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Abstract

We study how the regret guarantees of nonstochastic multi-armed bandits can be improved,
if the effective range of the losses in each round is small (for example, the maximal difference
between two losses in a given round). Despite a recent impossibility result, we show how
this can be made possible under certain mild additional assumptions, such as availability of
rough estimates of the losses, or knowledge of the loss of a single, possibly unspecified arm,
at the end of each round. Along the way, we develop a novel technique which might be of
independent interest, to convert any multi-armed bandit algorithm with regret depending
on the loss range, to an algorithm with regret depending only on the effective range, while
attaining better regret bounds than existing approaches.

1. Introduction

In the online learning and bandit literature, a recent and important trend has been the
development of algorithms which are capable of exploiting “easy” data, in the sense of
improved regret guarantees if the losses presented to the learner have certain favorable
patterns. For example, a series of works have studied how the regret can be improved if
the losses do not change much across rounds —e.g., (Chiang et al., 2012; Hazan and Kale,
2010, 2011; Karnin and Anava, 2016; Steinhardt and Liang, 2014); being simultaneously
competitive w.r.t. both “hard” and “easy” data —e.g., (Seldin and Slivkins, 2014; Sani et al.,
2014; Auer and Chiang, 2016; Bubeck and Slivkins, 2012); attain richer feedback on the
losses —e.g., (Alon et al., 2014), have some predictable structure (Rakhlin and Sridharan,
2013), and so on. In this paper, we continue this research agenda in a different direction,
focusing on improved regret performance in nonstochastic settings with partial feedback
where the learner has some knowledge about the variability of the losses within each round.

In the full information setting, where the learner sees the entire vector `t(1), . . . , `t(K)
of losses after each round t, it is possible to obtain regret bounds of order ε

√
T logK scaling

with the unknown effective range ε = maxt,i,j |`t(i) − `t(j)| of the losses1 (Cesa-Bianchi
et al., 2007, Corollary 1). Unfortunately, the situation in the bandit setting, where the

1. This is a simplified form of a stronger bound of order
√

(logK)
∑

t ε
2
t , where εt = maxi,j |`t(i)− `t(j)|.
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learner only observes the loss of the chosen arm, is quite different. A recent surprising
result (Gerchinovitz and Lattimore, 2016, Corollary 4) implies that in the bandit setting,
the standard Ω

(√
KT

)
regret lower bound holds, even when ε = O

(√
K/T

)
. The proof

defines a process where losses are kept ε-close to each other, but where the values oscillate
unpredictably between rounds. Since the learner observes the loss of just one arm every
round, the closeness between the losses across arms cannot be utilized. Based on this result,
one may think that it is impossible to attain improved bounds in the bandit setting which
depend on ε, or some other measure of variability of the losses across arms. In this paper,
we study situations where partial information about the losses allows one to circumvent
the impossibility result in some interesting ways. We analyze two specific settings: one in
which the learner can roughly estimate in advance the actual loss value of each arm, and
one where she knows the exact loss of some arbitrary and unknown arm.

In order to motivate the first setting, consider a scenario where the learner knows each
arm’s loss up to a certain precision (which may be different for each arm). For example, in
the context of stock prices (Hazan and Kale, 2009; Abernethy et al., 2013) the learner may
have a stochastic model providing some estimates of the loss means for the next round, and
we would like to take advantage of that. In other cases, the losses of arms may be in [0, 1]
most of the time (perhaps with one arm tending to perform better than the others, same as
in standard online learning), but there are a few arms which occasionally and predictably get
a very high loss. For example, in routing the learner may know in advance that some route
is down, and a large loss is incurred if that route is picked. In this scenario, a reasonable
algorithm should be able to occasionally avoid picking that route; however, that breaks the
regret guarantees of standard expert/bandit algorithms, which typically require each arm
to be chosen with some positive probability. In the resulting regret bounds, it is difficult to
avoid at least some dependence on the highest loss values.

To formalize these scenarios and considerations, we study a setting where for each arm
i at round t, the learner is told that the loss will be in

[
mt(i)− εt(i),mt(i) + εt(i)

]
for some

mt(i), εt(i). In this setting, we show a generic reduction, which allows one to convert any
algorithm for bounded losses and certain feedbacks (bandit feedback being just a special
case), to an algorithm with regret depending only on the effective range of the losses (that
is, only on εt(i), independent of mt(i)). Concretely, taking the simple case where the loss
of each arm i at each round t is in

[
mt(i) − ε,mt(i) + ε

]
for some mt(i) and fixed ε, and

assuming the step size is properly chosen, we can get a regret bound of Õ
(
ε
√
KT

)
for

the bandit feedback, completely independent of mt(i) and the losses’ actual range. Note
that this has the desired behavior that as ε → 0, the regret also converges to zero (in the
extreme case where ε = 0, the learner essentially knows the losses in advance, and hence can
avoid any regret). With full information feedback (where the entire loss vector is revealed
at the end of each round), we can use the same technique to recover the regret bound of
O
(
ε
√
T logK

)
. We also provide lower bounds, partially matching our upper bounds and

demonstrating their tightness in certain regimes.

We note that the setting we study is a special case of the predictable sequences setting
studied by Rakhlin and Sridharan (2013), who propose an algorithm with a regret bound
which (in the setting above) scales as Õ(ε

√
K3T ). Our result has a better dependence on

the number of arms K —which we also show to be optimal— and our reduction can be
applied to any algorithm, rather than the specific one proposed in their paper. On the
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flip side, the algorithm proposed there is applicable to the more general setting of bandit
linear optimization, and does not require the range parameter ε to be known in advance
(see Sec. 3 for a more detailed comparison).

A second setting we study, motivating partial knowledge about the loss vectors, is the
following. Consider a system for recommending products to visitors of some website. Say
that two products are similar if the typical visitor tends to like them both or dislike them
both. Hence, a plausible assumption on the similarity graph over the set of products would
be that the likelihood of purchase (or any related index of the visitor’s behavior) is a smooth
function over this graph. Formally, the loss vectors `t =

(
`t(1), . . . , `t(K)

)
at each round t

are such that `>t Lt` =
∑

(i,j)∈Et

(
`t(i) − `t(j)

)2
is small, where Lt is the Laplacian matrix

associated with some graph over the arms with edge set Et. In this setting, we provide
improved bandit regret bounds depending on the spectral properties of the Laplacian. To
circumvent the impossibility result of Gerchinovitz and Lattimore (2016) mentioned earlier,
we make the reasonable assumption that at the end of each round, the learner is given
an “anchor point”, corresponding to the loss of some unspecified arm. In our motivating
example, the recommender system may assume, for instance, that each visitor has some
product that she most likely won’t buy. Using a simple modification of the Exp3 algorithm,
we show that a regret bound of order (ignoring log factors)√√√√ T∑

t=1

min
Lt

(
1 +

`>t Lt`

λ2(Lt)

)

where L1, . . . , LT are Laplacians of simple and connected graphs, and each quantity λ2(Lt) ∈
(0,K] is the smallest nonzero eigenvalue of Lt (also known as the algebraic connectivity
number of the graph represented by Lt). If the learner is told the minimal loss at every
round (rather than any loss), this bound can be improved to order of√√√√ T∑

t=1

min
Lt

`>t Lt`

λ2(Lt)

(again, ignoring log factors) which vanishes, as it should, when `>t Lt` = 0 for all t; that is,
when all arms share the same loss value. Compared to the state-of-the-art bandit regret
bound

√∑
t ‖`t‖2, we easily show that minLt `

>
t Lt`t

/
λ2(Lt) is never larger than ‖`t‖2, and

is much smaller than ‖`t‖2 when the loss components `t(1), . . . , `t(K) tend to be close to
each other.

