Stochastic Variance-Reduced Hamilton Monte Carlo Methods

A. Proof of Main Theory

In this section, we present our theoretical analysis of the proposed SVR-HMC algorithm. Before we present the proof of our
main theorem, we introduce some notations for the ease of our presentation. We use notation S,; to denote the one-step
SVR-HMC update in (3.1) with step size 7, i.e., Xp41 = S;X; and vi41 = S, v. Similarly, We define an operator G,
which also performs one step update with step size 7, but replaces the semi-stochastic gradient in (3.1) with the full gradient.
Specifically, we have

gnvk = Vg —NVE — nuvf(xk) + GZ’

m (A1)
GyXp = Xp, + vy, + €,

for any x;, v € RY, where € and € are the same as defined in Algorithm 1. Next, we define an operator £, which
represents the integration over a time interval of length 1 on the continuous dynamics (1.3). Specifically, for any starting
point Vj and X, integrating (1.3) over time interval (0, n) yields the following equations:

t
Wﬁt%%e“u(/ W=7 F(X,)d )+\/2’yu/ 1t=s)g B, (A2)
0

t
X =L Xy =X —|—/ Vds. (A3)
0

(A.2) and (A.3) give out an implicit solution of dynamics (1.3), which can be easily verified by taking derivatives of these
two equations (Cheng et al., 2017). The following lemma characterizes the mean value and covariance of the Brownian
motion terms.

Lemma A.1. (Cheng et al., 2017) The additive Brownian motion in (A.2), denoted by €” = /2yu fot e 7(t=5)d By, has
mean 0 and covariance matrix

¢ ¢
E[e’(e¥)T] = QVUE[/O e*W(t*S)dBS/O e“’(ts)dB;r} =u(l —e 27 Typq.

Note that there also exists a hidden Brownian motion term in (A.3), which comes from the velocity V;, denoted by
€ = 2yu [, [ e77~")dB,dt, having mean 0 and covariance matrix

Ele®(e” —Q’VUE[/ / e 7=MdB ds/ / e (s T)dBTds] = (2’7t+4e T em2 —3) Ly

In addition, €” and €” have the following cross-covariance
E[e’ (%) ] :2'qu[/ e 7t=9dB, / / —y(s—r dBTds} = Y1 2e7 4 e I,

Recall the independent Gaussian random vectors €}, and €7 used in each iteration of Algorithm 1. They all have zero mean
and the covariance matrices defined in (3.3) have exactly the same form with the covariance matrices in Lemma A.1 when
t = n. Due to this property, we will use a synchronous coupling technique that ensures the Gaussian random vectors in each
one-step update of the discrete algorithm, i.e., S, x and S, v, are exactly the same additive Brownian motion terms in the
one-step integration of the continuous dynamics £, x and £, v. The shared Brownian motions between S, v and £, v (S,x
and £,x) are pivotal to our analysis. Similar coupling techniques are also used in Eberle et al. (2017); Cheng et al. (2017).

A.1. Proof of Theorem 4.3

We first lay down some technical lemmas that are useful in our proof. The first lemma characterizes the discretization error
between the full gradient-based HMC update in (A.1) and the solutions of continuous Hamiltonian dynamics (1.3).

Lemma A.2. Under Assumptions 4.1 and 4.2, consider one-step discrete update (A.1) and Langevin diffusion (A.2)-(A.3)
starting from point (xg, vi). Then the discretization error for velocity and position are bounded by

2+2 4+ 2uL 4u?L SuL~yd
E[IGyxk — Lyxkll3] < n* [(FY?))UU + 3 Ur+ 37 77] 2 Dt

3 2 2L i i
Ty 4u3L2) Us + 4u5L2nyd} 2 Dyt

3 4
EllG v~ Lol < o' | (- + 0222)0, + (
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where parameters U, and Uy are in the order of O(d/p) and O(dk) respectively.

The difference between our SVR-HMC update and the full gradient-based HMC update in (A.1) can be characterized by the
following lemma.

Lemma A.3. Under Assumptions 4.1 and 4.2, for any xj, vy € R?, we have

E[||S,xx — Gnxi 3] = 0, (A.4)
E[||S;vi — Gyvil3] < 2n*m*u®L?(U, + yud) £ Dsu®L*m*n*. (A.5)

The following lemma shows the contraction property for the diffusion operator in terms of the coupled ¢ norm.

Lemma A.4. (Cheng et al., 2017) Under Assumptions 4.1 and 4.2, let z = (x',(x +v)')" € R? and L;z =
(Lex)T, (Lix + Lyv)T)T. Sety = 2and u = 1/L in (A.2)-(A.3). Starting from two different points z; and zo,
the continuous-time dynamics after time ¢ satisfy

E[llLez1 — Liza]l3] < ™"/ "E[|l21 — 23],
where the diffusion operators on z; and z, share the same Brownian motion, and < = L/u denotes the condition number.

