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Abstract

When repeatedly fitting related predictive models within the same domain, for similar
problems, it’s helpful to have tools to support an e�cient, high-quality workflow. This
paper describes a theory of the architecture for such tools and for the interfaces among
predictive models and other aspects of a software system. Additionally, it describes an
open-source reference implementation of this design, written in R, focusing on a Domain
Specific Language for one specific repeated predictive modeling task.
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1. Introduction

For data scientists in certain industry roles, especially in SaaS firms, a common problem is
the need to fit not just one predictive model, but many related, yet independent models.
For the purposes of this paper, consider the hypothetical Acme Systems, a Software as a
Service (SaaS) firm that provides applications used by large retail enterprises. One such
applications incorporates a model of sales at chain stores—the Acme Chain Model. This
model has been sold to many dozens of clients, with variants on the same basic model
template.

Although the general problem is similar—sales are probably due to trends, business
cycles, pricing changes, etc.—each company the firm works with will have di↵erent data,
di↵erent inventory, and di↵erent patterns of cause and e↵ect. Acme’s data scientists, then,
have to build and integrate custom predictive models for each client. To maintain quality,
consistency, and timely fitting and re-fitting of these models, Acme data scientists use a set
of domain-specific workflow tools designed to allow the team to e�ciently build and deploy
models. Importantly, a well-designed workflow can let them apply their growing domain
knowledge to solve the problem better and more e�ciently at each iteration.

This pattern applies under a specific set of circumstances, which I’ll call Repeated
Domain-Specific Modeling:

1. The predictive model is a component of a broader software product, with predictions
likely being exposed to end users to help them make better decisions.

2. The same general problem is being solved many times, as when a SaaS firm builds
separate models per customer.
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3. The models are similar enough for investment in shared infrastructure makes sense,
but are di↵erent enough to require data scientist customization and insight.

This paper has two primary contributions. First, I describe a set of abstractions for
thinking about Repeated Domain-Specific Modeling. These abstractions clarify important
design choices about representations and interfaces. Second, I provide and describe an
implementation of this pattern as an open-source software repository, written in R (R
Core Team, 2017). The code1, available at https://github.com/HarlanH/featgen-demo,
shows how to use a problem-specific Domain Specific Language (DSL) to describe individual
instantiations of a predictive modeling problem, allowing the domain expertise of data
scientists to be incorporated, while yielding a highly e�cient workflow.

1.1 Related Work

Aspects of this work have been informed by contributions from several sources. There are
many workflow tools for Predictive Modeling, both in general and for specific problems.
Those tool sets often include APIs for integration with other systems. Commercial ex-
amples include SAS, Domino Data Lab, and Azure Machine Learning Studio, while many
organizations have built their own solutions using open-source and in-house technologies.

There are several prominent examples of DSLs for Machine Learning in general, such
as scikit-learn and its Pipeline for Python (Buitinck et al., 2013), mlr and caret for
R (Bischl et al., 2016; Kuhn, 2008) and several of the deep-learning frameworks such as
TensorFlow (Abadi et al., 2016). (See also Portugal et al., 2016) Although these provide
a clean, powerful short-hand for creating predictive models, they are DSLs for the general
problem, typically of supervised learning, not for specific business problems.

One public example of Repeated Domain-Specific Modeling was described recently by
Uber. Their Michaelangelo framework (Li et al., 2017) allows their team to define high-
level feature extractors (what I’ll describe as Feature Transformer Generators, below) using
a Scala-based DSL, add them to a common Feature Store, and easily re-use and extend
them. This framework is specific to Uber and their domain, but shares commonalities with
the work presented here.

Some of the theory described below extends work originally presented by (Morra, 2016).
Their recently-described and open-sourced Aloha framework (Deak and Morra, 2018) is also
a system for Repeated Domain-Specific Modeling. Aloha includes a feature-definition DSL
with abstraction layers that separate data extraction from transformation, and a strong
focus on the appropriate boundaries between systems.

2. Theory

In theory, machine learning systems are mathematical models mapping between arbitrary
representations; in practice, machine learning systems are continuously interacting with

1. Some of the patterns described here were explored by me and my colleagues when employed by The
Advisory Board Company (Washington, DC). None of the details of the specific model are relevant here,
and all of the open-source code was written entirely from scratch. In practice, the system we built allowed
us to e↵ectively create customized models at the rate of one per business day, which had a substantial
positive e↵ect on the business.
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other systems, human and technical. These interactions, and the interfaces between machine
learning systems and other systems, are critically important to the overall e↵ectiveness and
value of what’s been built.