We also provide a lower bound, showing that this upper bound is the best possible (up
to log factors) in the worst case. Although our basic results pertain to connected graphs,
using the range-dependent reductions discussed earlier we show it can be applied to graphs
with multiple connected components and anchor points.

The paper is structured as follows: In Sec. 2, we formally define the standard ex-
perts/bandit online learning setting, which is the focus of our paper, and devote a few
words to the notation we use. In Sec. 3, we discuss the situation where each individual loss
is known to lie in a certain range, and provide an algorithm as well as upper and lower
bounds on the expected regret. In Sec. 4, we consider the setting of smooth losses (as
defined above). Some of the proofs are presented in the appendix.
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2. Setting and notation

The standard experts/bandit learning setting (with nonstochastic losses) is phrased as a re-
peated game between a learner and an adversary, defined over a fixed set of K arms/actions.
Before the game begins, the adversary assigns losses for each of K arms and each of T rounds
(this is also known as an oblivious adversary, as opposed to a nonoblivious one which sets
the losses during the game’s progress). The loss of arm i at round t is defined as `t(i), and
following standard convention, is assumed w.l.o.g. to lie in [0, 1]. At the beginning of each
round, the learner chooses an arm It ∈ {1, . . . ,K}, and receives the associated loss `t(i).
With bandit feedback, the learner then observes only her own loss `t(It), whereas with full
information feedback, the learner gets to observe `t(i) for all i. The learner’s goal is to
minimize the expected regret (sometimes denoted as pseudo-regret), defined as

E

[
T∑
t=1

`t(It)

]
− min
i=1,...,K

T∑
t=1

`t(i)

where the expectation is over the learner’s internal randomness. We use I
{
A
}

to denote the
indicator of the event A, and let log denote the natural logarithm. Given an (undirected)
graph over K nodes, its Laplacian L is defined as the K ×K matrix where Li,i equals the
degree of node i, Li,j for i 6= j equals −1 if node i is adjacent to node j, and 0 otherwise. We
let λ2(L) denote the smallest nonzero eigenvalue of L. This is also known as the algebraic
connectivity number, and is larger the more well-connected is the graph. In particular,
λ2(L) = 0 for disconnected graphs, and λ2(L) = K for the complete graph.

3. Rough estimates of individual losses

We consider a variant of the online learning setting presented in Sec. 2, where at the
beginning of every round t, the learner is provided with additional side information in the
form of

(
mt(i), εt(i)

)
for i = 1, . . . ,K, with the guarantee that

∣∣`t(i) −mt(i)
∣∣ ≤ εt(i) for

all i = 1, . . . ,K. We then propose an algorithmic reduction, which allows to convert any
regret-minimizing algorithm A (with some generic feedback), to an algorithm with regret
depending on εt(i) and independent of mt(i). We assume that given a loss vector `t and
chosen action It, the algorithm A receives as feedback some function ft

(
`t, It

)
. For example,

if A is an algorithm for the multi-armed bandits setting, then ft
(
`t, It

)
= `t(It), whereas if

A is an algorithm for the experts setting, ft
(
`t, It

)
= `t. In our reduction, A is sequentially

fed, at the end of each round t, with ft
(˜̀
t, Ĩt
)

(where ˜̀t and Ĩt are not necessarily the same

as the actual loss vector `t and actual chosen arm It), and returns a recommended arm Ĩt+1

for the next round, which is used to choose the actual arm It+1.

To formally describe the reduction, we need a couple of definitions. For all t, let

jt ∈ argmin
i=1,...,K

{
mt(i)− εt(i)

}
denote the arm with the lowest potential loss, based on the provided side-information (if
there are ties, we choose the one with smallest εt(i), and break any remaining ties arbitrar-
ily). At round t define any arm i as “bad” if mt(i) − εt(i) > mt(jt) + εt(jt) and “good”
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if mt(i) − εt(i) ≤ mt(jt) + εt(jt). Intuitively, “bad” arms are those which cannot possibly
have the smallest loss in round t. For loss vector `t, define the transformed loss vector ˜̀t as

˜̀
t(i) =

{
`t(i)−mt(jt) + εt(jt) if i is good

2 εt(jt) if i is bad.

It is easily verified that ˜̀t(i) ∈ [0, 2(εt(i) + εt(jt))
]

always. Hence, the range of the trans-
formed losses does not depend on mt(i). The meta-algorithm now does the following at
every round:

Algorithm 1 (Meta-Algorithm)

Require: Base algorithm A
1: for t = 1, 2, . . . do
2: Get an arm recommendation Ĩt from A.
3: if Ĩt is a good arm then
4: It = Ĩt
5: else
6: It = jt
7: end if
8: Choose arm It and get feedback ft

(
`t, It

)
.

9: Construct feedback ft
(˜̀
t, Ĩt
)

and feed it to algorithm A.
10: end for

Crucially, note that in line 9 of the meta-algorithm (Algorithm 1) we assume that
ft
(˜̀
t, Ĩt
)

can be constructed based on ft
(
`t, It

)
. For example, this is certainly true in the

full information setting (as we are given `t, hence can explicitly compute ˜̀t). This is also
true in the bandit setting: If Ĩt is a “good” arm, then It = Ĩt, hence we can construct˜̀
t(Ĩt) = `t(It) − mt(jt) + εt(jt) based on the feedback `t(It) actually given to the meta-

algorithm. If Ĩt is a “bad” arm, then we can construct ˜̀t(Ĩt) = 2 εt(jt), since εt(jt) is given
to the meta-algorithm as side-information. In general, this framework can potentially be
used for other partial-feedback settings as well.

The following key theorem implies that the expected regret of this meta-algorithm can
be upper bounded by the expected regret of A, with respect to the transformed losses ˜̀t
whose range is independent of mt(i).

Theorem 1 Suppose (without loss of generality) that in Algorithm 1 the index Ĩt given by
A is chosen at random by sampling from a probability distribution p̃t(1), . . . , p̃t(K). Let
pt(1), . . . , pt(K) be the induced distribution2 of It. Then for any fixed arm a ∈ {1, . . . ,K},
it holds that

T∑
t=1

K∑
i=1

pt(i)`t(i)−
T∑
t=1

`t(a) ≤
T∑
t=1

K∑
i=1

p̃t(i)˜̀t(i)− T∑
t=1

˜̀
t(a) . (1)

2. By definition of the meta-algorithm, we have pt(i) = p̃t(i) if i 6= jt is good, pt(i) = 0 if i is bad, and

pt(jt) = p̃t(jt) +
∑

i is bad

p̃t(i).
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This implies in particular that

E

[
T∑
t=1

`t(It)

]
−

T∑
t=1

`t(a) ≤ E

[
T∑
t=1

(˜̀
t(Ĩt)− ˜̀t(a)

)]

where the expectation is over the possible randomness of the algorithm A. Moreover, ˜̀t(i) ∈[
0, 2(εt(jt) + εt(i))

]
for any good i, and ˜̀t(i) = 2 εt(jt) for any bad i.

