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A. Proof of Main Theory
In this section, we present our theoretical analysis of the proposed SVR-HMC algorithm. Before we present the proof of our
main theorem, we introduce some notations for the ease of our presentation. We use notation S⌘ to denote the one-step
SVR-HMC update in (3.1) with step size ⌘, i.e., xk+1 = S⌘xk and vk+1 = S⌘vk. Similarly, We define an operator G⌘

which also performs one step update with step size ⌘, but replaces the semi-stochastic gradient in (3.1) with the full gradient.
Specifically, we have

G⌘vk = vk � �⌘vk � ⌘urf(xk) + ✏vk,

G⌘xk = xk + ⌘vk + ✏xk,
(A.1)

for any xk,vk 2 Rd, where ✏vk and ✏xk are the same as defined in Algorithm 1. Next, we define an operator L⌘ which
represents the integration over a time interval of length ⌘ on the continuous dynamics (1.3). Specifically, for any starting
point V0 and X0, integrating (1.3) over time interval (0, ⌘) yields the following equations:

Vt = LtV0 = V0e
��t � u
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Xt = LtX0 = X0 +

Z t

0
Vsds. (A.3)

(A.2) and (A.3) give out an implicit solution of dynamics (1.3), which can be easily verified by taking derivatives of these
two equations (Cheng et al., 2017). The following lemma characterizes the mean value and covariance of the Brownian
motion terms.
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Note that there also exists a hidden Brownian motion term in (A.3), which comes from the velocity Vs, denoted by
✏x =
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0 e
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In addition, ✏v and ✏x have the following cross-covariance
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Recall the independent Gaussian random vectors ✏vk and ✏xk used in each iteration of Algorithm 1. They all have zero mean
and the covariance matrices defined in (3.3) have exactly the same form with the covariance matrices in Lemma A.1 when
t = ⌘. Due to this property, we will use a synchronous coupling technique that ensures the Gaussian random vectors in each
one-step update of the discrete algorithm, i.e., S⌘x and S⌘v, are exactly the same additive Brownian motion terms in the
one-step integration of the continuous dynamics L⌘x and L⌘v. The shared Brownian motions between S⌘v and L⌘v (S⌘x
and L⌘x) are pivotal to our analysis. Similar coupling techniques are also used in Eberle et al. (2017); Cheng et al. (2017).

A.1. Proof of Theorem 4.3

We first lay down some technical lemmas that are useful in our proof. The first lemma characterizes the discretization error
between the full gradient-based HMC update in (A.1) and the solutions of continuous Hamiltonian dynamics (1.3).

Lemma A.2. Under Assumptions 4.1 and 4.2, consider one-step discrete update (A.1) and Langevin diffusion (A.2)-(A.3)
starting from point (xk,vk). Then the discretization error for velocity and position are bounded by
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where parameters Uv and Uf are in the order of O(d/µ) and O(d) respectively.

The difference between our SVR-HMC update and the full gradient-based HMC update in (A.1) can be characterized by the
following lemma.

Lemma A.3. Under Assumptions 4.1 and 4.2, for any xk,vk 2 Rd, we have

E[kS⌘xk � G⌘xkk22] = 0, (A.4)

E[kS⌘vk � G⌘vkk22]  2⌘4m2
u
2
L
2(Uv + �ud) , D3u

2
L
2
m

2
⌘
4
. (A.5)

The following lemma shows the contraction property for the diffusion operator in terms of the coupled `2 norm.

Lemma A.4. (Cheng et al., 2017) Under Assumptions 4.1 and 4.2, let z = (x>
, (x + v)>)> 2 R2d and Ltz =

((Ltx)>, (Ltx + Ltv)>)>. Set � = 2 and u = 1/L in (A.2)-(A.3). Starting from two different points z1 and z2,
the continuous-time dynamics after time t satisfy

E[kLtz1 � Ltz2k22]  e
�t/E[kz1 � z2k22],

where the diffusion operators on z1 and z2 share the same Brownian motion, and  = L/µ denotes the condition number.

For the operators L⌘ , we denote Lk
⌘x = L⌘ � L⌘ � · · · � L⌘x as the result after L⌘ operates k times starting at x. We have

the following lemma which is useful to characterize the distance E[kzk � Lk
⌘z

⇡k22] based on some recursive arguments,
where z⇡ =

�
(x⇡)>, (x⇡ + v⇡)>

�>.

Lemma A.5. (Dalalyan & Karagulyan, 2017) Let A, B and C be given non-negative numbers such that A 2 (0, 1). Assume
that the sequence of non-negative numbers {xk}k=0,1,2,... satisfies the recursive inequality

x
2
k+1  [(1�A)xk + C]2 +B

2
,

for every integer k � 0. Then, for all integers k � 0,

xk  (1�A)kx0 +
C

A
+

Bp
A
.

Lemma A.6. For any two random vectors X,Y 2 Rd, the following holds

E[kX + Y k22] 
✓q

E[kXk22] +
q
E[kY k22]

◆2

.

