Stochastic Variance-Reduced Cubic Regularized Newton Methods

A Proof of the Main Theory

In this section, we present the proofs of our main theorems. Let us first recall the notations used in Algorithm 1. v; and U}
are the semi-stochastic gradient and Hessian defined in (3.1) and (3.2) respectively. x;’s are the iterates and X*’s are the
reference points used in Algorithm 1. b, and by, are the batch sizes of semi-stochastic gradient and Hessian. S and T" are
the number of epochs and epoch length of Algorithm 1. We set M, ; := M = C)p as suggested by Theorems 4.7 and
5.3, where Cyy > 0 is a constant. h is the exact minimizer of m (h), where m; (h) is defined in (3.3). hS is the inexact
minimizer defined in (5.1).

In order to prove Theorems 4.7 and 5.3, we first lay down the following useful technical lemmas.

Lemma A.1. (Nesterov & Polyak, 2006) We have the following basic results:

5 5 3 M S S
vi + Ujh + g by =0, (A1)
M
U; + ?||hf||21 =0, (A.2)
S S 1 S S S M S M S
(vi,hi) + §<Utht7ht> + thtH% < _ﬁ”htng (A.3)

Next we have two lemmas which we use to control the variance of v and Uj. They play important roles in our proof:
Lemma A.2. For the semi-stochastic gradient v{ defined in (3.1), we have
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where E;, is the expectation over all ¢, € I,.

Lemma A.3. Let U7 be the semi-stochastic Hessian defined in (3.2). If the batch size satisfy b, > 400 log d, then we have
3/2
s 5|3 lOgd s s
B V2P xh) - 1) < 12000 (E0) - R
where [, is the expectation over all j; € Ip,.
Lemma A.4. For any h € R, we have

s s(|13/2
2| VF(x;) — villy/
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((V2F(xf) = Up)h,h) < T3 + 5 V2 FGe) - U]
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(VE(xf) — vi ) < o+

Lemma A.5. For any h € R4, if Cy; > 100, then we have
u(x; +h) < 9CH (M2 + IV (k) = Vil + M2 V2R (x;) - Ug
+ IVm; ()3 + 222 1]z = | ).
Lemma A.6. If T' > 1, then for any h € R4, we have
I; +h = %713 < 27%|[h)|3 + (1+3/T)||xf —%°]3. (Ad)

Lemma A.7. We define constant series c;, 0 < t < T as the following: ¢ = 0, ¢; = c;11(1+3/T) + M (50073)~1, 0 <
t <T — 1. Then we have forany 1 <t < T,

M /24 —2¢,T% > 0. (A.5)
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A.1 Proof of Theorem 4.7

Proof of Theorem 4.7. We first upper bound F'(x7, ;) as follows
S S S S S p S
F(xi,) < F(xf) +(VF(x{),hj) + <V2F(Xt)ht7ht> + 6||ht||g

S S S S S S M S S S S
= F(xj) + (v{,hf) + §<Uthtaht> + *Hh H%"‘ (VF(x{) — v{,hj)
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(A.6)

< P(xt) - 58+ 1o {3
where the first inequality follows from Lemma 4.2 and the second inequality holds due to Lemmas A.1 and A.4. We define
Rf = E[F(x}) + ellx; —%°[I3], (A7)

where ¢; is defined in the Lemma A.7. Then by Lemma A.6, we have
crarllxiyy = X3 < 2ee T2 BE(3 + cera (1 +3/T) %7 — %°[15. (A.8)

Applying Lemma A.5 with h = h}, we have

3
-1 M VF(x V|2 V2F(x5) — U
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where the equality is due to Lemma A.1.