For the operators £,,, we denote LI;X =Ly, 0L, o0---0L,x as the result after £, operates k times starting at x. We have
the following lemma which is useful to characterize the distance E[[|z;, — LFz™[|3] based on some recursive arguments,

where z™ = ((x™) T, (x™ + v”)T)T

Lemma A.5. (Dalalyan & Karagulyan, 2017) Let A, B and C' be given non-negative numbers such that A € (0, 1). Assume
that the sequence of non-negative numbers {xy, }r—0.1 2, .. satisfies the recursive inequality

zi1 < [(1— A)xg + C)* + B,
for every integer k£ > 0. Then, for all integers k& > 0,

o< (- AYigg+ Sy B

AT A

Lemma A.6. For any two random vectors X, Y € R, the following holds

2
BlIX + v1) < (VRIXIE+ EIYIR)
Based on all the above lemmas, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let z™ denote the random variable satisfying distribution 7, then we have

Efl|zr41 — L3727 3]

Elllzk+1 — Gnzi + Goza — LET127|[3]
= Elllze+1 — Gnzall3 + 2(zis1 — Gnz, Gnzr — L3T27) + |Gpze — L3127 |)3]
= E[|zrt1 — Gnzill3 + |Gnzs — L5127 13], (A.6)

where the last equality follows from the fact that E[<Zk+1 — Gnzi, Gzt — £7]§+1Zﬂ>] = IE[]E“ (Zk+1 — Gyzi, Gnzp —
LiH1z™)]| = 0 and E;, [2x41] = Gyzk. Note that zg 41 = (X1, (X1 + Vig1) ") T, thus

Ell|lzxt1 — Gnzell3 = Elllxrr1 — Goxill3 + E[l[Xe+1 + Vir — Gp(xn + vi)[|3
= E[[[vit1 — Gyvill3 (A7)
< Dsm’*n*, (A.8)
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where the second equality follows from x;11 = G,x}, the inequality follows from Lemma A.3 and the fact that ul, = 1.
The second term on the R.H.S of (A.6) can be further bounded as follows,

ElllGyzr — L3727 |13] = El|Gyze — Loz + Loz — L3 27|13]

2
< (VEUGm: ~ Loml3) + yBlI .~ £572713))

2
< (VEIG,m. — Lyl + /2[5l — CharIR]) 49)

where the first inequality holds due to Lemma A.6 and the second inequality follows from Lemma A.4. We further have

VENGozi — Lozl = \JENGy (v +x0) — Lo(vi +x0)[3] + ElIGyxk — Loxi 3]
< VEG (vi +x4) — Lo(vi +x0)[3 + /E[IGyxk — LoxillZ]
< 2\/E(1G, %k — Lyxkll3) + /ELG,vi — £yvil3 (A.10)
< 2v/Din? + /Dar?, (A.11)

where the first inequality is due to v/a + b < \/a + /b, the second inequality is due to (B.8) and the last inequality comes
from Lemma A.2. Here Dy, D are constants which are both in the order of O(d/s). Denote wg, ; = E[||zx41— Efﬁlz” 113]-
Submitting (A.8), (A.9) and (A.11) into (A.6) yields

2
w,QH_l < (e*"/(%)wk + 2\/D17]2 + \/D2n2> + D3m2n4. (A.12)
Then, by Lemma A.5, wj can be bounded by
wi < e/ 2Ry 4 2vDin* + VDan® + v Dgmn? .
- 1 — e—n/(2x) V1 — e—n/(2r)

Note that the above results rely on the shared Brownian motion in the discrete update and continuous Langevin diffusion,
i.e., we assume identical Brownian motion sequences are used in the updates z; = Sf?zo and Ei“]z“. Since z™ satisfies the
stationary distribution 7, Ef) z™ satisfies 7, as well. According to the definition of 2-Wasserstein distance, we have

1/2
Wa (P(z),m5) = ( inf / s, — ﬁgzﬂgdg(zk,z’;z”))
R4 x R4

CEeT(zk,Lh2m)

IN

Elllze — Lkz[|3]

which further implies that

VDin? 4+ /Dan? N VDamn?

