
Stochastic Variance-Reduced Cubic Regularized Newton Methods

A Proof of the Main Theory

In this section, we present the proofs of our main theorems. Let us first recall the notations used in Algorithm 1. vs
t and U

s
t

are the semi-stochastic gradient and Hessian defined in (3.1) and (3.2) respectively. xs
t ’s are the iterates and bxs’s are the

reference points used in Algorithm 1. bg and bh are the batch sizes of semi-stochastic gradient and Hessian. S and T are
the number of epochs and epoch length of Algorithm 1. We set Ms,t := M = CM⇢ as suggested by Theorems 4.7 and
5.3, where CM > 0 is a constant. hs

t is the exact minimizer of ms
t (h), where m

s
t (h) is defined in (3.3). ehs

t is the inexact
minimizer defined in (5.1).

In order to prove Theorems 4.7 and 5.3, we first lay down the following useful technical lemmas.

Lemma A.1. (Nesterov & Polyak, 2006) We have the following basic results:
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Next we have two lemmas which we use to control the variance of vs
t and U

s
t . They play important roles in our proof:

Lemma A.2. For the semi-stochastic gradient vs
t defined in (3.1), we have
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where Eit is the expectation over all it 2 Ig .

Lemma A.3. Let Us
t be the semi-stochastic Hessian defined in (3.2). If the batch size satisfy bh � 400 log d, then we have

Ejt

��r2
F (xs

t )�U
s
t

��3
2
 1200⇢3

✓
log d

bh

◆3/2

kxs
t � bxsk32,

where Ejt is the expectation over all jt 2 Ih.

Lemma A.4. For any h 2 Rd, we have
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Lemma A.5. For any h 2 Rd, if CM � 100, then we have
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Lemma A.6. If T � 1, then for any h 2 Rd, we have
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t + h� bxsk32  2T 2khk32 + (1 + 3/T )kxs

t � bxsk32. (A.4)

Lemma A.7. We define constant series ct, 0  t  T as the following: cT = 0, ct = ct+1(1+3/T )+M(500T 3)�1
, 0 

t  T � 1. Then we have for any 1  t  T ,

M/24� 2ctT
2 � 0. (A.5)
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A.1 Proof of Theorem 4.7

Proof of Theorem 4.7. We first upper bound F (xs
t+1) as follows
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where the first inequality follows from Lemma 4.2 and the second inequality holds due to Lemmas A.1 and A.4. We define
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where ct is defined in the Lemma A.7. Then by Lemma A.6, we have
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Applying Lemma A.5 with h = h
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t , we have
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where the equality is due to Lemma A.1.

Adding (A.6) with (A.8) and (A.9) and taking total expectation, we have

R
s
t+1 +

�
240C2

M⇢
1/2

��1Eµ(xs
t+1)

= E
h
F (xs

t+1) + ct+1kxs
t+1 � bxsk32 +

�
240C2

M⇢
1/2

��1
µ(xs

t+1)
i

 E
h
F (xs

t ) + ct+1(1 + 3/T )kxs
t � bxsk32 � khs

tk32
�
M/24� 2ct+1T

2
�i

+ E
h
3M�1/2krF (xs

t )� v
s
tk

3/2
2 + 28M�2

��r2
F (xs

t )�U
s
t

��3
2

i

 E
h
F (xs

t ) + ct+1(1 + 3/T )kxs
t � bxsk32

i
+ E

h
3M�1/2krF (xs

t )� v
s
tk

3/2
2 + 28M�2

��r2
F (xs

t )�U
s
t

��3
2

i
, (A.10)

where the third inequality holds due to Lemma A.7. To further bound (A.10), we have
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where the first inequality holds due to Lemma A.2, the second inequality holds due to M � 100⇢ and bg � 5T 4 from the
condition of Theorem 4.7. We also have
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where the first inequality holds due to Lemma A.3, where we have bh � 100T 2 log d � 400 log d, and the second inequality
holds due to M � 100⇢ and bh � 100T 2 log d from the assumption of Theorem 4.7. Thus, submitting (A.11) and (A.12)
into (A.10), we have
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where the first equality holds due to the definition of ct in Lemma A.7. Telescoping (A.13) from t = 0 to T � 1, we have
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Finally, telescoping (A.14) from s = 1 to S yields
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By the definition about choice of xout, we complete the proof.