Proof The proof carefully utilizes the definition of the transformed losses and actions. The
main challenge is to prove Eq. (1). The in-expectation bound follows by applying expec-
tations on both sides of the inequality, and noting that conditioned on rounds 1, . . . , t− 1,
the conditional expectation of `t(It) equals

∑K
i=1 pt(i)`t(i), and the conditional expectation

of ˜̀t(Ĩt) equals
∑K

i=1 p̃t(i)
˜̀
t(i). Also, the statement on the range of each ˜̀t(i) is immediate

from the definition of ˜̀t(i) and Eq. (4) below.

We now turn to prove Eq. (1). By adding and subtracting terms, it is sufficient to prove
that ∑

t

∑
i

(
pt(i)`t(i)−mt(jt) + εt(jt)

)
−
∑
t

(
`t(a)−mt(jt) + εt(jt)

)
≤
∑
t,i

p̃t(i)˜̀t(i)−∑
t

˜̀
t(a) . (2)

We will rely on the following facts, which are immediate from the definition of good and
bad arms: Any bad arm i must satisfy

`t(i) ≥ mt(jt) + εt(jt) (3)

and any good arm i must satisfy

mt(jt)− εt(jt) ≤ `t(i) ≤ mt(jt) + εt(jt) + 2εt(i) . (4)

Based on this, we have the following two claims, whose proof is provided in the appendix.

Claim 1. For any fixed arm a, ˜̀t(a) ≤ `t(a)−mt(jt) + εt(jt).

Claim 2.
K∑
i=1

pt(i)`t(It)−mt(jt) + εt(jt) ≤
K∑
i=1

p̃t(i)˜̀t(i)
where

pt(i) =


p̃t(i) i 6= jt and i is good

0 i 6= jt and i is bad

p̃t(jt) +
∑

i is bad p(i) i = jt.

Combining the two claims and summing over t, we get Eq. (2) as required.

Since the range of ˜̀t is independent of mt, we get a regret bound for our meta-algorithm
which depends only on εt. This is exemplified in the following two corollaries:
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Corollary 2 With bandit feedback and using Exp3 as the algorithm A (with step size η),
the expected regret of Algorithm 1 is

O

(
logK

η
+ η

T∑
t=1

(
Kεt(jt)

2 +
∑
i∈Gt

εt(i)
2

))

where Gt ⊆ {1, . . . ,K} is the set of “good” arms at round t, and jt is the arm with lowest
potential loss mt(i)− εt(i) in round t.

The optimal choice of η leads to a regret of order
√

(logK)
∑T

t=1

(
Kεt(jt)2 +

∑
i∈Gt

εt(i)2
)
.

This recovers the standard Exp3 bound in the case mt(i) = εt(i) = 1
2 (i.e., the standard

setting where the losses are only known to be bounded in [0, 1]), but can be considerably
better if the εt(i) terms are small, or the mt(i) terms are large. We also note that the
logK factor can in principle be removed, i.e., by using the implicitly normalized forecaster
of Audibert and Bubeck (2009) with appropriate parameters. A similar corollary can be
obtained in the full information setting, using a standard algorithm such as Hedge (Freund
and Schapire, 1995).

Corollary 3 With full information feedback and using Hedge as the algorithm A (with step
size η), the expected regret of the meta-algorithm is

O

(
logK

η
+ η

T∑
t=1

max
i=1,...,K

εt(i)
2

)
.

The optimal choice of η leads to regret of order
√

(logK)
∑T

t=1 maxi εt(i)2. As in the bandit
setting, our reduction can be applied to other algorithms as well, including those with
more refined loss-dependent guarantees —e.g., (Steinhardt and Liang, 2014) and references
therein.

Finally, we note that Theorem 1 can easily be used to provide high-probability bounds
on the actual regret

∑T
t=1 `t(It) −

∑T
t=1 `t(a), rather than just bounds in expectation, as

long as we have a high-probability regret bound for A. This is due to Eq. (1), and can be
easily shown using standard martingale arguments.

3.1 Related work

As mentioned in the introduction, a question similar to ours was studied in (Rakhlin and
Sridharan, 2013) —see also (Hazan and Kale, 2011) for earlier results— under the name of
learning with predictable sequences. Unlike our setting, however, Rakhlin and Sridharan
(2013) do not require knowledge of εt(i), and consider a more generic setting corresponding
to bandit linear optimization. Assuming the step size is chosen appropriately, they provide
algorithms with expected regret bounds scaling as√√√√K2(logK)

T∑
t=1

K∑
i=1

εt(i)2 and

√√√√(logK)

T∑
t=1

max
i
εt(i)2

(bandit feedback) (full information feedback)
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Comparing these bounds to Corollaries 2 and 3, we see that we obtain a similar bound in
the full information setting, and a significantly better bound in the bandit setting: The
dependence on K is improved (by a factor of between

√
K and K, depending on the εt(i)

values), and there is a better dependence on the εt(i) values if εt(jt) is not too large and
the number of “good” arms tends to be small. In fact, as we show in the next subsection,
our bound is optimal in certain regimes. Also, our algorithmic approach is based on a
reduction, which can be applied in principle to any algorithm and to general families of
feedback settings, rather than a specific algorithm. On the flip side, the results in Rakhlin
and Sridharan (2013) are tailored to the more general setting of linear online optimization,
and do not require knowing εt(i) in advance.

Another related line of work is path-based bounds, where it is assumed that the losses
`t(i) tend to vary slowly with t, and `t−1(i) can provide a good estimate of `t(i). This can
be linked to our setting by taking mt(i) = `t−1(i), and εt(i) be some known upper bound on
|`t(i) − `t−1(i)|. However, implementing this requires the assumption that `t−1 is revealed
at the next round t, which does not fit the bandit setting. Thus, it is difficult to directly
compare these results to ours. Most work on this topic has focused on the full information
feedback setting —see (Steinhardt and Liang, 2014) and references therein— and the bandit
setting was studied for instance in (Hazan and Kale, 2011).

3.2 Lower bound

We now turn to consider the tightness of our results. Since the focus of this paper is to
study the variability of the losses across arms, rather than across time, we will consider for
simplicity the case where εt(j) are fixed for all t = 1, . . . , T (hence the t subscript can be
dropped).

Theorem 4 Fix T,K > 1 and nonnegative ε(1), . . . , ε(K) such that minj : ε(j)>0 ε(j)
2 ≥

2
T

∑
j ε(j)

2 . Then there exists fixed parameters m(j) for j = 1, . . . ,K such that the following
holds: For any (possibly randomized) learner strategy A, there exists a loss assignment
satisfying |`t(j)−m(j)| ≤ ε(j) for all t, j, such that

EA

[
T∑
t=1

`t(It)

]
− min
j=1,...,K

T∑
t=1

`t(j) ≥


c
√
T
∑K

j=1 ε(j)
2 with bandit feedback

c
√
T max
j=1,...,K

ε(j)2 with full information feedback

where c > 0 is a universal constant.