2
Wi, (P(ZK),WZ) <wg < 67Kn/(2/<a)w0 +

. A.13
1= e/ e/ A-13)

Let Kn =T, and note that 1 — e~/ (2r8) > n/(4x) when assuming 0 < n/x < 1. Therefore, we have
Wo (P(ZK),TFZ) <wg < e T/CRy + dnk(2v/ D1 + v/ D2) + 2 /{ngn3/2. (A.14)

Moreover, note that

Wa (P(xk),T) = By xm[lIxx — X7[[3)
< Er(xsevicxmwn [1%x = XT3 + [IxK + v — X7 = V73]
:WQ(P(ZK),WZ).

Substituting the above into (A.14) directly yields the argument in Theorem 4.3. O
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A.2. Proof of Corollary 4.5
Now we present the calculation of gradient complexity of our algorithm.

We first present the following Lemma that characterizes the expectation E[||x™ — x*||], where x* = arg miny f(x) is the
global minimizer of function f.

Lemma A.7 (Proposition 1 in Durmus & Moulines (2016b)). Let x* = arg miny f(x) denote the global minimizer of
function f, and x™ be the random vector satisfying distribution 7 e~ the following holds,

E[x™ - x*||3] <

T

Then we are going to prove Corollary 4.5.

Proof of Corollary 4.5. We first let woe~7/?% = ¢/3, which implies that T = 2k log(3wp /¢). Note that x* is the minimizer
of f and by assumption we have ||xo — x*||2 < R. Recall the definition of wy, we have

* * T T * * 2d
wo = E[l|xo — x7[13] = E[[lxo — x" + x* — x7[|3] < 2E[||x" — x"[|3] + 2[lx0 — x"[13 < o TR

where the last inequality comes from Lemma A.7. Then we obtain T = O(x), where O(-) notation hides the logarithmic
term of €, d, u and R. We then rewrite (A.14) as follow,

Wa (P(zk ), m5) < e T/ g + Con + Cyma®?, (A.15)
where Cy = O(r(d/p1)"/?) and Cy = O((rd/p)"/?). We then let

G =&, ana G2 =

and solve for 7, which leads to
. { e 62/3 }
n=minq —, —— ;.
302 (303771)2/3
Thus, the total iteration number satisfies

3T52 T(353m)2/3
€ 62/3

K="<
n

In terms of gradient complexity, we have

Kn
+ n.

K
Tg:K+n<1\/> <K+ —
m m

Substituting C~’2, C~'3, T into the above equation, and let m = n, we obtain

[ k2(d) )2 4/3(q/ 1)1 /3n2/3
Tg§2K+n:O<K(/M) + B (/5) n +n>. (A.16)
€ €2/3
When ¢ and L appear individually, they can be treated as constants. Thus we arrive at the result in Corollary 4.5. O

A.3. Proof of Theorem 4.8

In this section, we prove the convergence result of SVR-HMC for sampling from a general log-concave distribution. Note
that for a p-strongly log-concave distribution m oc e, it must satisfy a logarithmic Sobolev inequality with constant
Crs = 1/u (Raginsky et al., 2017). We first present the following two useful lemmas.
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Lemma A.8. (Dalalyan, 2014) Let f and f be two functions such that f(x) < f(x) for all x € R?, suppose e~/ and e~/
are both integratable. Then the Kullback-Leibler (KL) divergence between distribution 7 o< e~/ and 7 o< e~/ satisfies

KL(rll7) < 5 [ (76x) = £60)"dr().

Lemma A.9. (Bakry et al., 2013) If a stationary distribution 7; satisfies a logarithmic Sobolev inequality with constant
C' s, for any probability measure 75, it follows that

Wz(ﬂ'l,ﬂ'g) < \/QCLsKL(ﬂ‘QnTrl).

In what follows, we are going to leverage the above two lemmas to analyze the convergence rate of SVR-HMC for sampling
from general log-concave distributions. Based on Assumption 4.7, we have

2 97 12
[, (760 = s00) a0 = 5 [ ltanto) < 255

where U > 0 is an absolute constant. Then, by Lemma A.8, we immediately have

277 72
KL(r7||7) < A ;jd .

From Lemma A.9, the 2-Wasserstein distance W (7, 7) is upper bounded by

742
Wa(s, 7) < v/20sKL(rlm) < 20T (A17)

where we use the fact that the probability measure 7 satisfies a logarithmic Sobolev with constant Crg = 1/ due to
the strong convexity of f. By triangle inequality in 2-Wasserstein distance, for any distribution p, we have Ws(p, 7) <
Wa(p, 7t) + Wo(7,m). Thus, we can perform our algorithms over distribution 7 oc e/, and obtain an approximate
sampling X which achieves the e-precision requirement in W, (P(X), ), as long as ensuring W5 (P(X),7) < €/2 and
Wy (7, m) < €/2. According to (A.17), the requirement Wa (7, 7) < €/2 suggests that the parameter A should be selected
such that A < €2/(Ud?) = O(€?/d?). Based on the above discussion, we are ready to prove Theorem 4.8 as follows.