Adding (A.6) with (A.8) and (A.9) and taking total expectation, we have
Ry + (240012\4P1/2)_1EM(X%3+1)
= E|F(xi) + copllxion = %3 + (240C3,0"2) (i )]
< E[F() + conn(1+3/T)x; — %°[13 = 03 (M/24 - 264,7%)

FEBM VA IVEGS) - vil3 + 2802 VARG - U]

s s o~ — — s s|13
<E[F(x3) + corr(1+3/T)||x5 — ||§} + E[?)M V2|V E(x5) = vi |3+ 28M 2| VP F(x}) — U; HQ}, (A.10)
where the third inequality holds due to Lemma A.7. To further bound (A.10), we have
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M1/2E||VF(Xt) villa W ———E[lx; —X°|3, (A.11)

Eljx; -

oy p—
2 =100073

where the first inequality holds due to Lemma A.2, the second inequality holds due to M > 100p and b, > 5T* from the
condition of Theorem 4.7. We also have

28 9 s 28 x 1500003 s o118
ARBIVECD) ~Uill, < 3m —rog Bl — ®1E < Fooozs Bl — 213, (A.12)

23 <
2 = 100073
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where the first inequality holds due to Lemma A.3, where we have b, > 10072 log d > 400 log d, and the second inequality
holds due to M > 100p and b;, > 10072 log d from the assumption of Theorem 4.7. Thus, submitting (A.11) and (A.12)
into (A.10), we have

s -1 s H S x$ M
Rjy + (240C3,0" ) Ep(xj ) <E|F(x)) + [x; — % |3(Ct+1(1 +3/T) + 500T3>]
=E[F(x}) + ci|x; — %3]

= RS, (A.13)

where the first equality holds due to the definition of ¢; in Lemma A.7. Telescoping (A.13) from¢ = 0to 7T — 1, we have
T
Z 240C3,p"/%) " Eu(x).

By the definition of ¢y in Lemma A.7, we have cp = 0, then R§, = E[F(x5) + cp[|x§ — X*[|3] = EF(X*T'); meanwhile
by the definition of x§, we have x§ = X*. Thus we have R§ = E[F(x§) + co||x§ — X*[|3] = EF(X*), which implies

EF(X*) — EF(X*T) = R — Ry > (2400%,p"/?)~ ZEM x5). (A.14)

Finally, telescoping (A.14) from s = 1 to .S yields

S T
Z ~EF(E) > (24003012 7 ST Eu(xs)

s=1t=1

By the definition about choice of X, we complete the proof. O

A.2 Proof of Corollary 4.10

Proof. We can verify that the parameter setting in Corollary 4.10 satisfies the requirement of Theorem 4.7. Thus, submitting
the choice of parameters into Theorem 4.7, the output of Algorithm 1 X, satisfies that

240C3p *Ar _ 379

Elp(xou)] < ST < (A.15)

which indeed implies that X is an (e, /p€)-approximate local minimum. Next we calculate how many SO calls and CSO
calls are needed. Algorithm I needs to calculate full gradient g and full Hessian H at the beginning of each epoch, with n
SO calls. In each epoch, Algorithm 1 needs to calculate v and U} with b, + b, SO calls at each iteration. Thus, the total
amount of SO calls is

Sn + (ST)(by + b,) < n+ C1App*n?5e73/2 4 Oy App'/?e=3/2(5n° +-1000n*/° log d)
_ A 4/5
_ O(n N Fx/fm>

3/2

where C; = 240C%,. For the CSO calls, Algorithm 1 needs to solve cubic subproblem at each single iteration. Thus, the
total amount of CSO calls is

ST < ClAFpl/Qe*?’/2 <AF\F>.

3/2
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A.3 Proof of Theorem 5.3
Proof of Theorem 5.3. Similar to (A.6) in the proof of Theorem 4.7, we have
s s S\ .S 1 S\I.S 1.8 p
F(Xt+1) < F(xp) + <VF(Xt)7ht> + §<V2F(Xt)htaht> ||h H2

- 1, -~ M~ -
— F(x;) +<vts,hf>+§<Ufhf,hf>—i——Hthz—i—<VF(x§)—vf,hf)

