. However, here, we are
interested in the common situation in which the number of
samples per subject suffices to obtain reasonably accurate
estimates for Σxj or pxj (e.g., when the dimension d is rel-
atively small). Our assumption is thus that the covariances
(or pdfs) of the subjects xj are known and our focus is on
the problem of recovering the common covariance (or pdf)
from them. To apply our algorithms in practice, one has to
plug in estimates of the covariances (or pdfs) of the subjects
(obtained using, e.g., KDE).

3. Common covariance estimation
Since u and vj are independent, we have from (1) that

Σxj = Σu + Σvj (2)

for every j = 1, . . . ,m. We would like to estimate the
covariance matrix Σu of the common component, given
the covariance matrices {Σxj

} of the subjects. To avoid
ambiguity, we define the common component Σu to be the
largest one satisfying such a decomposition. In particular,
this means that the smallest eigenvalue of (at least some
of) the subject-specific factors {Σvj

} must be arbitrarily
small. Indeed, otherwise there would exist some α > 0 such
that Σvj

� αI for every j so that αI would be common
to all {Σvj} and not subject-specific. In other words, the
common component in this case is in fact Σu + αI and the
noise covariances are Σvj

− αI .

Let us first informally describe the key idea underlying
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Figure 2. Visualization of the optimization problems (5), (6) for
2×2 matrices. The quadratic forms corresponding to the common
covariance (thick line), the covariances of the subjects (thin lines)
and their pointwise minimum (dots), are shown as functions of the
angle θ of the 2D vector q = (cos(θ) sin(θ))T .

our method, and then provide a formal “group consistency”
result. Denote the eigenvalues of Σu by λ1 ≤ λ2 ≤ . . . , λd
and the corresponding eigenvectors by q1, q2, . . . , qd. We
will begin by estimating the smallest eigenvalue, λ1, and its
associated eigenvector, q1. By definition,

λ1 = min
‖q‖=1

qTΣuq. (3)

Now, observe that

qTΣuq ≤ qTΣxj
q, ∀j,∀q (4)

since qTΣxjq = qTΣuq + qTΣvjq and qTΣvjq ≥ 0.
Our assumption, which we formalize mathematically below,
is that the subject-specific noise covariances Σvj

are diverse
in the sense that their bottom eigenvectors tend to point
in different directions. This, together with the fact their
smallest eigenvalue can be arbitrarily small, implies that
as the number of subjects grows, it becomes increasingly
likely that for every direction q, at least one of the values
{qTΣvj

q}mj=1 be small. This motivates us to estimate λ1
and q1 as

q̂1 = arg min
‖q‖=1

min
j∈{1,...,m}

qTΣxj
q, (5)

λ̂1 = min
‖q‖=1

min
j∈{1,...,m}

qTΣxjq. (6)

That is, we minimize over the pointwise minimum of the
quadratic functions of the individual subjects. Figure 2 vi-
sualizes this objective for the case of 2× 2 matrices. Here,
the thick blue curve corresponds to the desired objective
function (3), which we cannot directly minimize (as it in-
volves the unknown Σu). The thin curves correspond to

Algorithm 1 Common covariance estimation
Input: Covariance matrices Σx1 , . . . ,Σxm in Rd×d.
Output: Common covariance estimate Σ̂u.
for k = 1 . . . d do

Using (14), compute q̂k and λ̂k as

q̂k = arg min
q∈Sk

min
j∈{1,...,m}

qTΣxj
q, (11)

λ̂k = min
q∈Sk

min
j∈{1,...,m}

qTΣxj
q, (12)

where

Sk =
{
q : ‖q‖ = 1, q ⊥ span{q̂1, . . . , q̂k−1}

}
.

(13)

end for
Construct Σ̂u from {q̂k}mk=1 and {λ̂k}mk=1 as in (10).

the quadratic functions of the subjects (involving the known
matrices {Σxj}). As can be seen, the pointwise minimum
of the thin curves (dotted curve) is close to the thick curve
when the number of subjects is large.