Proof of Theorem 4.8. Note that we perform Algorithm 1 on the approximate density 7 o e~f, where f(x) = f(x) +
Allx — x*||3/2, and A = O(e?/d?). It can be readily seen that function f(x) is an (L + \)-smooth and \-strongly convex
function. Thus, we can directly replace the parameter y in (A.16) with A, and obtain

~( d1/2 d1/3n2/3
Ty = O(e)\5/2 T 233 +n),

where we treat the smoothness parameter L + X as constant of order O(1) when it appears individually. Plugging the fact
A = O(e?/d?) into the above equation, we have

_ d11/2  g11/3,2/3
TgO<n+ © + o ),

which completes the proof. O

B. Proof of Technical Lemmas

In this section, we prove the technical lemmas used in the proof of our main theorems. We first present some useful lemmas
that will be used in our analysis.

Lemma B.1. Under Assumptions 4.1 and 4.2, the solution of Hamiltonian Langevin dynamics in (A.2)-(A.3) satisfies

E[|[V2I[3] < 2u[f(Xo) — f(x") +dt] + | Vo]l3,

2
E[f(X:)] < f(Xo) + % + ~dt,

[Voll3

BV < 22 (7o) ~ o) + T2 ),

where x* = arg miny f(x) denotes the global minimizer of function f(x).
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Lemma B.2. Consider iterates x;, and z, in Algorithm 1. Let w = 1/L and v = 2, choose = O(1/x A 1/(kY/3m?/3)),
and assume that 7> < log(2)/(36xK), we have the following union bounds on E[||x — x*|3], E[f(xx)] — f(x*) and
E[||vx 3],

42d 8d
Ef|jxx —x*[3] < -t 2A4[x"I3 + + = Us,
E[f(xx)] — f(x*) < 21dk + 12L||x*||3 + 4d 2 Uy,
80d 18d ,

E < — 4+ 48||x* — 42U,
[lIvkl3] 2t I3+
Moreover, it can be seen that U,, and U, are both in the order of O(d/ ), and Uy is in the order of O(dk).

B.1. Proof of Lemma A.2
Proof of Lemma A.2. In discrete update (3.1), the added Gaussian noises €}, and €}, have mean 0 and satisfy
Ele;(er) '] = u(l — ") Taxa,

Elef(e})T] = —5(2yn +4e™ " — ™2 —3) T 4q, (B.1)

Elep(ef) '] = —(1—=2¢77 + e ) - Iyua,

Q\:q

which are identical to those of the Brownian motions in Langevin diffusion (A.2) and (A.3) with time ¢ = n by Lemma A.1.
Note that when 0 < z < 1, we have 1 — z < exp(—x) < 1 — 2 + 2%/2. Thus assuming 2y < 1, we obtain

Elllep|3] < 2yund, E[||ef]3] < 2und, and  E[(e}, e§)] < 2yun’d. (B.2)

Therefore, we are able to apply synchronous coupling argument, i.e., considering shared Brownian terms in both discrete
update (3.1) and Langevin diffusion.

Firstly, we are going to bound the discretization error in the velocity variable v. Let Xy = xi, Vo = v, X = Lx;, and
Vi = L,vy. Based on (3.1) and (A.2), we have

E[G,vi — Lovel3] = E[

vi(1—yn—e ") + %(1 — A — e MV f(xk)
2
i

/0 T e [V F(X,) — V(Xo)]ds

+u /77 e Y= [V (X)) — V(Xo)]ds
0

U777

2
IV £ Ge)l2 + u? ]
2
(B.3)

where the inequality follows from facts that |1 —z—e~%| < 22/2when 0 < x < 1and ||x+y+z||3 < 3(||x|3+]y/13+]1z]3)
. In terms of the third term on the R.H.S of (B.3), we have

d <o [l s - w06 e
<o [ 19505 - V)]s
<[ ["5x. - xolfas)

where the first inequality follows from inequality || fo s)ds||3 <t fo |x(s)||3ds, the second inequality is due to
exp(—x) < 1, and the last inequality follows from Assumption 4.1. Note that dX ; = Vids, we further have

Ul n s 2
nﬁ[/ ]EHXS—XOHst} :nLQ[/ IEH/ V,dr ds}
0 0 0 2
n S
Snﬁ[ [ Enwnzdrds},
0 0

4,4
< 38| Tl vl +

/0 "0 [V H(XL) — VF(X,)]ds

2
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where the last inequality is due to the fact that || fo s)ds||3 <t fo ||x(s)||3ds. By Lemma B.1, we know that

E[|V;]13] < 2uE[f(Xo0) — f(x*) + 2iyd] + E[||Vo 3]

for r < 7. Thus, it follows that

i [ [ v ttara] < o LRUEIF ) = £6) + 2] + BV

Substituting the above into (B.3), we obtain
E[l|Gyvi — Lyvi ]3]

34 3u? fy
| el +

IV £(Xo)lI + w?L? [2u[f(Xo) — f(x") + 2nyd] + Vbllg]]

4
<t (% + uZLZ)Emka%] + (M 2Bl ) - ) + 40 o).