Based on all the above lemmas, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let z⇡ denote the random variable satisfying distribution ⇡z, then we have

E[kzk+1 � Lk+1
⌘ z⇡k22] = E[kzk+1 � G⌘zk + G⌘zk � Lk+1

⌘ z⇡k22]
= E[kzk+1 � G⌘zkk22 + 2hzk+1 � G⌘zk,G⌘zk � Lk+1
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⌘ z⇡k22]

= E[kzk+1 � G⌘zkk22 + kG⌘zk � Lk+1
⌘ z⇡k22], (A.6)

where the last equality follows from the fact that E
⇥
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⇥
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E[kzk+1 � G⌘zkk22 = E[kxk+1 � G⌘xkk22 + E[kxk+1 + vk+1 � G⌘(xk + vk)k22
= E[kvk+1 � G⌘vkk22 (A.7)
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4
, (A.8)
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where the second equality follows from xk+1 = G⌘xk, the inequality follows from Lemma A.3 and the fact that uL = 1.
The second term on the R.H.S of (A.6) can be further bounded as follows,

E[kG⌘zk � Lk+1
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, (A.9)

where the first inequality holds due to Lemma A.6 and the second inequality follows from Lemma A.4. We further have
q
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2
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where the first inequality is due to
p
a+ b 

p
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p
b, the second inequality is due to (B.8) and the last inequality comes

from Lemma A.2. Here D1, D2 are constants which are both in the order of O(d/µ). Denote w2
k+1 = E[kzk+1�Lk+1

⌘ z⇡k22].
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Then, by Lemma A.5, wk can be bounded by

wk  e
�k⌘/(2)
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2
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Note that the above results rely on the shared Brownian motion in the discrete update and continuous Langevin diffusion,
i.e., we assume identical Brownian motion sequences are used in the updates zk = Sk

⌘ z0 and Lk
⌘z

⇡. Since z⇡ satisfies the
stationary distribution ⇡z, Lk

⌘z
⇡ satisfies ⇡z as well. According to the definition of 2-Wasserstein distance, we have
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Let K⌘ = T , and note that 1� e
�⌘/(2) � ⌘/(4) when assuming 0 < ⌘/  1. Therefore, we have
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Moreover, note that

W2

�
P (xK),⇡

�
= E�(xK ,x⇡)[kxK � x⇡k22]
 E�(xK ,vK ,x⇡,v⇡)[kxK � x⇡k22 + kxK + vK � x⇡ � v⇡k22]
= W2

�
P (zK),⇡z

�
.

Substituting the above into (A.14) directly yields the argument in Theorem 4.3.
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A.2. Proof of Corollary 4.5

Now we present the calculation of gradient complexity of our algorithm.

We first present the following Lemma that characterizes the expectation E[kx⇡ � x⇤k], where x⇤ = argminx f(x) is the
global minimizer of function f .

Lemma A.7 (Proposition 1 in Durmus & Moulines (2016b)). Let x⇤ = argminx f(x) denote the global minimizer of
function f , and x⇡ be the random vector satisfying distribution ⇡ / e

�f(x), the following holds,

E[kx⇡ � x⇤k22] 
d

µ
.

Then we are going to prove Corollary 4.5.

Proof of Corollary 4.5. We first let w0e
�T/2 = ✏/3, which implies that T = 2 log(3w0/✏). Note that x⇤ is the minimizer

of f and by assumption we have kx0 � x⇤k2  R. Recall the definition of wk, we have

w0 = E[kx0 � x⇡k22] = E[kx0 � x⇤ + x⇤ � x⇡k22]  2E[kx⇡ � x⇤k22] + 2kx0 � x⇤k22  2d

µ
+ 2R,

where the last inequality comes from Lemma A.7. Then we obtain T = eO(), where eO(·) notation hides the logarithmic
term of ✏, d, µ and R. We then rewrite (A.14) as follow,
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�
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�T/(2)
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3/2
, (A.15)

where eC2 = O((d/µ)1/2) and eC3 = O
�
(d/µ)1/2

�
. We then let
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✏

3
, and eC3m⌘
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✏

3
,

and solve for ⌘, which leads to
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⇢
✏
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,
✏
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�
.

Thus, the total iteration number satisfies
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⌘
 3T eC2

✏
+

T (3 eC3m)2/3

✏2/3
.

In terms of gradient complexity, we have

Tg = K + n

✓
1 _ K

m

◆
 K +

Kn

m
+ n.

Substituting eC2, eC3, T into the above equation, and let m = n, we obtain

Tg  2K + n = eO
✓

2(d/µ)1/2

✏
+


4/3(d/µ)1/3n2/3

✏2/3
+ n

◆
. (A.16)

When µ and L appear individually, they can be treated as constants. Thus we arrive at the result in Corollary 4.5.