1 ~ o~
(VPR 6 — UDBL R - L
: P 2VEe) — vily"”
< F() = 5B + o+ (G R+ AR

1 S 7 S 83 M p S
+ 5 (G Bl + 2Hv2F<xt>—UtHQ)— I

< F(x) — Hhsug IVE(x}) — vl +

M1/2 M2 HVQF x}) — U35+, (A.16)

where the second inequality holds because l~1§’ is an inexact solver satisfying Condition 5.1. By Lemma A.6 with h = l~15,
we have

conl[Xisr = R3 = co||xi — %+ b5 < 201 T2 |5 + craa (14 3/T) x5 — %73 (A.17)
By Lemma A.5, we also have
(240C3,0"%) " (g )
= (24OC’§4p1/2)71u(xf + flf)
IVFGe) =iy | IV2FGd) =il [V ()]}, M{l[B ], — el

- 24Hh H2 24M1/2 24 M? 24M1/2 24 ’ (A-18)
Since l~1f is an inexact solver satisfying Condition 5.1, we have
i (B) 15, i l, — Ibllof” o
AL 224 _ﬂ+ﬂ<5 (A.19)
Submitting (A.19) into (A.18), we have
- M VF 132 | VAR(x5) —

Then adding (A.16), (A.17) and (A.20) up, we have
S -1 S
Ri + (24005/_[01/2) Ep(xiiy)
S s s -1 s
=K |:F(Xt+1> + cepl[xiy — X ||§ + (240054P1/2) N(xt+1)}
s s S|4 1s||3
< E{F(xt) 4o (14 3/T)||xg — R°|3 — ||Bg||5 (M/24 — 20t+1T2)}

28
+E[ IVEG) =il + WHV?F@)—U?HZ]H&

M1/2

s S S|« 8 S s||3
<E[F(x)) + e (1+3/T)|x; = %3] +E| 75 VFG) = vi 32 + —5[[V2F () = U3 +26. (A2D)

{Ml/z

Since the parameter setting is the same as Theorem 4.7, by (A.11) and (A.12), we have

3 3/2 M s s
A BIVEG) = Vil < (oo Elixg — %[, (A22)
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and

28 s
WEHVQF( —E|lx; — x°|3. (A.23)

H
27~ 100073
Submitting (A.22) and (A.23) into (A.21) yields

. L M
Rio + (A0C50"%) Bl 1) < B|FOxt) 4 It = 13 (e (14 3/7) + 50 ) | +25

= E[F(x}) + cillx; — %3] + 26
= RS +25, (A24)

where the first equality holds due to the definition of ¢; in Lemma A.7. Telescoping (A.13) from¢ = 0to 7T — 1, we have
T
Z { (24002, p12) " Epu(x}) — 25} .

By the definition of ¢y in Lemma A.7, we have cp = 0, then R, = E[F(x5) + cp[|x5 — X*[|3] = EF(x*T!); meanwhile
by the definition of x§, we have x§ = X*. Thus we have R§ = E[F(x§) + co||x§ —X*||3] = EF(X*), which further implies

T
EF(X’) ~EF&*") =Ry — Ry > [(2400§4p1/2)’11@u(x§) - 25]. (A.25)
t=1
Finally, telescoping (A.25) from s = 1 to .S, we obtain

S S
> ) _BFGE)-BFE™ )

s=1

MH

{ (24002, p12) " Epu(xg) — 25}.

~~
Il

1

By the definition about choice of Xy, we finish the proof.

O
A4 Proof of Corollary 5.5
Proof of Corollary 5.5. We can verify that under the parameter choice in Corollary 5.5,
24002, p1/2 A
E[11(Xou)] < 20, p AR | 48002, p1/26 < /2 /2 4 /22 = /2, (A.26)

ST

Thus, X is an (e, \/pe)-approximate local minimum. By the proof of Corollary 4.10, the total amount of SO calls is

Sn + (ST)(by + br) < n+ C1App*n*5e73/2 4 01 App'/?e=3/2(5n4° +-1000n*/° log d)
~ A 4/5
_5 (n n Wl)

€3/2

where C; = 480C3%,. For the CSO calls, Algorithm 1 needs to solve cubic subproblem at each single iteration. Thus, the

total amount of CSO calls is
_ Ap
ST < Ciidpp!/?e ) = ( 3/{)

B Proof of Technical Lemmas

Now we prove the technical lemmas used in Section A.
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B.1 Proof of Lemma A.1

The result of Lemma A.1 is typical in the literature of cubic regularization (Nesterov & Polyak, 2006; Cartis et al., 2011a;b),
but no exactly the same result has been shown in any formal way. Thus we present the proof here for self-containedness.

