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Abstract
Classical matrix perturbation results, such as Weyl’s theorem for eigenvalues and the Davis-Kahan
theorem for eigenvectors, are general purpose. These classical bounds are tight in the worst case,
but in many settings sub-optimal in the typical case. In this paper, we present perturbation bounds
which consider the nature of the perturbation and its interaction with the unperturbed structure
in order to obtain significant improvements over the classical theory in many scenarios, such as
when the perturbation is random. We demonstrate the utility of these new results by analyzing
perturbations in the stochastic blockmodel where we derive much tighter bounds than provided
by the classical theory.

1. Introduction
In many applications the interesting structure of information is encoded by the eigenvalues and
eigenvectors of an appropriately defined matrix. For instance, the top eigenvectors of the covariance
matrix reveal the principal directions of the distribution, and the bottom eigenvalues and eigenvectors
of a graph’s Laplacian capture important details about its cluster structure. When learning from
data, however, we typically do not have access to the matrix itself but rather a version which has
been contaminated by (oftentimes random) noise. In such cases the following problem is of great
interest: let M and H be n × n symmetric matrices with real entries. Suppose we “perturb” the
matrix M by adding H. How do the eigenvalues and eigenvectors of M +H relate to those of M?

For eigenvalues, the classical answer to this question comes in the form of Weyl’s theorem (Weyl,
1912). Let the eigenvalues of M be λ1 ≥ · · · ≥ λn and the eigenvalues of M +H be λ̃1 ≥ · · · ≥ λ̃n.
Denote by ∥H∥ the spectral norm of H; that is, the largest eigenvalue of H in absolute value. We
have:

Theorem 1 (Weyl’s theorem). For any i ∈ [n], |λi − λ̃i| ≤ ∥H∥.

For the perturbation of eigenvectors, the classical result is the Davis-Kahan theorem (Davis and
Kahan, 1969). For any fixed t ∈ [n], let u(t) be an eigenvector of M with eigenvalue λt, and let ũ(t)
be an eigenvector of M +H with eigenvalue λ̃t. Assume that λt and λ̃t have unit multiplicity; this
assumption can be removed at the cost of complicating the statement of the result. The Davis-Kahan
theorem bounds the angle θt between u(t) and ũ(t):
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Theorem 2 (The Davis-Kahan theorem). Define δt = min{|λ̃j−λt| : j ̸= t}. Then sin θt ≤ ∥H∥/δt.

These classical results bound matrix perturbations in general cases, and do not use information
about the structure of the matrices M and H or the relation between them. In applications, however,
we often make assumptions about the nature of M and H; for example, we might assume that H
is random noise added to a low rank M . In such instances the generality of Weyl’s theorem and
Davis-Kahan may result in severely suboptimal bounds.

In this work we present perturbation bounds which incorporate knowledge of the interaction
between H and the eigenvectors of M . We obtain significant improvements over the classical theory
in settings where this interaction is weak, such as when the perturbation H is random. In Section 3,
we present an eigenvalue perturbation bound in the following spirit:

“Theorem” 1. In many settings, |λ̃t − λt| is on the order of |⟨u(t),Hu(t)⟩| ≪ ∥H∥.

We will show that when H is random the perturbation of the top eigenvalues is on the order of√
log n, whereas Weyl’s theorem gives a bound on the order of

√
n. Next, in Section 4, we develop

a theory of eigenvector perturbations in ∞-norm which is informally stated as follows:

“Theorem” 2. In many settings, ∥ũ(t) − u(t)∥∞ is on the order of
∥∥∥∑∞

p≥1 (H/λt)
p
u(t)
∥∥∥
∞
.

We will show that when H is random and the top eigenvectors of M have small∞-norm (which,
for example, is the case when M has block-constant structure), the perturbation is also small. In
many natural settings, our perturbation result improves upon the classical theory by a factor of
1/

√
n.
Among the techniques used to derive the above results, we highlight the importance of what we

call the Neumann trick – a particular expansion of the perturbed eigenvector which diminishes the
effect of components whose interaction with H is hard to bound. To see the utility of the trick,
consider bounding some norm of the perturbation u(1)− ũ(1): Begin by writing ũ(1) as αu(1) +βu⊥,
where u⊥ is some unit vector orthogonal to u(1). In the usual approach, controlling the norms of
Hu(1) and Hu⊥ are crucial in bounding the size of u(1) − ũ(1). In the worst case these norms are
bounded by ∥H∥. It turns out that ∥Hu(1)∥2 is often close to this worst-case bound in practice,
but that ∥Hu(1)∥∞ can be much smaller than ∥H∥, particularly when H is random. As a result,
analyzing the interaction between H and u(1) often leads to an improved perturbation bound in
∞-norm.

However, while obtaining a tighter bound on ∥Hu(1)∥∞ is often possible, it can be difficult to
derive an improved bound on ∥Hu⊥∥∞. Specifically, note that u(1) is a fixed vector independent
of the perturbation H, but u⊥ depends on H. If H is random, for instance, then u⊥ is a random
vector depending on H and the statistical interaction between H and u⊥ can be hard to analyze.
As a result, we often cannot bound the norm of Hu⊥ any better than by the spectral norm of H.
The Neumann trick allows us to replace the hard-to-analyze norm of Hu⊥ with λ2; if λ2 is smaller
than ∥H∥ the Neumann trick presents significant advantages over the classical approach, as we will
see.