A.3. Proof of Theorem 4.8

In this section, we prove the convergence result of SVR-HMC for sampling from a general log-concave distribution. Note
that for a µ-strongly log-concave distribution ⇡ / e

�f , it must satisfy a logarithmic Sobolev inequality with constant
CLS = 1/µ (Raginsky et al., 2017). We first present the following two useful lemmas.
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Lemma A.8. (Dalalyan, 2014) Let f and f̄ be two functions such that f(x)  f̄(x) for all x 2 Rd, suppose e
�f and e

�f̄

are both integratable. Then the Kullback-Leibler (KL) divergence between distribution ⇡ / e
�f and ⇡̄ / e

�f̄ satisfies

KL(⇡||⇡̄)  1

2

Z

Rd

�
f̄(x)� f(x)

�2d⇡(x).

Lemma A.9. (Bakry et al., 2013) If a stationary distribution ⇡1 satisfies a logarithmic Sobolev inequality with constant
CLS , for any probability measure ⇡2, it follows that

W2(⇡1,⇡2) 
p
2CLSKL(⇡2||⇡1).

In what follows, we are going to leverage the above two lemmas to analyze the convergence rate of SVR-HMC for sampling
from general log-concave distributions. Based on Assumption 4.7, we have
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where Ū > 0 is an absolute constant. Then, by Lemma A.8, we immediately have

KL(⇡||⇡̄)  �
2
Ūd

2

8
.

From Lemma A.9, the 2-Wasserstein distance W2(⇡̄,⇡) is upper bounded by

W2(⇡̄,⇡) 
p

2CLSKL(⇡||⇡̄) 
p
�Ūd2

2
, (A.17)

where we use the fact that the probability measure ⇡̄ satisfies a logarithmic Sobolev with constant CLS = 1/� due to
the strong convexity of f̄ . By triangle inequality in 2-Wasserstein distance, for any distribution p, we have W2(p,⇡) 
W2(p, ⇡̄) + W2(⇡̄,⇡). Thus, we can perform our algorithms over distribution ⇡̄ / e

�f̄ , and obtain an approximate
sampling X which achieves the ✏-precision requirement in W2(P (X),⇡), as long as ensuring W2(P (X), ⇡̄)  ✏/2 and
W2(⇡̄,⇡)  ✏/2. According to (A.17), the requirement W2(⇡̄,⇡)  ✏/2 suggests that the parameter � should be selected
such that �  ✏

2
/(Ūd

2) = O(✏2/d2). Based on the above discussion, we are ready to prove Theorem 4.8 as follows.

Proof of Theorem 4.8. Note that we perform Algorithm 1 on the approximate density ⇡̄ / e
�f̄ , where f̄(x) = f(x) +

�kx� x⇤k22/2, and � = O(✏2/d2). It can be readily seen that function f̄(x) is an (L+ �)-smooth and �-strongly convex
function. Thus, we can directly replace the parameter µ in (A.16) with �, and obtain
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where we treat the smoothness parameter L+ � as constant of order O(1) when it appears individually. Plugging the fact
� = O(✏2/d2) into the above equation, we have

Tg = eO
✓
n+

d
11/2

✏6
+

d
11/3

n
2/3

✏4

◆
,

which completes the proof.

B. Proof of Technical Lemmas
In this section, we prove the technical lemmas used in the proof of our main theorems. We first present some useful lemmas
that will be used in our analysis.

Lemma B.1. Under Assumptions 4.1 and 4.2, the solution of Hamiltonian Langevin dynamics in (A.2)-(A.3) satisfies

E[kVtk22]  2u
⇥
f(X0)� f(x⇤) + �dt

⇤
+ kV0k22,

E[f(Xt)]  f(X0) +
kV0k22
2u

+ �dt,

E[krf(Xt)k22]  2L

✓
f(X0)� f(x⇤) +

kV0k22
2u

+ �dt

◆
,

where x⇤ = argminx f(x) denotes the global minimizer of function f(x).
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Lemma B.2. Consider iterates xk and zk in Algorithm 1. Let u = 1/L and � = 2, choose ⌘ = eO(1/ ^ 1/(1/3
m

2/3)),
and assume that ⌘2  log(2)/(36K), we have the following union bounds on E[kx � x⇤k22], E[f(xk)] � f(x⇤) and
E[kvkk22],

E[kxk � x⇤k22] 
42d

µ
+ 24kx⇤k22 +

8d

L
, Ux,

E[f(xk)]� f(x⇤)  21d+ 12Lkx⇤k22 + 4d , Uf ,

E[kvkk22] 
80d

µ
+ 48kx⇤k22 +

18d

L
, Uv.

Moreover, it can be seen that Ux and Uv are both in the order of O(d/µ), and Uf is in the order of O(d).

B.1. Proof of Lemma A.2

Proof of Lemma A.2. In discrete update (3.1), the added Gaussian noises ✏xk and ✏vk have mean 0 and satisfy

E[✏vk(✏vk)>] = u(1� e
�2�⌘) · Id⇥d,

E[✏xk(✏xk)>] =
u

�2
(2�⌘ + 4e��⌘ � e

�2�⌘ � 3) · Id⇥d,

E[✏vk(✏xk)>] =
u

�
(1� 2e��⌘ + e

�2�⌘) · Id⇥d,

(B.1)

which are identical to those of the Brownian motions in Langevin diffusion (A.2) and (A.3) with time t = ⌘ by Lemma A.1.
Note that when 0 < x < 1, we have 1� x  exp(�x)  1� x+ x

2
/2. Thus assuming 2�⌘  1, we obtain

E[k✏vkk22]  2�u⌘d, E[k✏xkk22]  2u⌘2d, and E[h✏vk, ✏xki]  2�u⌘2d. (B.2)

Therefore, we are able to apply synchronous coupling argument, i.e., considering shared Brownian terms in both discrete
update (3.1) and Langevin diffusion.