The theorem implies that the dependencies on
∑

j ε(j)
2 and maxj ε(j) in our upper bounds

(in the bandit and full information case, respectively) cannot be improved in general. More-
over, when ε(j) is the same for all j, our bound in the bandit setting is tight up to logarithmic
factors.

Remark 5 The lower bound construction in the bandit setting is such that all arms are
potentially “good” in the sense used in Corollary 2, and hence

∑K
j=1 ε(j)

2 coincides with∑
j∈Gt

ε(j)2 (recall Gt is the set of “good” arms at time t). If one wishes to consider a

situation where some arms j are “bad”, and obtain a bound dependent on
∑

j∈Gt
ε(j)2, one

can simply pick some sufficiently large values m(j) for them, and ignore their contribution
to the regret in the lower bound analysis.
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The proof (provided in the appendix) is conceptually similar to the standard regret lower
bound for nonstochastic multi-armed bandits —see (Bubeck and Cesa-Bianchi, 2012)—
where the losses are generated stochastically, with one randomly chosen and hard-to-find
arm having a slightly smaller loss in expectation. However, we utilize a more involved
stochastic process to generate the losses as well as to choose the better arm, which takes
the values of ε(i) into account.

The lower bound leaves open the possibility of removing the dependence on Kεt(jt)
2 in

the upper bound. This term is immaterial when Kεt(jt)
2 is comparable to, or smaller than∑

i∈Gt
εt(i)

2 (e.g., if most arms are good, and εt(i) is about the same for all i), but can be
significant otherwise. This question is left to future work.

4. Smooth losses

We now turn to consider a different set of assumptions, which utilize smoothness of the losses
across arms to get improved regret guarantees, and avoids the lower bound of Gerchinovitz
and Lattimore (2016). Specifically, we consider a situation where the learner is given (or
can compute) an “anchor point” at at the end of each round t, which equals the loss of
some arm at round t, independent of the learner’s randomness at that round. Importantly,
the learner need not even know which arm has this loss. For example, it is often reasonable
to assume that there is always some arm which attains a minimal loss of 0, or some arm
which attains a maximal loss of 1. In that case, instead of estimating losses `t(i) in [0, 1], it
is enough to estimate losses of the form `t(i) + (1− at), which may lie in a much narrower
range if |`t(i)− at| tends to be small.

To see why this “anchor point” side-information circumvents the lower bound of Gerchi-
novitz and Lattimore (2016), we briefly discuss their construction (in a slightly simplified
manner): The authors consider a situation where the losses are generated stochastically
and independently at each round according to `t(i) = clip[0,1]

(
Zt −∆I

{
i = i∗

})
, with Zt

being a standard Gaussian random variable, ∆ = Θ(
√
K/T ), and i∗ being some arm chosen

uniformly at random. Hence, at every round, the loss of arm i∗ is smaller by an amount of
order Ω(

√
K/T ) than the loss of all other arms. Getting an expected regret smaller than

Ω(
√
KT ) would then imply detecting i∗. However, since the learner observes only a single

loss every round, the similarity of the losses for different arms at a given round does not help
much. In contrast, if the learner had access to the loss at of any fixed arm (independent of
the learner’s randomness), she could easily detect i∗ in O(K) rounds, simply by maintaining
a “feasible set” I of possible arms, picking arms i ∈ I at random, and removing it from I
if `t(i)− at is positive. This process ends once I contains a single arm, which must be i∗.

To formalize our setting in a flexible manner, we follow a graph-based approach inspired
by Valko et al. (2014). Consider the standard Exp3 bound, which in its tightest form is of
order

√
(logK)

∑
t ‖`t‖2 —see Lemma 12 in the Appendix. We will show how each term

‖`t‖2 can be replaced by the smaller term

min
Lt

`>t Lt`t
λ2(Lt)

= min
Lt

∑
(i,j)∈Et

(
`t(i)− `t(j)

)2
λ2(Lt)

,

where the minimum is over the Laplacians Lt of all possible simple and connected graphs
over K vertices (with corresponding edge set Et), and λ2(Lt) is the smallest nonzero eigen-

9
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value of Lt. The smaller is `>t Lt`t, the more similar are the losses, on average. Crucially,
note that the learner need not have explicit knowledge of Lt. The only thing we do expect
the learner to know (at the end of each round t) is the “anchor point” at as described above.
We also note that this setting is quite distinct from the graph bandits setting of (Mannor
and Shamir, 2011; Alon et al., 2014), which also assumes a graph structure over the ban-
dits, but this graph encodes what feedback the learner receives, as opposed to encoding
similarities between the losses themselves.

We now turn to describe the algorithm and associated regret bound. The algorithm
itself is very simple: Run a standard multiarmed bandits algorithm suitable for our setting
—for example, Exp3 (Auer et al., 2002)— using the shifted losses ˜̀t(i) = `t(i) + 1 − at.
The associated regret guarantee is formalized in the following theorem (from now on, let
1 = (1, . . . , 1) be the all-ones vector).

Theorem 6 Assume that in each round t, after choosing It the learner is told a number at
chosen by the oblivious adversary and such that there exists some arm kt with `t(kt) = at.
Then Exp3 performing updates based on loss vectors ˜̀t = `t + (1− at)1 achieves

E

[
T∑
t=1

`t(It)

]
− min
i=1,...,K

T∑
t=1

`t(i) ≤
logK

η
+
η

2

T∑
t=1

min
Lt

(
1 +

`>t Lt`t
λ2(Lt)

)

where each Lt is the Laplacian of an arbitrary simple and connected graph on {1, . . . ,K}.

The proof (provided in the appendix) is based on Euclidean-norm regret bounds for the
Exp3 algorithm, combined with a careful analysis of the associated quantities based on the
Laplacian `>t Lt`t.

We now show how doubling-trick arguments, combined with Theorem 6, deliver a regret
bound of order √√√√(logK)

T∑
t=1

min
Lt

(
1 +

`>t Lt`t
λ2(Lt)

)
.

More specifically, we apply the doubling trick to Exp3 in order to obtain a regret bound

scaling as

√
(logK)

∑
t ‖˜̀t‖2. As all of our results depend on upper bounding ‖˜̀t‖2, the

argument applies in particular to the settings of Theorem 6 and Corollary 8.

Theorem 7 Consider the algorithm that operates by running Exp3 for Tr consecutive time
steps with parameter ηr =

√
(2 logK)/2r for each r = 0, 1, . . . while monitoring the observ-

able random quantity 3 Qs =
∑K

i=1 ps(i)
̂̀
s(i)

2. Whenever
∑

t∈Tr Qt > 2r is detected while
Exp3 is running with η = ηr, the algorithm restarts Exp3 with a new parameter η = ηr+1.
Then the regret of this algorithm satisfies

E

[
T∑
t=1

`t(It)

]
−

T∑
t=1

`t(k) ≤ log2

(
KT + 1

)
+ 4

√√√√2(logK)

(
1 +

T∑
t=1

‖`t‖2
)
.