(B.4)

where the second inequality is by facts that Vi = vy, Xo = x and ||V f(x)[|3 < 2L(f(x) — f(x*)). Next, we are going
to bound the discretization error in the position variable x. Note that the randomness of X, comes from the Brownian term

in the velocity variation, and can be also regarded as an additive Gaussian noise, i.e., v/27yu fon dt f ¢ e~ 7(t=5)dB,. Note
that we utilize the identical random variable in the discrete update (3.1), which nnphes that the coupling technique can still

be used in the discretization error computation in xy. Let Vt =Voe "t —u f e V(t=s)y f(X;)ds, we have

)

¢
Vo(l—e ) + u/ e VIV F(X,)ds
0

E[Gyxi — Lyxil2) H‘ / Vo— V)i

< / E[| Vs — Vi|[2)dt

) el

n
< [ {27%21[«:[”%”%] i ME[
0

2
Jor
2

t
eIV F(X,)ds

J

2
< 2T wyvalg) + 2t [t [ B9 Blasit
From Lemma B.1, it can be seen that

E[Vf(X,)]5 < 2L<E[f(Xo) — f(x")] + w i 27d77>

for any s < n, thus we have

'LL2 4 v 2
aun s [ Bl IO Basat < 2L (a15060) - 1)+ AL 200

Then, replacing V[, and X, by v}, and x;, respectively, the discretization error in
xby, is bounded by

2~2 2ulL Aul L Su2L~d
E[||gnxk—£nxk||§JSn4[<7*3)Emvknéw a E[f(m)—f(x*)w?j”}

(B.5)

Finally, by Lemma B.2, we have uniform bounds U, and Uy on E[||vy||3] and E[f(x))] — f(x*), substituting these bounds

into (B.4) and (B.5), we are able to complete the proof.

O
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B.2. Proof of Lemma A.3

Proof of Lemma A.3. Note that the update for x;, does not contain the gradient term, which implies S,x;, = G,x;, and
E[||S,xx — Gnxx||3] = 0. In the sequel, we mainly consider the velocity variable. Applying coupling argument, it can be
directly observed that

E(S,vi — Gyvill3] = Pu®E[ ||V fi, () = V i (&5) — (Vi) = V) ||2]
< PuPB[||V £, (x1) = V £ (X))||2]
< 17 - ], ®o

where the first inequality is by the fact that E[||x — E[x]||3] < E[||x]|3], and the second inequality follows from Assumption
4.1. Note that by (3.1), we have

jm+1—1
il - %1 =E|| 3w +e ]
—jm
jm+l—1 2 jm+i—1 2
SQE{ > pve ]+2E[ > e ]
r=jm 2 r=jm 2
gmA+i-1 jmAl—1
:27,21@{ doov }+2 > Eller3]
r=jm r=jm
jm4Il—1
<2’ Y E[flv,]3] + 4lun’d, (B.7)

r=jm

where the first inequality is due to (a + b)? < 2(a? + b?), the second equation is due to the independence among Gaussian

random variables €7 and the last inequality is due to (Z?Il az) <n)_ i, a?and (B.2). Let U, denote the union upper
bound of E[||v||3] for all 0 < k < K, (B.7) can be further relaxed as follows

Eljxx — X;|3 < 20*(1°U, + 2lud) < 2n*(m*U, + 2mud).

Since m < m?, we are able to complete the proof by submitting the above inequality into (B.6) and setting D3 =

2(U, + 2ud), i.e

E[||Syvi — Gyvill3) < 2n*u*L*m? (U, + 2ud) £ Dau®L*m*n*.

B.3. Proof of Lemma A.6
Proof of Lemma A.6. Note that for random vectors X and Y, we have

d

(E[<X,Y>])2=(gmm)2s(Z(EX (Y 1/2) (ZEX)(ZEYQ)— IXI3E] V]3],

i=1

where the first and second inequalities are by Holder’s inequality and Cauchy-Schwarz inequality respectively. Thus, it
follows that

E[|X +Y[3] =E[IX]3 + Y]l +2(X,Y)]

E[IX (3] + E[|Y [3] + 2¢/E[I X [3E] ¥ |3 = <\/1E[IIXII§]+\/JE[IIYII%}) . By

which completes the proof. O



Stochastic Variance-Reduced Hamilton Monte Carlo Methods

C. Proof of Auxiliary Lemmas

In this section, we prove extra lemmas used in our proof.