Next, we turn to estimate λ2 and q2. Note that

λ2 = min
{q:‖q‖=1,q⊥q1}

qTΣuq

≤ min
{q:‖q‖=1,q⊥q1}

qTΣxj
q, ∀j. (7)

Therefore, following the logic above, and replacing q1 by
its estimate q̂1, we propose to calculate q̂2 and λ̂2 as

q̂2 = arg min
{q:‖q‖=1,q⊥q̂1}

min
j∈{1,...,m}

qTΣxj
q, (8)

λ̂2 = min
{q:‖q‖=1,q⊥q̂1}

min
j∈{1,...,m}

qTΣxj
q. (9)

This process can be repeated, where at the kth step,
we constrain the search to the subspace orthogonal to
span{q̂1, . . . , q̂k−1}. The last eigenvector, q̂d, is com-
pletely determined by q̂1, . . . , q̂d−1 and thus does not in-
volve an optimization problem. The associated eigenvalue
is estimated as λ̂d = minj∈{1,...,m} q̂

T
d Σxj

q̂d.

Having estimated all the eigenvalues and eigenvectors, we
construct our estimate of Σu as

Σ̂u =

d∑
k=1

λ̂kq̂kq̂
T
k . (10)

This is summarized in Alg. 1.

3.1. Practical implementation

The objective in Problems (11),(12) is the pointwise mini-
mum of a finite set of continuous (quadratic) functions over
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a compact set. Therefore, the minimum is attained at the
minimum of one of those functions, each of which has a
closed form. Specifically, when k = 1, we only have the
constraint ‖q‖ = 1, and the minimum of the jth problem is
the smallest eigenvalue of Σxj

(attained by the correspond-
ing eigenvector). When k > 1, we have an additional set of
linear constraints, which can be written asQkq = 0, where
Qk =

∑k−1
i=1 q̂iq̂

T
i . In this case, the minimizer is given

by the top eigenvector of (I −Qk)(cI −Σxj
)(I −Qk),

which we denote by vkj , where c is any constant such that
cI −Σxj

� 0 (Blau & Michaeli, 2017). Thus, in summary,

q̂k = vkj∗ , λ̂k = (vkj∗)TΣxj
vkj∗ , (14)

where j∗ = arg minj∈{1,...,m}(v
k
j )TΣxjv

k
j .

In the Supplementary Material, we discuss ways to speed
up the estimation on parallel platforms.

3.2. Group consistency

To analyze the behavior of Alg. 1 as the number of subjects
m increases, one must assume something regarding the
variability of the subject-specific noise covariances Σvj .
A rather general assumption is that they are independent
draws from some distribution over PSD matrices, namely

Σvj
∼ pΣv . (15)

The next theorem shows that under very mild condi-
tions on pΣv , our estimate Σ̂u converges to Σu almost
surely (a.s.). We refer to this as group consistency.

Theorem 1 (Group consistency). Assume that

P (λmax(Σv) ≤ α) = 1 (16)

for some α > 0 and that

P
(
qTΣvq ≤ ε

)
> 0 (17)

for every ε > 0 and every unit-norm q. Let Σ̂
m

u denote the
estimate produced by Alg. 1 using m subjects. Then

P
(

lim
m→∞

∥∥∥Σ̂m

u −Σu

∥∥∥ = 0
)

= 1. (18)

Assumption (16) merely states that the noise factors are
not arbitrarily large. Assumption (17) is a condition on the
distribution of the smallest eigenvalue of Σv and its asso-
ciated eigenvector. Roughly speaking, it requires that there
be a positive probability for the smallest eigenvalue to be
arbitrarily small and, simultaneously, for the corresponding
eigenvector to point in any direction (i.e., this eigenvector
can have any distribution on the unit sphere as long as it
does not vanish on a set of nonzero Lebesgue measure). Re-
call that the condition on the smallest eigenvalue is actually

part of the definition of the common covariance estimation
problem, and therefore not a limiting assumption.