3. Here ̂̀s(i) = `s(i)
ps(i)

I
{
Is = i

}
are Exp3’s standard importance-weighting loss estimates.
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The bound of Theorem 6 is not fully satisfying as it does not vanish when `>t Lt`t = 0
(which, assuming the graph is connected, implies that all losses are the same). The reason
is that we need to add 1 to each loss component in order to guarantee that we do not end
up with negative components when `t(kt) · 1 is subtracted from `t. This is avoided when in
each round t, the revealed loss `t(kt) is the smallest component of `t, as formalized in the
following corollary.

Corollary 8 Assume that in each round t, after choosing It the learner is told at =
mini `t(i). Then Exp3 performing updates using losses ˜̀t = `t − at · 1 achieves

E

[
T∑
t=1

`t(It)

]
− min
i=1,...,K

T∑
t=1

`t(i) ≤
logK

η
+
η

2

T∑
t=1

(
min
Lt

`>t Lt`t
λ2(Lt)

)

where each Lt is the Laplacian of an arbitrary simple and connected graph on {1, . . . ,K}.

We leave the question of getting such a bound, without at being the smallest loss, as an
open problem.

When η is tuned optimally (e.g., via Theorem 7), the bounds of Theorem 6 and Corol-
lary 8 take, respectively, the form√√√√(logK)

T∑
t=1

min
Lt

(
1 +

`>t Lt`t
λ2(Lt)

)
and

√√√√(logK)
T∑
t=1

min
Lt

`>t Lt`t
λ2(Lt)

. (5)

As a sanity check, we now show that the bound in the right-hand side of Eq. (5) is never
worse than the

√
log(K)

∑
t ‖`t‖2 bound for Exp3 mentioned earlier (which does not require

an anchor point assumption). To see this, recall that our bounds are achieved for all choices
of L1, . . . , LT that correspond to simple and connected graphs. In particular, let Lt be the
Laplacian of the K-clique for each t. Then Lt has all nonzero eigenvalues equal to K, and
so `>t Lt`t = K. As λ2(Lt) is also equal to K, we have that `>t Lt`t

/
λ2(Lt) = ‖`t‖2.

Finally, we show that for fixed graphs Lt = L, the bound in the right-hand side of
Eq. (5) is tight in the worst-case up to log factors.

Theorem 9 There exist universal constants c1, c2 such that the following holds: For any
randomized algorithm, any C > 0, any λ ∈ (0, 1], and any sufficiently large K and T , there
exists a K-node graph with Laplacian L satisfying λ2(L) ∈ [c1λ, c2λ] and an adversary strat-
egy `1, . . . , `T , such that `>t L`t ≤ C for all t = 1, . . . , T , and the expected regret (w.r.t. the
algorithm’s internal randomization) is at least

Ω

(
min

{
√
K,

C√
λ2(L)

}
√
T

)
The proof is provided in the appendix. This theorem matches Eq. (5), assuming that Lt = L
for all t and that λ2(L) = O(1). Note that the latter assumption is generally the interesting
regime for λ2(L) (for example, λ2(L) ≤ 1 as long as there is some node connected by a single
edge). The proof is based on considering an “octopus” graph, composed of long threads
emanating from one central node, and applying a standard bandit lower bound strategy on
the nodes at the ends of the threads.
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4.1 Multiple connected components

The previous results of this section need the graph represented by Lt to be connected, in
order for the guarantees to be non-vacuous. This is not just an artifact of the analysis: If
the graph is not connected, at least some arms can have losses which are arbitrarily different
than other arms, and the anchor point side information is not necessarily useful. Indeed,
if there are multiple connected components, then λ2 = 0 and our bounds become trivial.
Nevertheless, we now show it is still possible to get improved regret performance in some
cases, as long as the learner is provided with anchor point information on each connected
component of the graph.

We assume that at every round t, there is some graph defined over the arms, with edge
set Et. However, here we assume that this graph may have multiple connected components
(indexed by s in some set Ct). For each connected component s, with associated Laplacian
Lt(s), we assume the learner has access to an anchor point mt(s). Unlike the case discussed
previously, here the anchor points may be different at different components, so a simple
shifting of the losses (as done in Sec. 4) no longer suffices to get a good bound. However,
the anchor points still allow us to compute some interval, in which each loss must lie, which
in turn can be plugged into the algorithmic reduction presented in Sec. 3. This is formalized
in the following lemma, whose proof is provided in the appendix.

Lemma 10 For any connected component s ∈ Ct, and any arm i in that component,
∣∣`t(i)−

mt(s)
∣∣ ≤√ `>t Lt`t

λ2
(
Lt(s)

) .

Based on this lemma, we know that any arm at any connected component s has values in[
mt(s)−

√
`>t Lt`t

λ2
(
Lt(s)

) ,mt(s) +

√
`>t Lt`t

λ2
(
Lt(s)

)]. Using this and applying Corollary 2, we have

the following result.

Theorem 11 For any fixed arm j, the algorithm described in Corollary 2 satisfies

E

[∑
t

`t(It)−
∑
t

`t(j)

]
≤ log(K)

η
+
η

2

T∑
t=1

(
`>t Lt`t

λ2

(
Lt(smin)

) +
∑
s∈Gt

`>t Lt`t

λ2

(
Lt(s)

)Nt(s)

)

where each Lt is the Laplacian of an arbitrary simple graph on {1, . . . ,K}, Nt(s) is the
number of arms in connected component s, and smin is a connected component s for which

mt(s)− Ct
/√

λ2

(
Lt(s)

)
is smallest.

This allows us to get results which depend on the Laplacians Lt(s), even when these sub-
graphs are disconnected. We note however that this theorem does not recover the results of

Sec. 4 when there is only one connected component, as we get logK
η + η(K+1)

2

∑T
t=1

`>t Lt`t
λ2(Lt)

,
where the K + 1 factor is spurious. The reason for this looseness is that we go through a
coarse upper bound on the magnitude of the losses, and lose the dependence on the Laplacian
along the way. This is not just an artifact of the analysis: Recall that the algorithmic
reduction proceeds by using transformations of the actual losses, and these transformations
may not satisfy the same Laplacian constraints as the original losses. Getting a better
algorithm with improved regret performance in this particular setting is left to future work.
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Appendix A. Proofs

Proofs of Claim 1 and Claim 2 from Sec. 3

To show Claim 1, we consider separately the case where a is a bad arm at round t, and
where a a good arm at round t. If a is a bad arm, then ˜̀t(a) = 2εt(jt), which is at most
`t(a)−mt(jt) + εt(jt) by Eq. (3). Otherwise, if a is a good arm at round t, the observation
follows by definition of ˜̀t.