A.2 Proof of Corollary 4.10

Proof. We can verify that the parameter setting in Corollary 4.10 satisfies the requirement of Theorem 4.7. Thus, submitting
the choice of parameters into Theorem 4.7, the output of Algorithm 1 xout satisfies that
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which indeed implies that xout is an (✏,
p
⇢✏)-approximate local minimum. Next we calculate how many SO calls and CSO

calls are needed. Algorithm 1 needs to calculate full gradient gs and full Hessian Hs at the beginning of each epoch, with n
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s
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A.3 Proof of Theorem 5.3

Proof of Theorem 5.3. Similar to (A.6) in the proof of Theorem 4.7, we have
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where the second inequality holds because ehs
t is an inexact solver satisfying Condition 5.1. By Lemma A.6 with h = ehs

t ,
we have
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Since ehs
t is an inexact solver satisfying Condition 5.1, we have
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Submitting (A.19) into (A.18), we have
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Then adding (A.16), (A.17) and (A.20) up, we have
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Since the parameter setting is the same as Theorem 4.7, by (A.11) and (A.12), we have
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and
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Submitting (A.22) and (A.23) into (A.21) yields
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where the first equality holds due to the definition of ct in Lemma A.7. Telescoping (A.13) from t = 0 to T � 1, we have
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Finally, telescoping (A.25) from s = 1 to S, we obtain
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By the definition about choice of xout, we finish the proof.

A.4 Proof of Corollary 5.5

Proof of Corollary 5.5. We can verify that under the parameter choice in Corollary 5.5,
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Thus, xout is an (✏,
p
⇢✏)-approximate local minimum. By the proof of Corollary 4.10, the total amount of SO calls is
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where C1 = 480C2
M . For the CSO calls, Algorithm 1 needs to solve cubic subproblem at each single iteration. Thus, the
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B Proof of Technical Lemmas

Now we prove the technical lemmas used in Section A.
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B.1 Proof of Lemma A.1

The result of Lemma A.1 is typical in the literature of cubic regularization (Nesterov & Polyak, 2006; Cartis et al., 2011a;b),
but no exactly the same result has been shown in any formal way. Thus we present the proof here for self-containedness.

Proof of Lemma A.1. For simplicity, we let g = v
s
t ,H = U

s
t , ✓ = Mt and hopt = h

s
t . Then we need to prove
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Apparently, (B.4) directly implies (B.1). To prove (B.2), we adapt the proof of Lemma 5.1 in Agarwal et al. (2017). Note
that if hw,hopti = 0, then (B.5) directly implies (B.2). So we only need to focus on the case that hw,hopti 6= 0.
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where (B.6) holds due to (B.4) and (B.7) holds due to the definition of ⌘. On the other hand, by the definition of hopt,
m(hopt + ⌘w)�m(hopt) � 0. Thus, we have proved (B.2). Finally, we prove (B.3) by showing that
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where (B.8) holds due to (B.1) and (B.9) holds due to (B.2).

B.2 Proof of Lemma A.2

In order to prove Lemma A.2, we need the following useful lemma.
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Lemma B.1. Suppose a1, . . . ,aN are i.i.d. and Eai = 0, then
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Proof of Lemma A.2. For simplification, we use E to replace Evit
. We have
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Now we set the parameters in Lemma B.1 as
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We can check that ait satisfy the assumption of Lemma B.1. Thus, by Lemma B.1, we have
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By Assumption 4.1, we have
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Plugging (B.11) into (B.10) yields
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B.3 Proof of Lemma A.3

In order to prove Lemma A.3, we need the following supporting lemma.
Lemma B.2. Suppose that q � 2, p � 2, and fix r � max{q, 2 log p}. Consider Y1, ...,YN of i.i.d. random self-adjoint
matrices with dimension p⇥ p, EYi = 0, then
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Proof of Lemma A.3. In the following proof, we replace Ejt with E for simplification. We have

E
��r2

F (xs
t )�U

s
t

��3
2
= E

����r
2
F (xs

t )�
1

bh

✓X�
r2

fjt(x
s
t )�r2

fjt(bxs) +H
s
�◆����

3

2

= E
����
1

bh

X⇥
r2

fjt(x
s
t )�r2

fjt(bxs) +H
s �r2

F (xs
t )
⇤�����

3

2

. (B.12)



Stochastic Variance-Reduced Cubic Regularized Newton Methods

We apply Lemma B.2 with parameters

q = 3, p = d, r = 2 log p,Yjt = r2
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It can be easily checked that these parameters satisfy the assumption of Lemma B.2. Meanwhile, by Assumption 4.1, we
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By Lemma B.2, we have
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The first term in RHS of (B.14) can be bounded as
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where the first inequality holds due to Jensen’s inequality, the third equality holds because
��Y2
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2
= kYjtk22 and the last

inequality holds due to (B.13). The second term in RHS of (B.14) can be bounded as
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Submitting (B.15), (B.16) into (B.14), we have
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Submitting (B.17) into (B.12) with Yjt = r2
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s
t )�r2

fjt(bxs) +H
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where the last inequality holds due to bh � 400 log d.
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B.4 Proof of Lemma A.4

Proof. we have
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where the second inequality holds due to Young’s inequality. Meanwhile, we have
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where the second inequality holds due to Young’s inequality.

B.5 Proof of Lemma A.5

In order to prove Lemma A.5, we need to the following two useful lemmas.