To build a predictive model, you have to be able to represent entities in the world,
such as the properties of the object or event you’re predicting, and the outcome or label
you wish to predict. Additionally, as a data scientist, you must represent and incorporate
your own knowledge into the system. The No Free Lunch theorem (Wolpert and Macready,
1997), which proves that no predictive model can be optimal at all problems, implies that
algorithm choice alone, by aligning the underlying problem with the algorithm’s Inductive
Bias, will have a substantial impact on model quality. Further, feature engineering, or the
process of transforming data to make it more usable and useful to the learning algorithm,
is a key art in predictive model development (Domingos, 2012).

Repeated Domain-Specific Modeling systems include several parts—the application, the
predictive model, the data scientists who will be operationally responsible for keeping the
predictive model tuned and accurate, and the users of the application. (See Figure 1)
Communication among these parts, be they human-machine interfaces or machine-machine
interfaces, must be e�cient and consistent for the system as a whole to run smoothly.

Application
API

Predictive Model

Data ScientistsUsers

Predictive Model 
Generator & Tools

Domain 
KnowledgeDSL

Figure 1: Important components of a Repeated Domain-Specific Modeling system include
a well-designed API interface between the model and the main application, a
well-designed DSL for e�cient expression of the model to the model generator
by data scientists, and a modeling framework that allows data scientists to insert
their domain knowledge into both the model generating framework and individual
models.

2.1 Representations at the Machine Learning and Application Interface

Consider the interface between a machine learning system and a broader software system
that interacts with it. The application provides data and entities to be predicted to the
machine learning system, then receives a prediction or score, to be provided to a user or
used for a decision.

Several well-known ideas from software engineering and systems design apply. First,
Separation of Concerns says that subsystems should do one thing well, encapsulating pro-
cessing, and hiding irrelevant details from other subsystems. Second, the Standard Service

Contract principle from the theory of Service Oriented Architectures (SOAs, Erl, 2007) says
that subsystems need to define a commonly-understood language for communication, and
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should be clear about what each subsystem should expect from another. Third, Conway’s
Law (Wikipedia, 2017) says that system structure will inevitably reflect team structure.
When data scientists are building predictive systems, this very likely means that a predic-
tive service will be a separate module or service in the overall system.

An implication of these ideas is that the application need not, and should not, know
about the internal data processing of the predictive model. Specifically, the application
should not know about feature engineering, the process of re-representing an entity to be
scored in such a way that a predictive model can most e↵ectively make predictions.

Feature Transformer 
Generator

Predictor Generator

Finalizer Generator

Feature Transformer

Predictor

Finalizer

Feature 
Transformation 

Parameters

Predictor 
Parameters

Finalizer 
Parameters

DomainEntity+
from application 
DomainEntity

ScorableEntity+ ScorableEntity

RawPrediction+ RawPrediction

DomainScore
to user

DomainScore+

Model

Figure 2: Representations for Repeated Domain-Specific Modeling systems. (Left) Training
data flows through a training pipeline, generating both training predictions and
a scoring system. (Right) Data to be scored goes through the same translations
steps, using the scoring system inferred by the training data. The components
within the dotted box are part of the predictive model; outside the box is the
application.

Figure 2 describes a framework for thinking about the changes in representation involved
in predictive modeling. (See also Morra 2016 and Deak and Morra 2018.) Predictive
modeling is essentially two linked processes, Training and Scoring. Importantly, they share
a parallel structure with regards to the representations that flow through their processes.
And equally importantly, the Training process can be thought of as a system, or a higher-
order function, that generates the Scoring process as an output of its data processing.

To maintain encapsulation, the application should provide Training and Scoring data to
the model in an (agreed upon by contract) format that reflects the semantics and structure
used by the application—a DomainEntity in Figure 2. The application might provide an
API for serving DomainEntity objects, while the model might provide an API for real-time
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scoring. There are a number of frameworks, commercial and open source, for exposing
predictive models as API services. See the demo code for a simple approach.

2.2 E�ciently Contributing Expertise

Most readers will be aware of Drew Conway’s influential Venn Diagram of Data Sci-
ence (Conway, 2013). The oft-neglected third set in that diagram is “substantial expertise.”
When building a Repeated Domain-Specific Modeling system, it is important that data sci-
entists be able to leverage and incorporate their substantial expertise about the problem as
e↵ectively as possible. This need exists at three levels of system building.