To show Claim 2, recall that if i is a good arm, then ˜̀t(i) = `t(i)−mt(jt) + εt(jt), and
otherwise, we have ˜̀t(It) = 2εt(jt) ≥ `t(jt) −mt(jt) + εt(jt) (since `t(jt) ≤ mt(jt) + εt(jt)
by definition). Letting Gt denote the set of good arms at round t, we have:∑

i

p̃t(i)˜̀t(i) =
∑
i∈Gt

p̃t(i)˜̀t(i) +
∑
i bad

p̃t(i)˜̀t(i)
=
∑
i∈Gt

p̃t(i)
(
`t(i)−mt(jt) + εt(jt)

)
+

∑
i is bad

p̃t(i) 2 εt(jt)

≥
∑
i∈Gt

p̃t(i)
(
`t(i)−mt(jt) + εt(jt)

)
+

∑
i is bad

p̃t(i)
(
`t(jt)−mt(jt) + εt(jt)

)
=
∑
i

pt(i)`t(It)−mt(jt) + εt(jt) .

Proof of Theorem 4

Suppose the learner uses some (possibly randomized) strategy, and let A be a random
variable denoting its random coin flips. Our goal is to provide lower bounds on

sup
`1,...,`T

(
EA

[
T∑
t=1

`t(It)

]
− min
j=1,...,K

T∑
t=1

`t(j)

)

where the expectation is with respect to the learner’s (possibly randomized) strategy.
Clearly, this is lower bounded by

EJ,LEAA

[
T∑
t=1

`t(It)−
T∑
t=1

`t(J)

]

where EJ,L signifies expectation over some distribution over indices J and losses {`i(t)}. By
Fubini’s theorem, this equals

EAEJ,L

[
T∑
t=1

`t(It)−
T∑
t=1

`t(J)

]
≥ inf

A
E{`i(t)}i,t,j

[
T∑
t=1

`t(It)−
T∑
t=1

`t(j)

]

where infA refers an infimum over the learner’s random coin flips. Thus, we need to provide
some distribution over indices J and losses, so that for any deterministic learner,

E

[
T∑
t=1

`t(It)−
T∑
t=1

`t(J)

]
(6)
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is lower bounded as stated in the theorem. Let

pε(j) =
ε(j)2∑
j′ ε(j

′)2
j = 1, . . . ,K .

The proof will be composed of two constructions, depending on whether we are in the bandit
of full information setting, and whether maxj pε(j) is larger or smaller than 1/4.

The case maxj pε(j) ≤ 1
4 with bandit feedback

For this case, we will consider the following distribution: Let J be distributed on {1, . . . ,K}
according to the probability distribution p(1), . . . , p(k) (to be specified later). Conditioned
on any J = j, we define the distribution over losses as follows, independently for each round
t and index i:

• If i 6= j, then `t(i) equals maxr ε(r) + ε(i) w.p, 1
2 , and maxr ε(r)− ε(i) w.p. 1

2 .

• If i = j, then `t(i) equals maxr ε(r)+ε(i) w.p. 1−δ(i)
2 , and maxr ε(r)−ε(i) w.p. 1+δ(i)

2 .

Also, let Ej ,Pj denote expectation and probabilities (over the space of possible losses and
indices) conditioned on the event J = j. With this construction, we note that Ej [`t(j)] =
maxr ε(r)− δ(j)δ(j), and Ej [`t(i)] = maxr ε(r) if i 6= j. As a result,

Ej [`t(It)− `t(j)] = Pj(It 6= j) · Ej [`t(It)− `t(j)|It 6= j)] = Pj(It 6= j)ε(j)δ(j),

and therefore Eq. (6) equals

K∑
j=1

p(j)Ej

[
T∑
t=1

(
`t(It)− `t(j)

)]
=

K∑
j=1

p(j)
T∑
t=1

Pj(It 6= j)ε(j)δ(j)

=

K∑
j=1

p(j)ε(j)δ(j)

T∑
t=1

(
1− Pj(It = j)

)
. (7)

Let P0 denote the probability distribution over {`t(i)}t,i, where for any i and t, `t(i) is
independent and equals maxr ε(r) ± ε(i) with equal probability (note that this induces a
probability on any event which is a deterministic function of the loss assignments, such
as It = j for some t, j). By a standard information-theoretic argument (see for instance
(Bubeck and Cesa-Bianchi, 2012, proof of Lemma 3.6)), we have that

∣∣Pj(It = j)− P0(It = j)
∣∣ ≤ √

E0[T (j)]

2
KL
(

1
2

∣∣∣∣∣∣1−δ(j)2

)
where T (j) is the number of times arm j was chosen by the learner, and KL

(
1
2

∣∣∣∣∣∣1−δ(j)2

)
=

1
2 log

(
1

1−δ(j)2

)
is the Kullback-Leibler divergence between Bernoulli distributions with 1/2

and (1− δ(j))/2. Using the easily-verified fact that log(1/(1− z)) ≤ 2z for all z ∈ [0, 1/2],
it follows that ∣∣Pj(It = j)− P0(It = j)

∣∣ ≤ √
E0[T (j)]δ(j)2

2
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as long as δ(j)2 ≤ 1/2. Plugging this back into Eq. (7), we get the lower bound

K∑
j=1

p(j)ε(j)δ(j)
T∑
t=1

(
1− P0(It = j)−

√
E0[T (j)]δ(j)2

2

)
(8)

which is valid as long as maxj δ(j)
2 ≤ 1/2. Now, for all j = 1, . . . ,K, we pick

p(j) = pε(j) and δ(j) = I
{
ε(j) > 0

}√∑j ε(j)
2

ε(j)
√
T

(assuming that maxj δ(j)
2 ≤ 1/2).

Substituting in Eq. (8), and letting J =
{
j ∈ {1, . . . , k} : ε(j) > 0

}
, we get

∑
j∈J

ε(j)2√
T
∑

j ε(j)
2
·
T∑
t=1

(
1− P0(It = j)−

√
E0[T (j)]

2pε(j)T

)

=

√
T
∑
j

ε(j)2 ·
∑
j∈J

pε(j)

T

T∑
t=1

(
1− P0(It = j)−

√
E0[T (j)]

2pε(j)T

)

≥
√
T
∑
j

ε(j)2

1−max
j
pε(j)−

1

T

T∑
t=1

∑
j∈J

pε(j)

√
E0[T (j)]

2pε(j)T


≥
√
T
∑
j

ε(j)2

1−max
j
pε(j)−

√∑
j∈J E0[T (j)]

2T


≥
√
T
∑
j

ε(j)2

(
1−max

j
pε(j)−

√
1

2

)

where in the second-to-last step we used the fact that∑
j∈J

pε(j)
√
aj ≤

√∑
j∈J

pε(j)aj

for any non-negative aj , which follows from Jensen’s inequality and the fact that pε(j)
represents a probability distribution over the indices in J . Since we assume that pε(j) ≤ 1

4 ,

the above is at least 0.04
√
T
∑

j ε(j)
2, so we get overall that

E

[
T∑
t=1

`t(It)−
T∑
t=1

`t(J)

]
≥ 0.04

√
T
∑
j

ε(j)2

under the assumption that maxj pε(j) ≤ 1
4 and that T is sufficiently large so that

max
j

I
{
ε(j) > 0

}
pε(j)T

≤ 1

2
.