To prove the theorem, let us denote ψ(q) , qTΣuq,
gj(q) , qTΣvj

q, and hm(q) , minj∈{1,...,m} gj(q).
Note that ψ(q) is a deterministic function (as Σu is de-
terministic) whereas {gj(q)} and {hm(q)} are sequences
of random functions (as {Σvj

} are random). We will need
the following lemmas (see proofs in the Supplementary).

Lemma 1. For every q, the sequence of random variables
{hm(q)} converges to zero almost surely. Furthermore, for
any sequence of vectors {qm}∞m=1 that converges to some
vector q∗, the sequence of random variables {hm(qm)}
converges to zero almost surely.

Lemma 2. Let φ(q) be a continuous bounded function on
a compact set C, which achieves a strict global minimum
at q∗ ∈ C. Let {fn(q)}∞n=1 be a sequence of continuous
bounded nonnegative functions on C satisfying fn(q∗)→ 0,
and let wn(q) = φ(q) + fn(q). Then any sequence of
the form qn ∈ arg minq∈C wn(q) converges to q∗, and the
sequence wn(qn) converges to φ(q∗).

proof of Theorem 1. For simplicity, we prove the theorem
for d = 2. The extension to higher dimensions is similar.

Since problem (11) is symmetric, we can divide the unit
circle into two disjoint half circles A and B such that A is
closed, and restrict the search for the minimum to A. Let
us first assume that λ1 6= λ2. In this case, the minimum of
ψ(q) over the unit circle is achieved at the points q1 and
−q1. Without loss of generality, we assume that q1 ∈ A
and −q1 ∈ B. The objective in (11) can be written as
ψ(q) + hm(q). Since hm(q) is continuous for every m and
hm(q1)

a.s.→ 0 (Lemma 1), the conditions of Lemma 2 hold
a.s. Therefore, our estimate of the bottom eigenvector, q̂m1 ,
converges a.s. to the true eigenvector q1, namely

q̂m1
a.s.→ q1. (19)

Our estimate (12) of the bottom eigenvalue, λ̂m1 , can be
written as ψ(q̂m1 ) + hm(q̂m1 ). Since q̂m1

a.s.→ q1, we have
from Lemma 1 that hm(q̂m1 )

a.s.→ 0, and therefore λ̂m1
a.s.→

ψ(q1) = λ1 as well.

The top eigenvector is given by q2 = Rq1, where R is a
90◦ rotation matrix, and our estimate of this eigenvector is
simply q̂2 = Rq̂1. Therefore, (19) implies that also

q̂m2
a.s.→ q2. (20)

The convergence of λ̂m2 to λ2 follows similarly by Lemma 1.

Let us now treat the case where λ1 = λ2. In this setting,
the vectors q̂m1 , q̂

m
2 do not necessarily converge. However,

for the matrix Σ̂
m

u to converge to Σu, it suffices that only



Revealing Common Statistical Behaviors in Heterogeneous Populations

the eigenvalue estimates λ̂m1 , λ̂
m
2 converge to λ1, λ2 (in that

case, the vectors q̂m1 , q̂
m
2 have no effect in (10)). To see

that the eigenvalues converge, note that the solution of (12)
is bounded from below by minq∈S1 ψ(q) = λ1, because
hm(q) ≥ 0. Additionally, we have that

λ̂m1 = min
q∈S1

min
j∈{1,...,m}

qTΣxjq

= λ1 + min
q∈S1

hm(q)

≤ λ1 + hm(q̄)
a.s.→ λ1, (21)

where q̄ is an arbitrary point in S1, and the convergence is
due to Lemma 1. Therefore λ̂m1 converges to λ1. Similar
arguments can be invoked to show that λ̂m2 converges to λ2.

Since the eigenvectors and eigenvalues converge, Σ̂
m

u con-
verges to Σu, and the proof is complete. �

4. Common density function estimation
Next, we address the problem of estimating the pdf pu of the
common component, given the pdfs {pxj

} of the subjects
in the group.