Proof of Lemma A.1. For simplicity, we let g = vi, H = U}, 0 = M, and ho, = hy. Then we need to prove

0
g + Hhopt + §||hopt||2hnpt = 07 (Bl)
0
+ 5||hopt||21 =0, (B.2)
1 0 3 0 3
(8 hop) + §<Hh0pt, hop) + 6|‘h0pt||2 < *EHhoptHz- (B.3)

Let A = 60||hop||2/2. Note that hoy = argmin m(h), then the necessary condition Vm (hgpy) = 0 and V2m(hgy) > 0 can
be written as

Vm(hop[) = g + Hhopt + Ahopt = 0, (B4)
T2 T hopt hopt i d
w' Vim(hgp)w =w' (H+ A+ A w > 0,Vw € R, (B.5)
[hoptll2 / \ [[Boptl2

Apparently, (B.4) directly implies (B.1). To prove (B.2), we adapt the proof of Lemma 5.1 in Agarwal et al. (2017). Note
that if (w, hoy) = 0, then (B.5) directly implies (B.2). So we only need to focus on the case that (w, hop) 7# 0.

Since (w, hop) # 0, there exists 17 # 0 such that ||hoy + nw]|2 = ||hop|2. (In fact, we can find n = —2(w, hoy) /|| W13
satisfies the requirement). Next we will take a close look at the difference m (hop + nw) — m(hgy ). On one hand, we have

(hope + 1w) "H(hgy + nw) by Hhop
2 2
(hOPt + nw)TH(hOpt + 77W) hoptHhopt
2 2
(hope + nw) TH(hop + nw) hoptHhopt
2 2

m(hop + W) — m(hop) = gT[(hom +nw) — hop] +

= —[(hopt + W) — hop] T (H + AL) oy + (B.6)

by 2
= S w3 + [Bop — (hop + 17w)] " Hhope +

B.7)

(hOpt + nW)TH(hf)pt +nw)
2

hopt

hT
|| I3+ =5 — (hop + 7w) "Hhop +

n? 02
|| 2 + —WTHW = ?WT(H + ADw

where (B.6) holds due to (B.4) and (B.7) holds due to the definition of 7. On the other hand, by the definition of hgy,
m(hop + W) — m(hep) > 0. Thus, we have proved (B.2). Finally, we prove (B.3) by showing that

1 0 - 0 0 -
(8 )+ (g, )+ [} = <g + Filge b b B ) 31000+ AD e 15 o

0
S (F o XDy — e (B.8)
*ﬁllhoptlli, (B.9)
where (B.8) holds due to (B.1) and (B.9) holds due to (B.2). O]

B.2 Proof of Lemma A.2

In order to prove Lemma A.2, we need the following useful lemma.
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Lemma B.1. Suppose aj,...,ay are i.i.d. and Ea; = 0, then

1 3/2 1
EHNzgai 2 = N3/4

(Ellas]|2)*"*.

Proof of Lemma A.2. For simplification, we use [ to replace Ey, . We have

E|VF(x;) - vill3
1 A N 3/2
— | 3 (VA )~ VB 8 - [ VR Bt -0 - V)|
3/2
= E‘ blg D IVEA) = Vi (X)) = V2, (R°)(x; —X°) = VF(x}) + VF(X*) + VP F(X°) (x; — X°] 2

Now we set the parameters in Lemma B.1 as
N =by,a, = Vi, (x) — Vi (&) = V2, (R)(x) — %) = VE(x ™) + V') + VFRY)(x] — %)

We can check that a;, satisfy the assumption of Lemma B.1. Thus, by Lemma B.1, we have

E|VF(x) - vi[[¥/* < 3/4(E||Vf,, (x}) = V£, () = V2, (R) (] — %)