Lemma B.3. Under Assumption 4.1, if M � 2⇢, then we have

��rF (xs
t + h)

��
2
 Mkhk22 + krF (xs

t )� v
s
tk2 +

1

M

��r2
F (xs

t )�U
s
t

��2
2
+
��rm

s
t (h)

��
2
.

Lemma B.4. Under Assumption 4.1, if M � 2⇢, then we have
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where the second inequality holds due to the following basic inequality (a+ b+ c+ d)3/2  2(a3/2 + b
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where the second inequality holds due to (a+ b+ c)3  9(a3 + b
3 + c

3). Since 9C3/2
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which completes the proof.

B.6 Proof of Lemma A.6

Proof. We have
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where the second inequality holds due to Young’s inequality, the last inequality holds because T � 1.

B.7 Proof of Lemma A.7

Proof. By induction, we have for any 0  t  T ,
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C Proof of Auxiliary Lemmas

In this section, we prove auxillary lemmas used in Appendix B.

C.1 Proof of Lemma B.1

Proof. We have
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The first inequality holds due to Lemma D.1, where we set s, t in Lemma D.1 as s = 3/2, t = 2; the second equality holds
due to Eai = 0 and that ai are identically independently distributed.
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C.2 Proof of Lemma B.2

Proof. This proof is mainly adapted from Chen et al. (2012); Tropp (2016). First, Let {Yi
0 : i = 1, . . . , N} be an

independent copy of the sequence {Yi : i = 1, . . . , N}. We denote EY0 to be the expectation over the independent copy
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The first equality holds due to EY0Yi
0 = 0, the first inequality holds because k · kq2 is a convex function, and the second

equality holds because we combine the iterated expectation into a single expectation.

Note that Yi �Yi
0 has the same distribution as Yi

0 �Yi, thus the independent sequence {⇠i(Yi �Yi
0) : 1  i  n}

has the same distribution as {Yi � Yi
0 : 1  i  N}, where ⇠i are independent Rademacher random variables, also
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0. Therefore,
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Furthermore, we have
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The first inequality holds due to kA�Bkq2  (kAk2+kBk2)q  2q�1(kAkq2+kBkq2), where we let A =
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0; the equality holds due to the identical distribution of {⇠Yi} and {⇠Yi
0}. Submitting (C.3), (C.4) into (C.2)

yields
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Note that both sides of (C.5) are greater than 0, then we take q-th root for both sides, we have
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Next, we have the inequality chain:
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where the first inequality holds due to k · k2  k · kSr , the second inequality holds due to Lyapunov’s inequality D.1, where
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we set s, t in D.1 as s = q, t = r. Since q < r, then the second inequality holds. Note we have

2


EYi

✓
E⇠i

����
NX

i=1

⇠iYi

����
r

Sr

◆q/r�1/q
 2

p
r


E
����

✓ NX

i=1

Y
2
i

◆1/2����
q

Sr

�1/q

 2
p
r


E
✓
p
1/r

����

✓ NX

i=1

Y
2
i

◆1/2����
2

◆q�1/q

 2
p
er


E
����

✓ NX

i=1

Y
2
i

◆1/2����
q

2

�1/q

= 2
p
er


E
����

NX

i=1

Y
2
i

����
q/2

2

�1/q
, (C.8)

where the first inequality holds due to Proposition D.2; the second inequality holds because kAkSr  p
1/rkAk2, where we

set A = (
PN

i=1 Y
2
i

�1/2 and p is the dimension of A ; the third inequality holds because p
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Finally, we use Proposition D.3 to bound (C.8). Since Y
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Submitting (C.7), (C.8),(C.9) into (C.6), we have the proof completed.

C.3 Proof of Lemma B.3

Proof. We have
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where the inequality holds due to triangle inequality. In the following, we are going to bound the right hand side of (C.10).
For the first term in the right hand side of (C.10), it can be bounded as
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where the last inequality is due to Young’s inequality. Putting all these bounds together and submit them into (C.10), we
have
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C.4 Proof of Lemma B.4

Proof. We have

r2
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where the first inequality holds because r2
F is ⇢-Hessian Lipschitz, the last inequality holds due to (A.2) in Lemma A.1.

Thus we have
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where the last inequality holds because ⇢  M/2.

D Additional Lemmas and Propositions

Lemma D.1 (Lyapunov’s inequality). (Durrett, 2010) For a random variable X , when 0 < s < t, it holds that

(E|X|s)1/s  (E|X|t)1/t.

We list two propositions about matrix concentration inequality below. As they play key roles in our next analysis, we use
them without proof:

Proposition D.2 (Matrix Khintchine inequality). (Mackey et al., 2014) Suppose that r > 2. Consider a finite sequence
{Ai, 1  i  N} of deterministic, self-adjoint matrices. Then


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����
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2
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Sr

,

where sequence ⇠i consists of independent Rademacher random variables.

Proposition D.3. (Chen et al., 2012) Suppose that q � 1, and fix r � max{q, 2 log p}. Consider W1, ...,WN of
independent, random, positive-definite matrices with dimension p⇥ p. Then
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