Since u and xj are statistically independent, we have that

pxj (α) =
(
pu ∗ pvj

)
(α), (22)

where ‘∗’ denotes convolution. Furthermore,

ϕxj (t) = ϕu(t)ϕvj (t), (23)

where ϕz(t) = E[ejt
T z] denotes the characteristic function

of a random vector z. We will focus on estimating ϕu(t),
from which pu can be retrieved by a Fourier transform.

A well known property of characteristic functions is that
|ϕz(t)| ≤ 1 for every t. Therefore, we have from (23) that
|ϕu(t)| ≥ |ϕxj

(t)| for every j and for all t. In particular,

|ϕu(t)| ≥ max
j∈{1,...,m}

∣∣ϕxj
(t)
∣∣ , ∀t. (24)

Based on this observation, we propose to take the maximum
among the values {|ϕxj

(t)|}mj=1 as our estimate of |ϕu(t)|,
for every t. The idea is that if the noise characteristic func-
tions {ϕvj

(t)} are diverse, then for every t, it is likely that
at least one of them attain a value close to 1 (in absolute
value). Namely, at least one of the values {|ϕxj (t)|} is
close to |ϕu(t)|, which justifies our estimator. To estimate
the phase of ϕu(t), we take the phase of the characteris-
tic function ϕxj

(t) that attains the maximum. That is, we
construct our estimate as

k(t) = arg max
j∈{1,...,m}

|ϕxj (t)|,

ϕ̂u(t) = ϕxk(t)
(t). (25)

Algorithm 2 Common density estimation
Input: Density functions px1

, . . . , pxm
.

Output: Common density estimate p̂u.
for j = 1 . . .m do

Set ϕxj ← IDFT{pxj}.
for all t do

Set k as the index of the largest value in {ϕxj
(t)}.

Set ϕ̂u(t)← ϕxk
(t).

end for
end for
Set p̂u ← DFT{ϕ̂u}.
Truncate the negative values of p̂u and normalize it to
have unit area.

Note that our phase estimate is accurate when the pdfs {pvj
}

are symmetric (e.g., when {vj} are zero-mean Gaussian
random vectors). Indeed, in that case the phase of ϕvj is
zero, so that the phase of ϕu equals the phase of ϕxj . Our
common pdf estimation algorithm is summarized in Alg. 2.

It is interesting to note that Alg. 2 has been proposed
in the Image Processing community, as a way of remov-
ing blur from several blurry images the of same scene
(Delbracio & Sapiro, 2015). The analogy to our setting is
quite natural. The functions pxj

in our context can be
thought of as “blurry” versions of the function pu, where
the “blur kernels” are the functions pvj (see (22)).

5. Experiments
In this section we verify the effectiveness of our methods,
first on simulated data and then on real data.

5.1. Estimation of Pearson correlation coefficient

In our first experiment, we study the behavior of our com-
mon covariance estimator as a function of the number of
subjects and the signal to noise ratio (SNR). We take the
common component u to be a two-dimensional random
vector with covariance matrix

Σu =

(
1 0.5

0.5 1

)
. (26)

Our goal is to estimate the Pearson correlation coefficient
between u(1) and u(2) (which is ρ = 0.5 in this case) from
the perturbed versions Σxj

= Σu + Σvj
. This can be

done by first estimating Σu and then normalizing the off-
diagonal entry by the square-roots of the diagonal entries.
We compare our estimator (Alg. 1) with naive averaging of
{Σxj} using either Euclidean or Riemannian mean.

We generate the matrices {Σvj
} as

Σvj = M jΛjM
T
j , (27)
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Figure 3. Correlation estimate vs. number of subjects. A corre-
lation coefficient of ρ = 0.5 is estimated from a varying number
of noisy 2 × 2 covariance matrices at an SNR of 0.66. Our al-
gorithm produces accurate estimates, whereas the Euclidean and
Riemannian means have severe biases.