N 3/4
~VE(x?) + VE(R®) + V2F( 20| ) (B.10)
By Assumption 4.1, we have
IV fii (x5) = V i, (%) = V23, () (x] = X°) = VF(x}) + VF(X°) + V2F(x*)(x] — %),
< ||V fir (%) = Vi, (%) = V2fi, (R°) (] = %) ||, + [|[VE(x}) = VF(X®) - V2F(X*) (x] - %),
p S <SS p S <SS
< Zls - R°13 + Ll - %713
= plxi — =5 (B.11)

Plugging (B.11) into (B.10) yields

3/2
< 3 2 %8 3/4 P s K
E[VF(x;) - vi [/ (p Ix; —x°)2)"" = 7 Iy —%°[13-
9 g

B.3 Proof of Lemma A.3

In order to prove Lemma A.3, we need the following supporting lemma.

Lemma B.2. Suppose that ¢ > 2,p > 2, and fix » > max{q, 2log p}. Consider Y7, ..., Y of i.i.d. random self-adjoint
matrices with dimension p X p, EY; = 0, then

qq1/q N 1/2
o] <o (3mw)
i=1 2

Proof of Lemma A.3. In the following proof, we replace [E;, with [E for simplification. We have

+ 46T(Emax HYng)l/q.
3

3
E||V2F(x}) - U|Js :E‘

V2R(x)) - ;(2 (V2£,. () — V25, (&) + HS))

2
3

(B.12)

)
‘bh

= {Z [V2f5,(x) = V2 £5,(%°) + H® — VZF(xf)]}

2
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We apply Lemma B.2 with parameters
¢=3,p=dr=2logp, Y, = V’f;,(x}) - V2f;, () + H = V’F(x]), N = by,

It can be easily checked that these parameters satisfy the assumption of Lemma B.2. Meanwhile, by Assumption 4.1, we
have the following upper bound for Y, :

15, = || V2 5 0x0) = 9215, (50) + B = V2R |

< ||V25. ) = V25, )

‘2 + ||| - v EG)

2
< plxi = X%z + pllxy — x°[|2
By Lemma B.2, we have
B[ Y, 1" Q\EH(ZEY? )1/2H + der (Emax | Y,]3)"*. (B.14)
Jt ) — Jt 9 i 2
The first term in RHS of (B.14) can be bounded as
1/2 1/2
2 _ 2
2ver|(SoEYS) | = 2ver|| o EYE |
1/2
— 2v/Ner|[EY3,
2
1/2
<2vVNer (B[ Y2 )
2
1/2
— 2v/Ner (E|[Y,13)
< 4pvV Ner|x; — X°||2, (B.15)
where the first inequality holds due to Jensen’s inequality, the third equality holds because ||YJ2-t H2 = [|Y}, |13 and the last
inequality holds due to (B.13). The second term in RHS of (B.14) can be bounded as
3\1/3 s os : s os
der (E max 1Y3]15) < der|(2p|x5 — %°||2)%)Y? = 8per|xi — 7. (B.16)
Submitting (B.15), (B.16) into (B.14), we have
371/3
{EH >, ] < 4dpV Ner||xj — X||2 + 8per||xi — X°|2,
2
which immediately implies
E iZY» " < 64y’ er | 2er 3\|x3 %513 (B.17)
e e AN T L ‘

Submitting (B.17) into (B.12) with Y, = V2 f;,(x5) — V2£;,(X°) + H® — V2F(x{), r = 2logd, N = by, we have

R S113 2elogd 4elogd)\® s ~s
BV e - U < ot (1 25250 4 298 - e

logd>3/2” s

2) -,

< 1200p3<

where the last inequality holds due to b, > 400 log d.
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B.4 Proof of Lemma A.4

Proof. we have

(VE(xf) = vi, h) < [VE(x7) = villa - [l

M1/3 91/3 .
~ (Sl ) - (Sl V G - vills

1 M1/3 3 2 91/3 ) . 3/2
<3 (G inl) + 3 (Sl vFen - vile)
s s113/2
2 VE () —villy
M1/2 ?

M
= —||n|3
-l +
where the second inequality holds due to Young’s inequality. Meanwhile, we have