1. Data Scientists must be able to contribute to their own workflow. Nobody is more
qualified to design and build tools and systems for predictive model generation than
data scientists. This includes critical components such as tools for data and model
validation. (See Harris 2016; Parker 2017.)

2. Data Scientists must be able to add their domain expertise to the model-generation

process. In a repeated model-building scenario, it’s important that general facts that
data scientists learn about the domain be represented in the model-generation process.
For instance, if you learn that seasonality and holidays are relevant for retail sales, the
model-generation framework should directly represent those concepts in the system.

3. Data Scientists must be able to add their domain expertise to individual models. In
a repeated model-building scenario, it’s also important that facts that data scientists
learn about specific examples of the domain be easily incorporated into the model.
These facts might include data-quality issues or exceptions to general rules.

3. Implementation

As noted above, I have developed an open-source example of what this framework might
look like. Most of the steps that might be used in a production environment are included:
defining a model with a DSL, fitting a model, viewing a model archive file, generating a
standard report about the model, scoring the model via web service, and inspecting the
model in production. Two other important steps, tools for interactively validating and
exploring the source data, and interactively validating and comparing candidate models,
have not been implemented. But see (Harris, 2016) for approaches to those tools.

I will focus the rest of this paper on how a model is defined with the DSL. Readers
interested in the other components are encouraged to explore the provided software.

3.1 Domain Specific Language

Listing 1 shows a sample model definition file for a company called Rossman Stores (See
Kaggle.com, 2015). The model definition is written using an internal DSL (Fowler, 2010),
leveraging the syntax and execution model of an existing language, in this case R. To train a
model, the user uses the command line: acm.R train rossman.R rossman.Rout. The acm
executable loads the rossman.R script shown and executes it in a context where functions
such as acme chain model and promo are available. This is the only code written specifically
for Rossman.
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1 acme_chain_model("rossman") %>%

2 store_type(collapse=list(ab=c("a", "b"))) %>%

3 competition_distance(trans='boxcox', na='median') %>%

4 one_week_ago_sales(cap_to=c(2000,15000)) %>%

5 sales_trend(days_back=4*7, trunc_to=c(-100, 100), na='mean') %>%

6 promo %>%

7 current_sales %>%

8 get_data %>%

9 train(target="current_sales")

Listing 1: Sample model-definition file, rossman.R in the sample code, for an instantiation
of the “Acme Chain Model” for client “Rossman.” Defines a human-computer interface al-
lowing e�cient specification and customization of the model template for individual clients.
The %>% pipeline operator, defined in the magrittr package (Bache and Wickham, 2014),
unrolls nested function calls, passing the results of the previous function as the first argu-
ment to the next.

Line 1 executes a function that generates an object, initially with only the name of the
customer. (See Figure 3A.) Each subsequent line calls a function with that object, adding
additional elements to the object, such as feature generators (Lines 2–7), or the data (Line
8) or the model itself (Line 9). The result of running this script is a model object that gets
saved to a file for further processing, such as inspection or deployment.

There are many details that make this DSL powerful, including a mix of feature-specific
and general data transformations. (Note that the code in Figure 3B is specific to the Acme
Chain Model, while C, D, and E are not.) Next, I’ll describe the Feature Transformer
Generator (FTG) pattern (see Section 2.1, above), and a lower-level but analogous pattern
used to handle missing data.

3.2 Feature Transformer Generators

Figure 3B shows the implementation of the promo feature. Importantly, the design of this
Acme Chain Model DSL uses FTGs that are based on the semantics of the problem, rather
than on the structure of the data provided by the application. This allows the data scientist
tuning this model for Rossman Stores to think about their promotion history and policies,
avoiding implementation details.

On the other hand, the fact that this FTG is short, and is written in the same language
as data scientists use day-to-day, means that people can switch easily from operations—
using the framework to fit models—to development—extending the framework based on
their accumulation of domain knowledge. This is an example of how this framework allows
data scientists to incorporate their expertise at various points in the process.

Figure 3B illustrates the basic FTG pattern. A feature object (“feat”) is created with
standard slots. Line 9 allows the user to add standard parameters to the object, such as
missing data handling rules. Line 10 adds the new Feature Transformer (FT) to the model
object’s list of features, then the function returns with an updated version of the model
object. The key logic is Lines 6–8, defining an FT that extracts a promo ScorableEntity
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# A -- the model object structure

> str(model,1)

$ custname: chr "rossman"

$ features:List of 6

$ data :Classes tbl_df, tbl and 'data.frame': 1115 obs. of 6 variables:

$ cv_preds:'data.frame': 1115 obs. of 5 variables:

$ metrics :List of 1

$ target : chr "current_sales

$ model :List of 8

1 # B -- an example of a Feature Transformer Generator

2 promo <- function(x, ...) {

3 feat <- list(

4 name = "promo",

5 pretty_name = "Promo",

6 extract = function(self, data, ...) {

7 data_frame(promo=data$activity[[length(data$activity)]]$Promo)

8 })

9 feat <- list_modify(feat, ...)