Figure 4. Correlation estimate vs. SNR. A correlation coefficient
of ρ = 0.5 is estimated from 300 noisy 2× 2 covariance matrices.
Our algorithm produces accurate estimates even at low SNRs.

whereM j are random rotation matrices whose angles are
distributed uniformly in [0, 2π], and Λj are random diag-
onal matrices Λj = diag{βj

1, β
j
2} with βj

1 ∼ U [0, b] and
βj
2 ∼ U [b, 2b] for some b > 0. We draw {M j}, {βj

1}, {β
j
2}

independently. The SNR, which we define as SNR =
Tr{Σu}/E{Tr{Σv}}, is 1/b in this case.

Figures 3 and 4 visualize the mean and variance of our es-
timator as well as of the naive Euclidean and Riemanian
mean estimators (using 200 trials per setting) as functions
of the number of subjects and the SNR. As can be seen,
while the variance of our estimator is slightly larger than
the variances of the naive estimators, its bias is significantly
smaller. Therefore, overall, it attains a substantially lower
mean square error. Figure 3 also indicates that our estima-
tor is asymptotically (in the number of subjects) unbiased.
The naive estimators, on the other hand, have severe biases,
which do not decrease with the number of subjects. Fig-
ure 4 further illustrates that the performance of the naive

Figure 5. Common covariance estimation with clustered noise
covariances. In each row, a different 3×3 covariance matrix (left)
was estimated from 1000 noisy versions, using our method and
using the Euclidean and Riemannian means. The noise covariances
have a preference towards certain patterns (their eigenvectors are
not distributed uniformly on the unit sphere). This causes severe
bias in the naive methods, yet does not impact our algorithm.

estimators degrades rapidly as the SNR decreases, while our
estimator remains relatively accurate even at low SNRs.

In this example, the poor performance of the naive estima-
tors is mainly rooted in their over-estimation of the diagonal
entries of Σu. This happens because the contributions of
the noise matrices {Σvj} are only positive on the diagonal,
so that averaging does not cancel them out.

5.2. Clustered subject-specific noise covariances

In most practical cases, the advantage of our approach is
not confined to the diagonal elements of Σu. Specifically,
although our algorithm relies on the diversity of the noise
covariances, it does not require their eigenvectors to be uni-
formly distributed on the unit sphere. Therefore, our tech-
nique can even handle cases in which the noise covariances
tend to cluster around a certain matrix. As long as there
exists a nonzero probability to encounter matrices away
from the cluster, our algorithm is guaranteed to produce an
accurate estimate as the number of subjects grows. This
is in contrast to naive averaging, which typically produces
estimates with severe bias in all matrix entries.

To illustrate this, we next perform a 3× 3 common covari-
ance estimation experiment. We generate Σvj

as in (27),
where now we construct the unitary matrixM j assin(θ1) cos(θ2) sin(θ1) sin(θ2) cos(θ1)

cos(θ1) cos(θ2) cos(θ1) sin(θ2) − sin(θ1)
− sin(θ2) cos(θ2) 0

 , (28)

with θ1 and θ2 being two independent random variables
with a normal distribution N (1, 1) truncated to [0, π] and
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Figure 6. Comparison of correlation matrices estimated from resting-state fMRI scans of 458 subjects. Our estimator detects more
prominent correlation patterns than the Riemannian and Euclidean mean estimators, especially for the known brain networks (organized
in clusters around the main diagonal, see zoomed versions in Fig. 7).

Figure 7. Zoom in on several known brain networks. Our estimator detects higher correlations within most known brain networks than
the Riemannian mean and the Euclidean mean estimators.

[0, 2π], respectively (Chopin, 2011).

Figure 5 depicts the estimation results obtained with Alg. 1
and with naive averaging, using 1000 subjects. We show re-
sults for three different common covariance matrices. These
include a zero matrix (first row), an identity matrix (second
row), and a random PSD matrix (third row). As can be seen,
the Euclidean and Riemannian means produce inaccurate
estimates in all entries of the matrix while our estimator
produces accurate results. This is despite the preference of
the noise covariances towards specific patterns.