Firstly, we are going to bound the discretization error in the velocity variable v. Let X0 = xk, V0 = vk, Xs = Lsxk and
Vs = Lsvk. Based on (3.1) and (A.2), we have
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����vk(1� �⌘ � e
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⇤
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
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⇤
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�
,

(B.3)

where the inequality follows from facts that |1�x�e
�x|  x

2
/2 when 0  x  1 and kx+y+zk22  3(kxk22+kyk22+kzk22)

. In terms of the third term on the R.H.S of (B.3), we have
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⇤
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⇥
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�
,

where the first inequality follows from inequality k
R t
0 x(s)dsk22  t

R t
0 kx(s)k22ds, the second inequality is due to

exp(�x)  1, and the last inequality follows from Assumption 4.1. Note that dXs = Vsds, we further have

⌘L
2

 Z ⌘

0
E
��Xs �X0

��2
2
ds
�
= ⌘L

2

 Z ⌘

0
E
����
Z s

0
Vrdr

����
2

2

ds
�

 ⌘L
2

 Z ⌘

0
s

Z s

0
EkVrk22drds

�
,
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where the last inequality is due to the fact that k
R t
0 x(s)dsk22  t

R t
0 kx(s)k22ds. By Lemma B.1, we know that

E[kVrk22]  2uE[f(X0)� f(x⇤) + 2⌘�d] + E[kV0k22]

for r  ⌘. Thus, it follows that

⌘L
2

 Z ⌘

0
s

Z s

0
EkVrk22drds

�


⌘
4
L
2
⇥
2uE[f(X0)� f(x⇤) + 2⌘�d]

⇤
+ E[kV0k22]

3
.

Substituting the above into (B.3), we obtain

E[kG⌘vk � L⌘vkk22]

 ⌘
4E

3�4

4
kV0k22 +

3u2
�
2

4
krf(X0)k22 + u

2
L
2
⇥
2u[f(X0)� f(x⇤) + 2⌘�d] + kV0k22

⇤�

 ⌘
4

⇣3�4

4
+ u

2
L
2
⌘
E[kvkk22] +

⇣3u2
�
2
L

2
+ 2u3

L
2
⌘
E
⇥
f(xk)� f(x⇤)

⇤
+ 4u3

L
2
⌘�d

�
, (B.4)

where the second inequality is by facts that V0 = vk, X0 = xk and krf(x)k22  2L
�
f(x)� f(x⇤)

�
. Next, we are going

to bound the discretization error in the position variable x. Note that the randomness of X⌘ comes from the Brownian term
in the velocity variation, and can be also regarded as an additive Gaussian noise, i.e.,

p
2�u

R ⌘
0 dt

R t
0 e

��(t�s)dBs. Note
that we utilize the identical random variable in the discrete update (3.1), which implies that the coupling technique can still
be used in the discretization error computation in xk. Let eVt = V0e

��t � u
R t
0 e

��(t�s)rf(Xt)ds, we have

E[kG⌘xk � L⌘xkk22] = E
����
Z ⌘

0

�
V0 � eVt

�
dt
����
2

2

�

 ⌘

Z ⌘

0
E[kV0 � eVtk22]dt

= ⌘

Z ⌘

0
E
����V0(1� e

��t) + u

Z t

0
e
��(t�s)rf(Xs)ds

����
2

2

�
dt

 ⌘

Z ⌘

0

⇢
2�2

t
2E[kV0k22] + 2u2E

����
Z t

0
e
��(t�s)rf(Xs)ds

����
2

2

��
dt

 2�2
⌘
4

3
E[kV0k22] + 2u2

⌘

Z ⌘

0
t

Z t

0
E[krf(Xs)k22]dsdt.

From Lemma B.1, it can be seen that

Ekrf(Xs)k22  2L

✓
E[f(X0)� f(x⇤)] +

E[kvkk22]
2u

+ 2�d⌘

◆

for any s  ⌘, thus we have

2u2
⌘

Z ⌘

0
t

Z t

0
E[krf(Xs)k22]dsdt  4u2

L⌘
4

3

✓
E[f(X0)� f(x⇤)] +

E[kvkk22]
2u

+ 2�d⌘

◆
.