C.1. Proof of Lemma B.1

Proof. We consider the Lyapunov function & = E[f(X}) + ||V;||3/(2u)], which corresponds to the expected total energy
of such dynamic system. By Itd’s lemma, we have

&, 1
(Ttt =3 [E(Vv,&,dV;) + E(Vx, &, dX,)] + yuE(VY, &L 1)

= L[ VII3 — u{Vi, VI(X0)] + BV F(X,), Vi)l + d
= 7d - LE[|Vi[}3]
< vd,

where in the third equation we use the martingale property of d B;. Thus, we have & < tyd + &y. Adding the term — f(x*)
on the both sides, we have

E[f(X) — f(x")] +E[[V]3]/(2u) < tyd + f(Xo) — f(x7) + [|Vol[3/(2u). €.n
Note that both terms E[||V;||3] and E[f(X,) — f(x*)] are positive, which immediately implies that
E[[V3]13) < 2u[f(Xo) — f(x*) +~dt] + |[Vol3,

[Voll3

E[f(X0)) < £(Xo) + 1

+ ~ydt.

Moreover, note that x* = argmin f(x) and thus
fX) = f(x) < fx=Vf(x)/L) = f(x)
< (V(x), =V f(x)/L) + [V f)l3/(2L)
= —|IVF(x)l3/(2L),
where the second inequality is due to Assumption 4.1, which further implies that
E[|VF(X0)[3] < 2LE[f(X,) — f(x7)].
By (C.1) we have

E[f(Xy) = f(x")] < tyd + f(Xo) = F(x") + | Vall3/(2u), (€2
which further indicates
AV 2
BV A0 < 22 0X0) — o)+ T2 ).
Thus, we complete the proof. O

C.2. Proof of Lemma B.2
To prove Lemma B.2, we need the following lemma.

Lemma C.1. Under Assumptions 4.1 and 4.2, when ) < 1/(27), expectations E[f(xy)] and E[|v||3] are upper bounded
as follows,

1
E[f(xx)] < F— [eGlTngo +T(vd + Gon) + §T27)G1€GIT”(W + 7IG0)} ;

1
BV < 2|60 + T(0d + Gon) + 52061 T -+ 1Go) — 1667,

where T' = K1 denotes the length of time, Gy = 6uE[||V f;(x*)||]] + 2Lyud — 18uLk f(x*), and G; = 36uLx.
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Proof of Lemma B.2. We first prove the upper bound for E[||x; — x™||3]. Applying triangle inequality yields
Efl|x, — x*[13] < 2E[]|xy, — x7[|3] + 2E[[[x™ — x*|3]
2d
T p— (C.3)
w

where the second inequality comes from Lemma A.7 and wy, = (E[||x; —x™||3] + E[||xx +vi —x™ —v™|3]) /2 According
to (A.6), (A.7),(A.9) and (A.10), we have

2 —n/(2k) 2 2 2 2
whir < (7w + 20 [BlIGyxk — Loxa B+ EUIGyvi — £,vkl3]) -+ BIIS,vi — Gyvill3)
By (B.4), (B.5), (B.6) and (B.7), we have

272 4+ 2uL ~ 4u?L ~ 8u?Lyd ~
(ELg, WL S

E[llGyxx, — ['nxk”g] <

(C.4)

34 ~ 3u242L - ~
E[|Gyvi — Lovi|2] < 7 [(Z +u?L2) 0, + ( =+ 1AL Uy + 4u3L2n~yd} = Do,
B[S, v — Gyvill3] < 2(U, + 2ud)m?u?L?n? = Dam?u® L2,

where U, and U s denote any uniform upper bounds for E[||v¢||3] and E[f(x)) — f(x*)] respectively. Applying Lemma

A.S5 yields
/D /D D 2
wy, < e R/ Ry 2 Dun” + y/ Don” Dsrn

1 —e1/(2x) s/l—e—"/@”)
< wo + 47}&(2\/51 n \/52) + 2/ kDym/2, (C.5)

where we use the fact that e~ %7/(2%) < 1 and 1 — e=/(2%) > p/(4x) when 0 < n/k < 1. It is then left to show the
order of D1, D5 and Dj3. To this end, we need to find uniform upper bounds for E[||v||3] and E[f(xx) — f(x*)] by (C.4),
namely, we need to find the order of U, and Uy. In the following, we will show this by applying Lemma C.1. Denote T as

T = kn and consider sufficiently small n such that G1Tn < log(2), Gon < «vd and vy < 1/2, by Lemma C.1 we obtain
the following upper bounds for E[||v||3] and E[f (x1)] — f(x*)

E[f(x1)] — f(x*) < 2(26) + 2Tyd + 210g(2)Td) + | f(x*)] < 4(E + 2Td) + | f(x*)| = Uy,
E[|vil3] < 2u(280 + 4Td + | f(x*)]) < ully = U,,.