Note that the latter condition indeed holds under the theorem’s conditions.
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The case maxj pε(j) ≥ 1
4 with bandit feedback or with full information feedback

We now turn to consider either the full information setting, or the bandit setting when
maxj pε(j) ≥ 1

4 . In the latter case, we note that
∑

j ε(j)
2 is at most a constant factor

larger than maxj ε(j)
2, so it is sufficient to prove a lower bound of c

√
T maxj ε(j)2 for

some universal positive c. In fact, we will prove this lower bound regardless of the values of
ε(1), . . . , ε(K), and even in the easier full information case. Therefore, the same construction
will give us a lower bound for both the full information setting, and the bandit setting when
maxj pε(j) ≥ 1

4 .

To lower bound Eq. (6), we will use the following distribution over losses and J , letting
imax be some arbitrary index in arg maxi∈{1,...,K} ε(i), and δ ∈ (0, 1/2] be some parameter
to be chosen later:

• For any t = 1, . . . , T and i 6= imax, we fix `t(i) = ε(imax).

• We pick a value z uniformly at random from {−1, 1}. Then, for all t = 1, . . . , T , we
let `t(imax) equal 2ε(imax) with probability 1−zδ

2 , and 0 with probability 1+zδ
2 . Also,

if z = 1, we let J = 1, and if z = −1, we let J = 2.

Clearly, this loss assignment is valid (as
∣∣`t(i)−ε(imax)

∣∣ ≤ ε(i) for all t, i). Intuitively, we let
all arms but imax have a fixed loss of 1/2, and randomly choose imax to be either a “good”
arm or a “bad” arm compared to the other arms (with expected value (1−zδ)ε(imax), which
can be wither (1 + δ)ε(imax) or (1 − δ)ε(imax)). By letting δ = Θ(1/

√
T ), we ensure that

the algorithm cannot distinguish between these two events, and therefore will “err” and
pick Ω

(
ε(imax)/

√
T
)
-suboptimal arms with at least constant probability throughout the T

rounds, hence incurring Ω
(
ε(imax)

√
T
)

regret.

To make this more formal, let E+,P+ denote expectations and probabilities conditioned
on z = 1, and E−,P− denote expectations and probabilities conditioned on z = −1. With
this notation, Eq. (6) can be written as

1

2
E+

[
T∑
t=1

(
`t(It)− `t(1)

)]
+

1

2
E−

[
T∑
t=1

(
`t(It)− `t(2)

)]

=
1

2

T∑
t=1

P+(It 6= 1)δε(imax) +
1

2

T∑
t=1

P−(It = 1)δε(imax)

=
δε(imax)

2

T∑
t=1

(
1− P+(It = 1) + P−(It = 1)

)
≥ δε(imax)

2

T∑
t=1

(
1−

∣∣P+(It = 1)− P−(It = 1)
∣∣) (9)

Noting that It (as a random variable) depends only on the random loss assignments of
arm 1, and applying Pinsker’s inequality, we have that

∣∣P+(It = 1) − P−(It = 1)
∣∣ ≤√

1
2KL(P+

t ||P
−
t ), where KL(P+

t ||P
−
t ) is the Kullback-Leibler divergence between the dis-

tributions of the losses of arm 1 in rounds 1, 2, . . . , t − 1, under z = −1 and under z = 1.
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Since the losses are independent across rounds, we can apply the chain rule and get that

∣∣P+(It = 1)− P−(It = 1)
∣∣ ≤ √

1

2
KL(P+

t ||P
−
t ) ≤

√
t− 1

2
KL

(
1− δ

2

∣∣∣∣∣∣∣∣1 + δ

2

)
where KL

(
1−δ

2

∣∣∣∣1+δ
2

)
is the Kullback-Leibler divergence between Bernoulli distributions

with parameters 1−δ
2 and 1+δ

2 . This in turn equals√
t− 1

2
· δ log

(
1 + δ

1− δ

)
≤
√

3T

2
δ2

where we used the easily-verified fact that log
(

1+δ
1−δ

)
≤ 3δ for all δ ∈ (0, 1/2]. Plugging this

back into Eq. (9), we get overall that

E

[
T∑
t=1

(`t(It)− `t(J))

]
≥ δε(imax)

2
T

(
1− δ

√
3T

2

)

Picking δ = 1/2
√
T (which is valid since it is in (0, 1/2] for all T ), we get a lower bound of

cε(imax)
√
T =

√
T maxj ε(j)2 for some positive c as required.

Proof of Theorem 6

We start by recalling the classical analysis of the Exp3 regret.

Lemma 12 For losses `t(i) ∈ [0, 1], the regret of the Exp3 algorithm run with parameter
η > 0 satisfies

E

[
T∑
t=1

`t(It)

]
− min
k=1,...,K

T∑
t=1

`t(k) ≤ logK

η
+
η

2

T∑
t=1

‖`t‖2 .

Proof The proof is as follows,

Wt+1

Wt
=

K∑
i=1

wt+1(i)

Wt

=
K∑
i=1

wt(i)

Wt
exp
(
−η ̂̀t(i))

=

K∑
i=1

pt(i) exp
(
−η ̂̀t(i))

≤
K∑
i=0

pt(i)

(
1− η ̂̀t(i) +

(
η ̂̀t(i))2

2

)
(using e−x ≤ 1− x+ x2/2 for all x ≥ 0)

≤ 1− η
K∑
i=1

pt(i)̂̀t(i) +
η2

2

K∑
i=1

pt(i)̂̀t(i)2 .
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Taking logs, upper bounding, and summing over t = 1, . . . , T yields

log
WT+1

W1
≤ −η

T∑
t=1

K∑
i=1

pt(i)̂̀t(i) +
η2

2

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)2 .

Moreover, for any fixed comparison arm k, we also have

log
WT+1

W1
≥ log

wT+1(k)

W1
= −η

T∑
t=1

̂̀
t(k)− logK .

Putting together,

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)− T∑
t=1

̂̀
t(k) ≤ logK

η
+
η

2

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)2 . (10)

Next, note that

Et
[̂̀
t(i)
]

= `t(i) and Et
[̂̀
t(i)

2
]

=
`t(i)

2

pt(i)
. (11)

This immediately gives

E

[
T∑
t=1

`t(It)

]
−

T∑
t=1

`t(k) ≤ logK

η
+
η

2

T∑
t=1

K∑
i=1

`t(i)
2

concluding the proof.

A simple graph is an unweighted, undirected graph, containing no self-loops or multiple
edges.

Lemma 13 Let G = (V,E) be a simple and connected graph with |V | = K nodes, and let L
be its Laplacian matrix. Let L(i, i) be the (K − 1)× (K − 1) submatrix obtained by deleting
the i-th row and the i-th column from L. Then, for any i = 1, . . . ,K, the eigenvalues of
L(i, i) are the non-zero eigenvalues of L.

Proof L has K − 1 non-zero eigenvalues because it is connected. Let v = (v1, . . . , vK) be
an eigenvector of L with eigenvalue λ > 0. Since L1 = 0, we have that

λ2 = v>Lv =
(
v − vi1

)>
L
(
v − vi1

)
= v>i L(i, i)vi

where vi =
(
v1 − vi, . . . , vi−1 − vi, vi+1 − vi, . . . , vK − vi

)
. Hence vi is an eigenvector of

L(i, i) with eigenvalue λ.