Then, replacing V0 and X0 by vk and xk respectively, the discretization error in
xbk is bounded by

E[kG⌘xk � L⌘xkk22]  ⌘
4

✓
2�2 + 2uL

3

◆
E[kvkk22] +

4u2
L

3
E[f(xk)� f(x⇤)] +

8u2
L�d⌘

3

�
. (B.5)

Finally, by Lemma B.2, we have uniform bounds Uv and Uf on E[kvkk22] and E[f(xk)]� f(x⇤), substituting these bounds
into (B.4) and (B.5), we are able to complete the proof.
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B.2. Proof of Lemma A.3

Proof of Lemma A.3. Note that the update for xk does not contain the gradient term, which implies S⌘xk = G⌘xk and
E[kS⌘xk � G⌘xkk22] = 0. In the sequel, we mainly consider the velocity variable. Applying coupling argument, it can be
directly observed that

E[kS⌘vk � G⌘vkk22] = ⌘
2
u
2E
⇥��rfik(xk)�rfik(exj)�

�
rf(xk)�rf(exj)

���2
2

⇤

 ⌘
2
u
2E
⇥��rfik(xk)�rfik(exj)

��2
2

⇤

 ⌘
2
u
2
L
2E
⇥��xk � exj

��2
2

⇤
, (B.6)

where the first inequality is by the fact that E[kx� E[x]k22]  E[kxk22], and the second inequality follows from Assumption
4.1. Note that by (3.1), we have

E[kxk � exjk22] = E
����

jm+l�1X

r=jm

⌘vr + ✏xr

����
2

2

�

 2E
����

jm+l�1X

r=jm

⌘vr

����
2

2

�
+ 2E

����
jm+l�1X

r=jm

✏xr

����
2

2

�

= 2⌘2E
����

jm+l�1X

r=jm

vr

����
2

2

�
+ 2

jm+l�1X

r=jm

E[k✏xrk22]

 2l⌘2
jm+l�1X

r=jm

E[kvrk22] + 4lu⌘2d, (B.7)

where the first inequality is due to (a+ b)2  2(a2 + b
2), the second equation is due to the independence among Gaussian

random variables ✏xr and the last inequality is due to
�Pn

i=1 ai

�2  n
Pn

i=1 a
2
i and (B.2). Let Uv denote the union upper

bound of E[kvkk22] for all 0  k  K, (B.7) can be further relaxed as follows

Ekxk � exjk22  2⌘2(l2Uv + 2lud)  2⌘2(m2
Uv + 2mud).

Since m  m
2, we are able to complete the proof by submitting the above inequality into (B.6) and setting D3 =

2(Uv + 2ud), i.e.,

E[kS⌘vk � G⌘vkk22]  2⌘4u2
L
2
m

2(Uv + 2ud) , D3u
2
L
2
m

2
⌘
4
.

B.3. Proof of Lemma A.6

Proof of Lemma A.6. Note that for random vectors X and Y , we have

�
E[hX,Y i]

�2
=

✓ dX

i=1

EXiYi

◆2


✓ dX

i=1

(EX2
i )

1/2E(Y 2
i )

1/2

◆2


✓ dX

i=1

EX2
i

◆✓ dX

i=1

EY 2
i

◆
= E[kXk22]E[kY k22],

where the first and second inequalities are by Hölder’s inequality and Cauchy-Schwarz inequality respectively. Thus, it
follows that

E[kX + Y k22] = E[kXk22 + kY k22 + 2hX,Y i]

 E[kXk22] + E[kY k22] + 2
q
E[kXk22]E[kY k22] =

✓q
E[kXk22] +

q
E[kY k22]

◆2

, (B.8)

which completes the proof.
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C. Proof of Auxiliary Lemmas
In this section, we prove extra lemmas used in our proof.

C.1. Proof of Lemma B.1

Proof. We consider the Lyapunov function Et = E[f(Xt) + kVtk22/(2u)], which corresponds to the expected total energy
of such dynamic system. By Itô’s lemma, we have

dEt
dt

=
1

dt
⇥
EhrVtEt, dVti+ EhrXtEt, dXti

⇤
+ �uEhr2

Vt
Et, Ii

=
1

u
E[��kVtk22 � uhVt,rf(Xt)i] + E[hrf(Xt),Vti] + �d

= �d� �

u
E[kVtk22]

 �d,

where in the third equation we use the martingale property of dBt. Thus, we have Et  t�d+ E0. Adding the term �f(x⇤)
on the both sides, we have

E[f(Xt)� f(x⇤)] + E[kVtk22]/(2u)  t�d+ f(X0)� f(x⇤) + kV0k22/(2u). (C.1)

Note that both terms E[kVtk22] and E[f(Xt)� f(x⇤)] are positive, which immediately implies that

E[kVtk22]  2u
⇥
f(X0)� f(x⇤) + �dt

⇤
+ kV0k22,

E[f(Xt)]  f(X0) +
kV0k22
2u

+ �dt.

Moreover, note that x⇤ = argmin f(x) and thus

f(x⇤)� f(x)  f(x�rf(x)/L)� f(x)

 hrf(x),�rf(x)/Li+ krf(x)k22/(2L)
= �krf(x)k22/(2L),

where the second inequality is due to Assumption 4.1, which further implies that

E[krf(Xt)k22]  2LE[f(Xt)� f(x⇤)].