10 x$features <- list_modify(x$features, promo = feat)

11 x

12 }

13 # C -- generating ScorableEntity objects for Training

14 get_data <- function(x) {

15 raw_data <- readRDS(glue('{x$custname}.Rdata'))

16 x$data <- map_dfc(x$features, function(feat) {

17 map_dfr(raw_data, ~ feat$extract(feat, .)

18 }

19 x

20 }

21 # D -- storing NA-handing in Training

22 if (anyNA(new_cols)) {

23 x$features[[pos]]$na_info <<- infer_missing(new_cols, feat$na)

24 new_cols <- apply_missing(new_cols, x$features[[pos]]$na_info)

25 }

26 # E -- generating Scorable Entity objects, and applying NA rule, in Scoring

27 newdata <- imap_dfc(predictor_features, function(feat, pos) {

28 new_cols <- feat$extract(feat, obj)

29 if (anyNA(new_cols))

30 new_cols <- apply_missing(new_cols, x$features[[pos]]$na_info)

31 new_cols

32 })

Figure 3: DSL implementation code illustrating several key patterns. Extracted from code
at https://github.com/HarlanH/featgen-demo
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from the DomainEntity object. In this case, the logic is easy—just extract a Boolean from
an object and create a single-column, single-row data frame. Other features might do much
more complex processing (see the sales trend feature for an example), or generate multiple
columns.

The promo FT can now be used to extract features from a stream of data. Figure 3C
shows a substantially simplified version of this process in the implementation of the get data

function. In the accompanying demo, the data is stored in an R archive file, but in practice,
you might query a web service for a stream of training data. Lines 16–18 iterate over all
combinations of features and training data points, generating a data frame that can be used
directly by the actual machine learning algorithm.

Not shown is the implementation of train, which implements the Predictor Generator

method, creating a set of scored training data, and a Predictor method than can be used
for Scoring.

It’s also worth noting the role of the Finalizer, a component of the application that
translates the raw prediction to something that an end-user can use to make decisions. It’s
common, for instance, to translate a raw probability score to a recommended action, or a
red/yellow/green risk category. These are User Interface and Design decisions, however,
and the code that implements them should be part of the application. Data scientists can
and should certainly provide advice on this mapping.

3.3 Missing Data

Figure 3, parts D and E, show aspects of the implementation of a critical component of this
pattern — how missing data should be handled. In a SaaS context, the patterns of missing
data per client may be quite di↵erent, and the best transformations may vary substantially.
At a high level, a policy specified in the DSL (or in some cases by default rules set in a
FTG) is applied to a new column with missing data by a standard infer missing function.
That function does not actually impute the missing data, but instead returns a value that
is used for imputation later. In the case of mean imputation, this would be the value of the
mean of the column. The identical apply missing function, with identical parameters, is
then applied in both Training (D) and Scoring (E), ensuring that both Training and Scoring
data have the same distributions.

The demo implementation supports mean, median, min, max, and constant imputation
of missing data. The same pattern is used for continuous transformations, such as Box-Cox,
which requires a parameter to be fit, stored, and used in production. Other transformations
such as collapsing rare categories, or Windsorizing data at percentiles, can be implemented
the same way.

4. Discussion

Using the Repeated Domain-Specific Modeling pattern, an organization can create a work-
flow for creating and deploying many related models, maintaining flexibility while maximiz-
ing e�ciency and reliability, and ensuring clean separation of concerns and the ability of
data scientists to apply their domain knowledge throughout the process.

There are a number of improvements to this framework that could be made. The open
source code provided is an example of how to start implementing the pattern, but it is not
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a package; anybody wishing to use the code would have to discard the Acme Chain Model
pieces, and rewrite those components with FTGs for their own domain. It might be possible
to extract general pieces of the code into an actual package that might reduce time-to-value.
Also, although writing new FTGs is not generally di�cult, additional tooling for doing so
and setting up test cases would make it even easier and faster for data scientists to extend
the framework as they learn.
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