((V?F(x;) = H*)h,h) < ||[V?F(x;) — H*||, - |h|3

M2/3 92/3 ) )
= <92/3||h§> : (MQ/SHVQF(XS?) —H5H2>

9 / M2/3 ) 3/2 4 92/3 ) . . 3
< (i) 5 (Famlviren -m,)

2M 27 s s113
= 77||h\\§ + WHVQF(XJ - U ||27
where the second inequality holds due to Young’s inequality. O

B.5 Proof of Lemma A.5

In order to prove Lemma A.5, we need to the following two useful lemmas.
Lemma B.3. Under Assumption 4.1, if M > 2p, then we have
S S S 1 S S 2 S
[VFG; + 1), < MBI+ [VFG) = vill2 + 5[ V2F i) = U35 + [V ()

Lemma B.4. Under Assumption 4.1, if M > 2p, then we have

—Amin (V2F(x} +h)) < M|[hz +[|[V2F(x;) = U7 ||, + M||[h]]2 — [|hf]|2]-
Proof of Lemma A.5. By the definition of p, we can bound ||V F(x{ + h) ||3/2 and 0V —p~3/2 A\ (V2F(x; + h))] °
separately. To bound |V F(x; + h) ||§/ ?, applying Lemma B.3 we have

3/2

2

3/2
|VF(x; +h)| ]

1
< [MIBIB + IVFGe) = vills + = [ V2P ) = U3 [ + Vi )]

< 2[ M0 + [VF () = vil3? + M| V2R () = U3 [ + [ mi ) 157

where the second inequality holds due to the following basic inequality (a + b+ ¢ + d)3/? < 2(a®/? + b3/% 4+ 3/2 4 d3/2).
To bound —Awin (V2F(x§ + h)), applying Lemma A.3, we have

—p732 Dnin (V2F (x5 + 1)) = —C3 M3/ [A\in (V2F (x5 + )]
3
< CYPMR M + | V2F(x5) = Uz, + M|Ill> — [ 2|

< 9032 [M3/2||h||§ © M| V2E() — U3 |2+ Ml — ||hf||2|‘°’}
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where the second inequality holds due to (a + b + ¢)® < 9(a® + b3 + ¢?). Since 90%2 > 2, we have

p(x; +h)
= max { [VFG + B3/, —p 2 i (V2 F o + )]}

3/2 s s113/2 — S s 3 S 3/2 s 3
<9CH M2 + VP () = vi 32 + M2 W2F(x) = U [y + [V ()3 + M%/2 > — | o],
which completes the proof. O
B.6 Proof of Lemma A.6
Proof. We have
s +h — |3

S S 3
< (Inll2 + x5 = %°]l2)
= [ + 3|h[2 - [Jx; — %[> + 3] b2 - x] — %2+ [x} — %3
: s — %212 s = =03 o e
= I3 +3(7"2|h3) - s 3T ) - g i - %
2 a2 1(|xt =%\ 1 s 2(|lxs — %3\ e
3 1/3 2 t 2/3 t 2 s _ s13
< i+ 3 mmiy o+ g (PEE) ) s (Grma) + (PR ) g e

]. s ~s 2 s =8 S S
— g+ (2020 + gl - %°18) + (T2 + Sl - %08 + I - %18

, 3 .
< 27%||h|3 + (1 + T) e — 2|1, (B.18)
where the second inequality holds due to Young’s inequality, the last inequality holds because 7" > 1. O

B.7 Proof of Lemma A.7

Proof. By induction, we have forany 0 <t < T,

(1+3/T)T" -1

“= 150072
Then forany 0 <t < T,
2(1 7T 2:27 M
2ctT2 < Mw < MJ < .
1500 1500 24
O
C Proof of Auxiliary Lemmas
In this section, we prove auxillary lemmas used in Appendix B.
C.1 Proof of Lemma B.1
Proof. We have
N N 3/2 N N 3/4
) LS - BIZG aly” _ @IS, &)t (CX Elaild¥t _ (Eladd) .
N e~ ey N3/2 = N3/2 B N3/2 B N3/4 ) )