By (C.1) we have

E[f(Xt)� f(x⇤)]  t�d+ f(X0)� f(x⇤) + kV0k22/(2u), (C.2)

which further indicates

E[krf(Xt)k22]  2L

✓
f(X0)� f(x⇤) +

kV0k22
2u

+ �dt

◆
.

Thus, we complete the proof.

C.2. Proof of Lemma B.2

To prove Lemma B.2, we need the following lemma.

Lemma C.1. Under Assumptions 4.1 and 4.2, when ⌘  1/(2�), expectations E[f(xk)] and E[kvkk22] are upper bounded
as follows,

E[f(xk)] 
1

1� �⌘


e
G1T⌘E0 + T (�d+G0⌘) +

1

2
T

2
⌘G1e

G1T⌘(�d+ ⌘G0)

�
,

E[kvkk22]  2u


e
G1T⌘E0 + T (�d+G0⌘) +

1

2
T

2
⌘G1e

G1T⌘(�d+ ⌘G0)� f(x⇤)

�
,

where T = K⌘ denotes the length of time, G0 = 6uE[krfi(x⇤)k] + 2L�ud� 18uLf(x⇤), and G1 = 36uL.
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Proof of Lemma B.2. We first prove the upper bound for E[kxk � x⇡k22]. Applying triangle inequality yields

E[kxk � x⇤k22]  2E[kxk � x⇡k22] + 2E[kx⇡ � x⇤k22]

 2w2
k +

2d

µ
, (C.3)

where the second inequality comes from Lemma A.7 and wk =
�
E[kxk�x⇡k22]+E[kxk+vk�x⇡�v⇡k22]

�1/2. According
to (A.6), (A.7),(A.9) and (A.10), we have

w
2
k+1 

⇣
e
�⌘/(2)

wk + 2
q
E[kG⌘xk � L⌘xkk22] +

q
E[kG⌘vk � L⌘vkk22]

⌘2
+ E[kS⌘vk � G⌘vkk22].

By (B.4), (B.5), (B.6) and (B.7), we have

E[kG⌘xk � L⌘xkk22]  ⌘
4

✓
2�2 + 2uL

3

◆
eUv +

4u2
L

3
eUf +

8u2
L�d⌘

3

�
= eD1⌘

4
,

E[kG⌘vk � L⌘vkk22]  ⌘
4

⇣3�4

4
+ u

2
L
2
⌘
eUv +

⇣3u2
�
2
L

2
+ 4u3

L
2
⌘
eUf + 4u3

L
2
⌘�d

�
= eD2⌘

4
,

E[kS⌘vk � G⌘vkk22]  2(eUv + 2ud)m2
u
2
L
2
⌘
2 = eD3m

2
u
2
L
2
⌘
2
,

(C.4)

where eUv and eUf denote any uniform upper bounds for E[kvkk22] and E[f(xk)� f(x⇤)] respectively. Applying Lemma
A.5 yields

wk  e
�k⌘/(2)

w0 +
2
q
eD1⌘

2 +
q
eD2⌘

2

1� e�⌘/(2)
+

q
eD3m⌘

2

p
1� e�⌘/(2)

 w0 + 4⌘
⇣
2

q
eD1 +

q
eD2

⌘
+ 2

q
 eD3m⌘

3/2
, (C.5)

where we use the fact that e�k⌘/(2)
< 1 and 1 � e

�⌘/(2) � ⌘/(4) when 0 < ⌘/  1. It is then left to show the
order of eD1, eD2 and eD3. To this end, we need to find uniform upper bounds for E[kvkk22] and E[f(xk)� f(x⇤)] by (C.4),
namely, we need to find the order of eUv and eUf . In the following, we will show this by applying Lemma C.1. Denote T as
T = k⌘ and consider sufficiently small ⌘ such that G1T⌘  log(2), G0⌘  �d and �⌘  1/2, by Lemma C.1 we obtain
the following upper bounds for E[kvkk22] and E[f(xk)]� f(x⇤)

E[f(xk)]� f(x⇤)  2
�
2E0 + 2T�d+ 2 log(2)T�d

�
+ |f(x⇤)|  4(E0 + 2T�d) + |f(x⇤)| = eUf ,

E[kvkk22]  2u
�
2E0 + 4T�d+ |f(x⇤)|

�
 ueUf = eUv.

In addition, since u = 1/L and � = 2, we can write eUf = O(Td) = O(d log(1/✏)) and eUv = O(d log(1/✏)/µ). Recall
the definition of eD1, eD2 and eD3 in (C.4), for sufficiently small ⌘ < 1/2� = 1/4, we have

eD1  10eUv/3 + 4ueUf/3 + 4ud/3  5eUv + 2ud,

eD2  13eUv + 10ueUf + 2ud = 23eUv + 2ud,

eD3  2eUv + 4ud.