5.3. FMRI data

Next, we applied our covariance estimation algorithm on
the ADHD200-preprocessed dataset (Bellec et al., 2017).
We used the Athena pipeline. In particular, we used prepro-
cessed resting state fMRI data, written into MNI space at

4mm×4mm×4mm voxel resolution. We removed nuisance
variance (Lund, 2001; Fox et al., 2005), applied a tempo-
ral bandpass filter (0.009 Hz < f < 0.08 Hz) (Fox et al.,
2005; Biswal et al., 1995; Cordes et al., 2001) and a spatial
Gaussian filter (6mm FWHM), and removed linear trend
from the extracted time-courses. We took the 458 control
subjects from the published training set (for results on 141
subjects with ADHD, please see the Supplementary). From
each subject, we extracted time-courses of 39 regions of in-
terest (ROI) of the MSDL atlas (Varoquaux et al., 2011) and
estimated their covariance using the Ledoit-Wolf estimator
(Ledoit & Wolf, 2004). This gave us a 39× 39 covariance
matrix per subject. We estimated the common covariance
matrix using Alg. 1, using Geometric (Riemannian) mean
(Varoquaux et al., 2010a), and using Euclidean mean. From
the estimated covariances, we calculated correlation matri-
ces. We used the nilearn and scikit-learn python packages
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Figure 8. Estimation of the common joint pdf of PPG and ABP from a group of 25 subjects. PPG and ABP signals exhibit synchro-
nized variations, as seen on the left for a single subject. Thus, scatter plots of ABP vs. PPG show a unique pattern. However, as can
be seen on the middle, the pattern of each subject deviates from the common structure in a different way. Our common pdf estimator
manages to unveil delicate common structures, despite those variations. Naive application of KDE on the samples from all subjects, fails
to detect those structures.

(Abraham et al., 2014; Pedregosa et al., 2011; Buitinck et al.,
2013). The running time of Alg. 1 was about 10s on an 8
core Intel i7-6700 with 16GB of RAM working at 3.40GHz.
The results are depicted in Fig. 6.

It has been shown that estimates of connectivity patterns
often vary significantly between subjects (Moussa et al.,
2012). As can be seen in Fig. 6, our estimator detects activ-
ity within known networks despite the large variability be-
tween subjects. In particular, our estimator detects stronger
correlations than the Euclidean and Riemannian mean esti-
mators within the Default Mode Network, the Right Ventral
Attention network, the Left Ventral Attention network, and
the Cingulate Insula (connectivity between cingulate cortex
and insula) (Moussa et al., 2012). Zoomed versions of those
networks are shown in Fig. 7. Note that the Euclidean mean
estimator shows very low correlations within some of those
regions.

5.4. Common density of PPG and ABP

In our last experiment, we used Alg. 2 to estimate the joint
density function of arterial blood pressure (ABP) and photo-
plethysmogram (PPG) recordings. We used measurements
from 25 subjects in critical care taken from the MIMIC 2
dataset (Kachuee et al., 2015). As a preprocessing step, we
normalized the signals to have zero mean and unit variance.

For each subject, we then estimated the 2D pdf of ABP and
PPG using Gaussian KDE with bandwidth 0.08. From the re-
sulting 25 pdfs, we estimated the common pdf using Alg. 2.
As can be seen in Fig. 8, our algorithm manages to reveal
delicate structures in the common pdf, which are not seen
when applying KDE on all the data from all the subjects. In
the Supplementary, we show that these structures are not de-
tected with naive KDE with any bandwidth. This illustrates
again the ability of our approach to suppress subject-specific
noise factors that have different distributions.

6. Conclusion
We presented algorithms for estimating the covariance and
the pdf of the common component of a group of subjects,
when noise has a different distribution for each subject. Our
algorithms take advantage of the diversity of the subject-
specific noise distributions in order to efficiently suppress
them. In contrast to previous approaches, we did not assume
any parametric model for the underlying distributions. We
proved that under rather mild assumptions, our common
covariance estimate tends to the covariance of the common
component as the number of subjects grows. We presented
experiments on simulated and on real data, which confirmed
the advantages of our methods over alternative approaches.
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