In addition, since w = 1/L and y = 2, we can write Uf = O(Td) = O(kdlog(1/€)) and U, = O(dlog(1/e)/p). Recall
the definition of D1, D5 and D3 in (C.4), for sufficiently small < 1/2vy = 1/4, we have

Dy < 10U,/3 + 4uU; /3 + 4ud/3 < 50, + 2ud,
Dy < 13U, + 10ul; + 2ud = 23U, + 2ud, (C.6)

We choose step size 7 in (C.5) such that 477&( \/ +1/D ) d/u and 2 /{ngn?’/z < 4/d/p. To this end, we let

3/2
1 1 ~
n< min{ _ I ( . ) } = O(1/k A 1/(=/3m2%)),
4&(2\/D1,u/d+ \/Dgu/d) 2n4\/kDsp/d

where the equation is calculated based on (C.6). Then by (C.5) we have

wi < <w0+2\/d/ ) <2w(2)+%d.
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Now we deal with wg. Note that xg = 0 and vy = 0. By the definition of wy, we have

wy = E[||x™ = xo[3 + [Ix™ + v —x0 — vol[3]
< 3E[|x" 3] + 2E[[[v™ 3]
2d

6d
< = 6 * (|2 =
< elI3 4 T

where the first inequality comes form triangle inequality and in the second inequality we use facts that E[[|x™||3] =
2E[[|x™ —x*[|3] + 2[|x* (13, E[[v7[13] = 1/v/(2m)? [au VI3 exp(=[IVI[3/2u)dv = ud = d/L and E[||x™ — x*||3] < d/p
by Lemma A.7. Applying (C.3) we further have

2d 8d 2d  42d 8d

Efllx, — x*[3] < 20f + == <2(2uf + =) + =5 = =5 2qx |3+

[l X||2]_wk+’u— wot )t =t Nz + =
which completes the proof for the upper bound of E[|x;, — x*||3]. Moreover, according to Assumption 4.1, we have
LE[||x, — x*[3]

5 < 21dk + 12L||x* )3 + 4d.

Elf(xx)] - f(x7) <
In the following, we are going to prove the union upper bound on E[||v]||3]. Similar to the proof of U,., we have
E[[lvi ]3] = Elllvi — v + v7]
< 2E[[[v7 3] + 2E[[v™ — v 3]
< 2E[[vT3] + 4E[IVT = vi, + x* = x]13] + 4E[||x" — xl|3]
= 2E[|v7[13] + duwj.
Note that w? < 2w + 8d/u < 20d/p + 12||x*||3 + 4d/L and E[||v™||3] = d/L, we have

80d  18d .
E[||vi]3] < 7 + T + 48||x*[|3 £ U,

which completes our proof. O

C.3. Proof of Lemma C.1
Proof. Recall the discrete update form (3.1) and the proposed SVR-HMC algorithm. Let k = jm + [, we first rewrite the
l-th update in the j-th epoch as follows,
Xk+1 = Xk + Vi + €7,
Vi41 = Vi — V1VE — ugk + €,
where g, = V fi, (xi) — Vfi. (X;) + Vf(X;).

In order to show the upper bounds of E[f(x;)] and E[||v||3], we consider the Lyapunov function &, = E[(1 — vn) f(xx) +
[[vill3/(2u)]. In what follows, we aim to establish the relationship between 11 and E. To begin with, we deal with
E[f(xx+1)], which can be upper bounded by

(C.7)

Lilnvi. + €l
2
Li*|[vil3
2

E[f (xee1)] < E [f<xk> v VI G)) +

B ) + (v, T 000} + | + SEne )

In terms of E||vs1]|3, we have

E[||[vit1ll3] = Ellvi — yvie — nugk + €413
= E[||vi — ynvi — nugkl|3] + E[||€5]13]. (C.9)
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As for the first term on the R.H.S of the above equation, we have

Elllvie — ynvi — nugrll3] = E[Il(1 = yn)vil3] — 2(1 — yn)nuE[(vk, gr)] + n*u’E[||gx[3]-