The first inequality holds due to Lemma D.1, where we set s, ¢ in Lemma D.1 as s = 3/2,¢ = 2; the second equality holds
due to Ea; = 0 and that a; are identically independently distributed. O
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C.2 Proof of Lemma B.2

Proof. This proof is mainly adapted from Chen et al. (2012); Tropp (2016). First, Let {Y; : i = 1,...,N} be an
independent copy of the sequence {Y; : i = 1,..., N}. We denote Ey- to be the expectation over the independent copy
Y’. Then Ev/Y; = 0, then
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The first equality holds due to Ey/Y;’ = 0, the first inequality holds because || - ||% is a convex function, and the second

equality holds because we combine the iterated expectation into a single expectation.

Note that Y; — Y’ has the same distribution as Y;" — Y}, thus the independent sequence {&(Y; — Y, ) : 1 <i < n}
has the same distribution as {Y; — Y,,:1<i<N }+, where &; are independent Rademacher random variables, also
independent with Y;, Y,;’. Therefore,
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Furthermore, we have
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The first inequality holds due to | A —B||4 < (|Alla+[IB|l2)? < 29 (||A[|2+B||), where we let A = SN | £,Y;, B =
Ziil &, Y;; the equality holds due to the identical distribution of {¢Y;} and {¢Y;’}. Submitting (C.3), (C.4) into (C.2)
yields
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Note that both sides of (C.5) are greater than 0, then we take g-th root for both sides, we have
N q71/q N qq1/q
[]E >V, } <2 [E &Y, } ) (C.6)
i=1 2 i=1 2
Next, we have the inequality chain:
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where the first inequality holds due to || - [|2 < || - |

s,.» the second inequality holds due to Lyapunov’s inequality D.1, where
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we set s,tin D.1 as s = q,t = r. Since ¢ < r, then the second inequality holds. Note we have
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s, < pY7||All2, where we
set A = (2, ¥2)"/* and p i the dimension of A ; the third inequality holds because p!/" < pl/(21o57) = \/¢.

Finally, we use Proposition D.3 to bound (C.8). Since Yf are independent, random, positive-semidefinite matrices, we can
set W; in Proposition D.3 as W; = Yf. Meanwhile, ¢/2 > 1, so we have
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which immediately implies
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Submitting (C.7), (C.8),(C.9) into (C.6), we have the proof completed. 0

C.3 Proof of Lemma B.3
Proof. We have
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where the inequality holds due to triangle inequality. In the following, we are going to bound the right hand side of (C.10).
For the first term in the right hand side of (C.10), it can be bounded as
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where the first inequality holds due to Assumption 4.1 and the second inequality holds due to 2p < M. For the second term
in the the right hand side of (C.10), it equals to

|

M
v+ USh + 7||h||2hH2 = | vms(m)|,.

And the final term can be bounded as
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where the last inequality is due to Young’s inequality. Putting all these bounds together and submit them into (C.10), we
have

1
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C4 Proof of Lemma B.4
Proof. We have
V2F(x; +h) = V2F(x}) - p|[h|.1
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where the first inequality holds because V2 F is p-Hessian Lipschitz, the last inequality holds due to (A.2) in Lemma A.1.
Thus we have
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where the last inequality holds because p < M/2. O

D Additional Lemmas and Propositions

Lemma D.1 (Lyapunov’s inequality). (Durrett, 2010) For a random variable X, when 0 < s < ¢, it holds that
(EIX]*)* < (BIX])Y".

We list two propositions about matrix concentration inequality below. As they play key roles in our next analysis, we use
them without proof:

Proposition D.2 (Matrix Khintchine inequality). (Mackey et al., 2014) Suppose that » > 2. Consider a finite sequence
{A;,1 < i < N} of deterministic, self-adjoint matrices. Then
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where sequence &; consists of independent Rademacher random variables.

Proposition D.3. (Chen et al., 2012) Suppose that ¢ > 1, and fix » > max{q,2logp}. Consider Wy, ..., Wy of
independent, random, positive-definite matrices with dimension p x p. Then
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