(C.6)

We choose step size ⌘ in (C.5) such that 4⌘
⇣
2
q
eD1 +

q
eD2

⌘

p
d/µ and 2

q
 eD3m⌘

3/2 
p

d/µ. To this end, we let

⌘  min

(
1

4(2
q
eD1µ/d+

q
eD2µ/d)

,

 
1

2n
q
 eD3µ/d

!3/2)
= eO(1/ ^ 1/(1/3

m
2/3)),

where the equation is calculated based on (C.6). Then by (C.5) we have

w
2
k 

⇣
w0 + 2

p
d/µ

⌘2
 2w2

0 +
8d

µ
.
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Now we deal with w0. Note that x0 = 0 and v0 = 0. By the definition of wk, we have

w
2
0 = E[kx⇡ � x0k22 + kx⇡ + v⇡ � x0 � v0k22]
 3E[kx⇡k22] + 2E[kv⇡k22]

 6d

µ
+ 6kx⇤k22 +

2d

L
,

where the first inequality comes form triangle inequality and in the second inequality we use facts that E[kx⇡k22] =
2E[kx⇡ �x⇤k22] + 2kx⇤k22, E[kv⇡k22] = 1/

p
(2⇡)d

R
Rd kvk22 exp(�kvk22/2u)dv = ud = d/L and E[kx⇡ �x⇤k22]  d/µ

by Lemma A.7. Applying (C.3) we further have

E[kxk � x⇤k22]  2w2
k +

2d

µ
 2
⇣
2w2

0 +
8d

µ

⌘
+

2d

µ
=

42d

µ
+ 24kx⇤k22 +

8d

L
,

which completes the proof for the upper bound of E[kxk � x⇤k22]. Moreover, according to Assumption 4.1, we have

E[f(xk)]� f(x⇤)  LE[kxk � x⇤k22]
2

 21d+ 12Lkx⇤k22 + 4d.

In the following, we are going to prove the union upper bound on E[kvkk22]. Similar to the proof of Ux, we have

E[kvkk22] = E[kvk � v⇡ + v⇡k]
 2E[kv⇡k22] + 2E[kv⇡ � vkk22]
 2E[kv⇡k22] + 4E[kv⇡ � vk + x⇤ � xkk22] + 4E[kx⇤ � xkk22]
= 2E[kv⇡k22] + 4w2

k.

Note that w2
k  2w2

0 + 8d/µ  20d/µ+ 12kx⇤k22 + 4d/L and E[kv⇡k22] = d/L, we have

E[kvkk22] 
80d

µ
+

18d

L
+ 48kx⇤k22 , Uv,

which completes our proof.

C.3. Proof of Lemma C.1

Proof. Recall the discrete update form (3.1) and the proposed SVR-HMC algorithm. Let k = jm+ l, we first rewrite the
l-th update in the j-th epoch as follows,

xk+1 = xk + ⌘vk + ✏xk,

vk+1 = vk � �⌘vk � ⌘ugk + ✏vk,
(C.7)

where gk = rfik(xk)�rfik(exj) +rf(exj).

In order to show the upper bounds of E[f(xk)] and E[kvkk22], we consider the Lyapunov function Ek = E[(1� �⌘)f(xk) +
kvkk22/(2u)]. In what follows, we aim to establish the relationship between Ek+1 and Ek. To begin with, we deal with
E[f(xk+1)], which can be upper bounded by

E[f(xk+1)]  E

f(xk) + ⌘hvk,rf(xk)i+

Lk⌘vk + ✏xkk22
2

�

= E

f(xk) + ⌘hvk,rf(xk)i+

L⌘
2kvkk22
2

�
+

L

2
E[k✏xkk22]. (C.8)

In terms of Ekvk+1k22, we have

E[kvk+1k22] = Ekvk � �⌘vk � ⌘ugk + ✏vkk22
= E[kvk � �⌘vk � ⌘ugkk22] + E[k✏vkk22]. (C.9)
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As for the first term on the R.H.S of the above equation, we have

E[kvk � �⌘vk � ⌘ugkk22] = E[k(1� �⌘)vkk22]� 2(1� �⌘)⌘uE[hvk,gki] + ⌘
2
u
2E[kgkk22].

Note that

E[hvk,gki] = E[hvk,Eikgki] = E[hvk,rf(xk)i],

which immediately implies

E[kvk � �⌘vk � ⌘ugkk22] = (1� �⌘)2E[kvkk22]� 2(1� �⌘)⌘uE
⇥
hvk,rf(xk)i

⇤

+ ⌘
2
u
2E[krfik(xk)�rfik(exj) +rf(exj)k22]

 (1� �⌘)E[kvkk22]� 2(1� �⌘)⌘uE[hvk,rf(xk)i]
+ 3⌘2u2E[krfik(xk)k22 + krfik(exj)k22 + krf(exj)k22], (C.10)

where the first inequality follows from the fact that (a+ b+ c)3  3(a2 + b
2 + c

2) and that 1� ⌘� < 1. Combining (C.8),
(C.9) and (C.10), we obtain

Ek+1 = E

(1� �⌘)f(xk+1) +

kvk+1k22
2u

�

 (1� �⌘)Ef(xk) +
1� �⌘ + Lu⌘

2(1� �⌘)

2u
Ekvkk22 +

3⌘2u

2
E[krfik(xk)k22 + krfik(exj)k22 + krf(exj)k22]

+
(1� �⌘)L

2
E[k✏xkk22] +

E[k✏vkk22]
2u

. (C.11)

From (B.2), we know that

E[k✏vkk22]  2�ud⌘, and E[k✏xkk22]  2ud⌘2.