We are now ready to prove Theorem 6.
Proof of Theorem 6. Using the invariance of the regret to translation of the losses and
the fact that `t(i) + 1− at ≥ 0 for all t, i, and kt,

E

[
T∑
t=1

`t(It)

]
−

T∑
t=1

`t(k) = E

[
T∑
t=1

˜̀
t(It)

]
−

T∑
t=1

˜̀
t(k)

≤ logK

η
+
η

2

T∑
t=1

‖˜̀t‖2 . (12)
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Let `>t Lt`t = C2
t . Since `>t Lt`t = ˜̀>

t Lt
˜̀
T , and since ˜̀t has component kt equal to 1, we

can upper bound each term ‖˜̀t‖2 by the solution of the convex program

max
v∈RK

‖v‖2

such that v>Ltv ≤ C2
t

∃i ∈ {1, . . . ,K} v(i) = 1 .

(13)

Using Lemma 13, the above program is equivalent to

max
v∈RK−1

(
1 + ‖v‖2

)
such that v>Lt(1, 1)v ≤ C2

t

where L(1, 1) is full rank. Hence we can set u = Lt(1, 1)1/2v/Ct and obtain the equivalent
program

1 + max
u∈RK−1 : ‖u‖≤1

C2
t

(
u>Lt(1, 1)−1u

)
= 1 +

C2
t

λ2(Lt)
(14)

which gives us the claimed bound.

Proof of Theorem 7

Let Q̄t = Q1 + · · ·+Qs. The largest r we need is the smallest R such that

R∑
r=0

2r ≥ Q̄T

and so R =
⌊

log2(Q̄T + 1)
⌋
. Therefore

R∑
r=0

2r/2 < 4

√
Q̄T + 1 .

Because of Eq. (10),

T∑
t=1

(
K∑
i=1

pt(i)̂̀t(i)− ̂̀t(k)

)
≤ logK

η
+
η

2

T∑
t=1

K∑
i=1

pt(i)̂̀t(i)2

and so ∑
t∈Sr

(
K∑
i=1

pt(i)̂̀t(i)− ̂̀t(k)

)
≤ logK

ηr
+
ηr
2

∑
t∈Sr

Qt ≤
√

2(logK)2r .
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Since a regret of at most 1 is incurred whenever Exp3 is restarted, we have

E

[
T∑
t=1

K∑
i=1

pt(i)̂̀t(i)]− T∑
t=1

̂̀
t(k)

≤ E
[⌊

log2

(
Q̄T + 1

)⌋]
+ 4E

[√
2(logK)

(
Q̄T + 1

)]

≤ log2

(
KT + 1

)
+ 4

√√√√2(logK)

(
1 +

T∑
t=1

‖`t‖2
)

where in the last step we used Jensen’s inequality and Eq. (11).

Proof of Theorem 9

To prove the theorem, let d = d1/λe, and k be any integer such that d divides k−1. Finally,
define Gk,d to be an “octopus” graph composed of (k − 1)/d tentacles of equals length d.
Formally, for any two nodes i, j ∈ {1, . . . , k} where j > i w.l.o.g., we have (i, j) ∈ E if and
only if

((j = k) and (i = 1 mod d)) or ((j 6= k) and (j = i+ 1) and (i 6= 0 mod d))

Note that here, node k is the “central” node, from which all tentacles emanate (first tentacle
corresponding to nodes 1, 2, . . . , d, second tentacle corresponding to nodes d+1, d+2, . . . , 2d
and so on).

The theorem is a straightforward corollary of the following two lemmas.

Lemma 14 For an octopus graph Gk,d with Laplacian Lk,d, for any C > 0, and for any
randomized algorithm, there exists an adversary strategy `1, `2, . . . such that the expected

regret is Ω
(

min
{√

k,Cd
}√

T
)

while `>t Lk,d`t ≤ C for each t = 1, . . . , T .

Proof (Sketch) In the graph, there are Ω(k) points at a distance Ω(d) from the center.
These “faraway” points can get loss magnitudes as large as 1

2 ± min{1, Cd/
√
k}, while

satisfying the budget constraints and having the central point as an anchor with a fixed loss
of 1/2 (to make sure the budget constraint is satisfied, assign losses in increments of roughly
C/
√
k along each tentacle, so points in the faraway half of each points gets losses varying as

±min{1, Cd/
√
k}). Specifically, all those faraway points will get the same random binary

loss every round (equalling 1/2 in expectation), except for one point whose loss will always
be a Θ(

√
k/T ) smaller in expectation. Assuming the hidden constant is small enough, and

using the standard proof technique of lower bounds for nonstochastic multi-armed bandits,
we have that the algorithm is unlikely to detect the arm with smaller-in-expectation loss,
resulting in an expected regret lower bound of

Ω

(
min

{
1,
Cd√
k

}√
kT

)
= Ω

(
min

{√
k,Cd

}√
T
)
.
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Lemma 15 For an Octopus graph Gk,d, λ2 = Θ(1/d2) (where Θ(·) hides universal con-
stants).

Proof We begin with the lower bound. By (Rad et al., 2011, Theorem 1), λ2 is lower
bounded by k/Cmax, where Cmax = maxe∈E Ce, and Ce is the sum, over all pairs of distinct
nodes i and j of the length of the shortest path between (i, j) passing through e assuming
this path exists. For the graph as defined above, any edge separates at most d nodes from
at most k − 1 other nodes, and the length of the path between any two nodes is at most
2d. Therefore, Cmax ≤ 2kd2, so

λ2 ≥
k

2kd2
=

1

2d2
= Ω

(
1

d2

)
.

Turning to the upper bound, by corollary 4.4 in Grone et al. (1990), for any tree graph
of diameter D, λ2 ≤ 2 (1− cos(π/(D + 1))), and since cos(x) ≥ 1 − x2/2 for all x, this
implies

λ2 ≤
π2

(D + 1)2
.

An Octopus graph Gk,d is a tree with diameter 2d, hence

λ2 ≤
π2

(2d+ 1)2
= O

(
1

d2

)
from which the result follows.

Proof of Lemma 10

For simplicity, we will drop the s, t subscripts, as they play no role here. The proof follows
by an analysis similar to that of Eq. (13), where 1 is replaced by mt(s) and noting that the
2-norm upper bounds the∞-norm. Specifically, making the worst-case assumption that the
adversary budget C = `>L` is spent solely on the connected component we are concerned
with, we need to solve the convex program

max
v∈RK

‖v −m · 1‖∞
such that v>Lv ≤ C2

∃i ∈ {1, . . . ,K} v(i) = m .

which is equivalent (using the fact that `>L` is invariant to shifting the coordinates of `)
to

max
v∈RK

‖v‖∞
such that v>Lv ≤ C2

∃i ∈ {1, . . . ,K} v(i) = 0 .

Upper bounding the ∞-norm by the 2-norm, and using Lemma 13, the above program is
equivalent to

max
v∈RK−1

‖v‖2
such that v>L(1, 1)v ≤ C2

23



Cesa-Bianchi and Shamir

where L(1, 1) is full rank. Hence we can set u = L(1, 1)1/2v/C and obtain the equivalent
program

max
u∈RK−1 : ‖u‖≤1

C
√(

u>L(1, 1)−1u
)

=
C√
λ2(L)

which gives us the claimed bound.
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