Note that

E[(vk, gr)] = E[(vk, Eiygr)] = E[(Vi, VI (xx)],

which immediately implies

E[||lvi, — ynvi — nugrll3] = (1 = ym)*Elllv ]3] — 2(1 — ym)muE[(vi, V.f (xx))]
+ P B[V fi, (xi) = Vi, (35) + V(E)3]
< (1= ymE[[[val3] = 2(1 — ym)nuE[{vk, V f(x1))]
+ 30" B[V fi, (k)13 + 1V £i, G + IV £ I3, (C.10)

where the first inequality follows from the fact that (a + b + ¢)3 < 3(a? + b2 + ¢2) and that 1 — 1y < 1. Combining (C.8),
(C.9) and (C.10), we obtain

2
A%
Ert1 =E|(1 =) f(Xk+1) + %
1 —yn + Lun?(1 — yn 3n*u - -
< (1= y)Ef(xk) + 5 )EHVHI% + BV Gn)5 + 1V i )5 + [V F )]
L =ymL oy, Elleql3
LoDy o Elleila] c1n

From (B.2), we know that
Elllexl3] < 2yudn, and Efleg]3] < 2udn®.
We bound the gradient norm term as follows.
E[|V fi(xx)lI5] < 2E[|V fi(xx) — fi(x) 3] + 2E[| V fs(x*) [13]

< 2L7E[|lx — x7|[3] + 2E[||V fi (") |]

< “szmxw RG]+ 2E(V £ (<) 3]

Upper bounds of ||V f;, (X;)||3 and ||V f(X;)||3 can be established in the same way. Then (C.11) can be further bounded by

1 —~n + Lun?
Exr < (1= ME[f (o)) + —— 5~ E[vi]

+ 60 uLRE[f (x1) + 2 (X;) — 3f(x*)] + 67°uB[||V £;(x*)[|] + dn(y + Lun)
1 —~n + Lun? ~
< (1= yn+ 6P L) E[f (x0)] + — 5 LB vy 3] + 1207 uLE [ (%)
+nyd + n? [6uB[||V f;(x*)||3] + Lud — 18uLrf(x*)]. (C.12)
Note that we have assumed yn < 1/2, which further implies that

1-— 6n2L
(v 2] < max = — 1O ZUR
1—ny

< (14 12n*ulk)Ey,

lf'ynJrLun?E

(1 =y + 6n*uLlk)E[f(xx)] + 5

=+ me}gk

where in the second inequality we use the fact that (1 —yn +a)/(1 —vn) <1+ 2aforanya > 0and 0 < yn < 1/2.
Moreover, since 0 < yn < 1/2, we have E[f(X;)] < 2(1 — yn)E[f(X;)] + E[||V;3]/ (1) = 2&;.m, where we used the fact
that X; = X;,. Therefore (C.12) turns to

Err1 < (1 + 120*ulk)E; + 240*uLkEjp, + nyd + 2 Go, (C.13)
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where Gy = 6uE[||V f;(x*)]]] + 2Lud — 18uLk f(x*). Note that the inequality (C.13) can be relaxed by
Err1 < (14 36n°ulk) max{E&, Ejim} +nryd + n*G. (C.14)

We then consider two cases: & > &;y, and &, > & and analyze the upper bound of &j,41 respectively.

Case I: £, > &;,,. The inequality (C.14) reduces to
Epr1 < (14 360°uLr)E + nyd 4+ G,

which immediately implies that

k—1
Er < (14 36n°ulk)*E + (nyd + 1 Gy) Z (14 36n°ulk)’

(14 36n*ulk)* —1
36n2uLk '

= (1 4+ 36n*uLr)*E + (nyd +n*Go)

Let Gy = 36uLk, and it is easy to verify the following fact for any 0 < G7n?.
(1+ G1772)k = exp (k log(1 + sz)) < exp (kaQ).
Then, £41 can be further bounded as

(1+GinH)r -1

& < (L4 Gin®)*& + (nyd +1*Go) Gu?

eGikn® _ 1
G1n?
Gikn? + SR GRk2y /2
Gi1?
= Sy 4 Rpyd + kP Go + %k2’73G16G1’“"2 (vd +nGo), (C.15)

< SR gy 4 (yd + 72 Go)

< S gy 4 (ipyd + 7P Go)

where the third inequality holds because h(y) < h(0) + h'(0)y + max,ejo,,) h”(s)y?/2 holds for any C? function h.

Case II: £;,,, > &. In order to obtain the upper bound of &}, we still need to recursively call (C.14) many times. However,
note that jm < k, which implies that we only need to perform recursions less than k times. Thus, (C.15) remains true.

Finally, using facts that E[f(xx)] — f(x*) > 0, E[||vk||3] > 0 and the definition of &y, replacing & in (C.15) by K, we
arrive at the arguments proposed in this lemma. O