We bound the gradient norm term as follows.

E[krfi(xk)k22]  2E[krfi(xk)� fi(x
⇤)k22] + 2E[krfi(x

⇤)k22]
 2L2E[kx� x⇤k22] + 2E[krfi(x

⇤)k22]

 4L2

µ
E[f(xk)� f(x⇤)] + 2E[krfi(x

⇤)k22].

Upper bounds of krfik(exj)k22 and krf(exj)k22 can be established in the same way. Then (C.11) can be further bounded by

Ek+1  (1� �⌘)E[f(xk)] +
1� �⌘ + Lu⌘

2

2u
E[kvkk22]

+ 6⌘2uLE[f(xk) + 2f(exj)� 3f(x⇤)] + 6⌘2uE[krfi(x
⇤)k] + d⌘(� + Lu⌘)


�
1� �⌘ + 6⌘2uL

�
E[f(xk)] +

1� �⌘ + Lu⌘
2

2u
E[kvkk22] + 12⌘2uLE[f(exj)]

+ ⌘�d+ ⌘
2
⇥
6uE[krfi(x

⇤)k22] + Lud� 18uLf(x⇤)
⇤
. (C.12)

Note that we have assumed �⌘  1/2, which further implies that

(1� �⌘ + 6⌘2uL)E[f(xk)] +
1� �⌘ + Lu⌘

2

2u
E[kvkk22]  max

⇢
1� �⌘ + 6⌘2Lu

1� �⌘
, 1� �⌘ + Lu⌘

2

�
Ek

 (1 + 12⌘2uL)Ek,

where in the second inequality we use the fact that (1 � �⌘ + a)/(1 � �⌘)  1 + 2a for any a > 0 and 0 < �⌘  1/2.
Moreover, since 0 < �⌘  1/2, we have E[f(exj)]  2(1� �⌘)E[f(exj)] + E[kevjk22]/(u) = 2Ejm, where we used the fact
that exj = xjm. Therefore (C.12) turns to

Ek+1  (1 + 12⌘2uL)Ek + 24⌘2uLEjm + ⌘�d+ ⌘
2
G0, (C.13)



Stochastic Variance-Reduced Hamilton Monte Carlo Methods

where G0 = 6uE[krfi(x⇤)k] + 2Lud� 18uLf(x⇤). Note that the inequality (C.13) can be relaxed by

Ek+1  (1 + 36⌘2uL)max{Ek, Ejm}+ ⌘�d+ ⌘
2
G0. (C.14)

We then consider two cases: Ek � Ejm and Ejm > Ek and analyze the upper bound of Ek+1 respectively.

Case I: Ek � Ejm. The inequality (C.14) reduces to

Ek+1  (1 + 36⌘2uL)Ek + ⌘�d+ ⌘
2
G0,

which immediately implies that

Ek  (1 + 36⌘2uL)kE0 + (⌘�d+ ⌘
2
G0)

k�1X

i=0

(1 + 36⌘2uL)i

= (1 + 36⌘2uL)kE0 + (⌘�d+ ⌘
2
G0)

(1 + 36⌘2uL)k � 1

36⌘2uL
.

Let G1 = 36uL, and it is easy to verify the following fact for any 0 < G1⌘
2.

(1 +G1⌘
2)k = exp

�
k log(1 +G1⌘

2)
�
 exp

�
kG1⌘

2
�
.

Then, Ek+1 can be further bounded as

Ek  (1 +G1⌘
2)kE0 + (⌘�d+ ⌘

2
G0)

(1 +G1⌘
2)k � 1

G1⌘
2

 e
G1k⌘

2

E0 + (⌘�d+ ⌘
2
G0)

e
G1k⌘

2 � 1

G1⌘
2

 e
G1k⌘

2

E0 + (⌘�d+ ⌘
2
G0)

G1k⌘
2 + e

G1k⌘
2

G
2
1k

2
⌘
4
/2

G1⌘
2

= e
G1k⌘

2

E0 + k⌘�d+ k⌘
2
G0 +

1

2
k
2
⌘
3
G1e

G1k⌘
2

(�d+ ⌘G0), (C.15)

where the third inequality holds because h(y)  h(0) + h
0(0)y +maxs2[0,y] h

00(s)y2/2 holds for any C2 function h.

Case II: Ejm > Ek. In order to obtain the upper bound of Ek, we still need to recursively call (C.14) many times. However,
note that jm  k, which implies that we only need to perform recursions less than k times. Thus, (C.15) remains true.

Finally, using facts that E[f(xk)] � f(x⇤) � 0, E[kvkk22] � 0 and the definition of Ek, replacing k in (C.15) by K, we
arrive at the arguments proposed in this lemma.