We believe that the Neumann trick has the potential to substantially improve eigenvector pertur-
bation bounds in many settings. As an example, we use it to analyze perturbations in the stochastic
blockmodel and obtain much finer bounds than provided by the classical eigenvalue/eigenvector
perturbation theory. As an easy corollary of our perturbation bounds, we obtain a straightforward
proof that a simple and natural graph clustering algorithm indeed recovers the correct clustering of
even very sparse graphs

1.1 Related work
Improving classical perturbation bounds has been the subject of recent interest. The work of Fan
et al. (2016) bounds the ∞-norm perturbation of singular vectors under the assumption that M is

2



low rank and incoherent. Our theory does not place either of these assumptions on M . Moreover,
we will obtain improved bounds in some settings where (Fan et al., 2016) does not apply, such as in
the stochastic blockmodel. Both Vu (2010) and O’Rourke et al. (2013) consider the case where H
is random and M is low rank and present bounds in 2-norm which improve upon Davis-Kahan in
certain settings. In contrast, our results are for the ∞-norm, we do not assume that M is low rank,
and H needs not be random. Furthermore, in certain settings where M is low rank – such as in the
case of the blockmodel – the results of the aforementioned papers do not necessarily improve upon
the classical theory, while ours will. We note that the eigenvalue perturbation analysis in (O’Rourke
et al., 2013) bears resemblance to that presented herein, but ours will hold for full-rank M and
non-random H.

Jain and Netrapalli (2015) bound the max-norm error of the rank-k approximation of a matrix
with the help of the Neumann trick. The scope of their paper is limited to matrix completion, and
they do not provide eigenvector perturbation bounds. On the other hand, we develop an entrywise
perturbation bound for the eigenvectors of general matrices (not necessarily low rank). In the special
case of rank-k matrices, our strong control of the eigenvectors can be used to derive a max-norm
error bound for matrix approximations similar to that provided by Jain and Netrapalli (2015) – for
an example in the setting of a stochastic blockmodel, see Corollary 1.

Several works have studied the similar setting of random perturbations of spiked covariance
matrices – see, for instance, the work of Benaych-Georges and Nadakuditi (2009) and Baik et al.
(2004). These works derive the distribution of the eigenvalues of the perturbed matrix in the large
matrix limit and study the phase transition threshold below which the extreme eigenvalues are not
separated from the bulk eigenvalues. In contrast, the current paper bounds the effect of perturbations
of a finite size.

Also related to the present work are the theories of random graphs and matrices. Perhaps most
relevant is the work of Erdős et al. (2011), which analyzes the spectral statistics of Erdő-Rényi
graphs using the Neumann trick. In contrast, we will develop the Neumann trick into a tool for
analyzing general perturbations. Another related work is that of Mitra (2009), which bounds the∞-
norm perturbation of the top eigenvector of an Erdős-Rényi graph and provides a simple algorithm
for clustering a sparse stochastic blockmodel with two communities. However, it is not clear how
to generalize this method beyond the first eigenvector and therefore to blockmodels with K ≥ 2
communities. Our method will give useful bounds on the top K eigenvectors, and our algorithm will
work on models with an arbitrary (but constant) number of communities.

The stochastic blockmodel has been well-studied; for a summary, see the survey of Abbe (2017).
A problem of particular interest is that of exact recovery of the latent communities in a sparse
blockmodel. In this direction, information-theoretic limitations have been discovered and efficient
algorithms developed (Abbe and Sandon, 2015). It is known, for example, that exact recovery is
possible in the balanced 2-block model if the expected node degrees are super-logarithmic; when they
are logarithmic, recovery is possible for some choices of constant factors but not for others. Recently,
Vu (2014) analyzed an algorithm based on the SVD which recovers clusters exactly all the way down
to the log n degree barrier. We will use our perturbation results to analyze a related algorithm which
exactly recovers the communities of graphs with polylogarithmic degree. The main advantage of
our method is its simplicity; while our algorithm does not improve on that of Vu (2014) in terms
of performance, it is very natural and simple, and the guarantee of its correctness is the byproduct
of our general perturbation results. It is also easy to generalize our method to blockmodels with a
super-constant number of communities, or in which the block sizes scale at different rates.

1.2 Conventions and notation
We write [n] to denote the set {1, . . . , n}. If X(n) is a sequence of random variables indexed by
n, we say X = O(f(n)) with high probability (w.h.p.) if there exists a constant C such that
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P(|X(n)| ≤ Cf(n)) → 1 as n → ∞. We adopt the analogous definitions for the other asymptotic
notations, such as Θ(f(n)). We assume that eigenvectors have unit 2-norm.

2. Example: the stochastic blockmodel
Our perturbation results are sometimes rather technical when stated in their full generality. There-
fore, to aid in the exposition, we adopt in this section a setting in which our main results are simpler
to state. In particular, we assume the stochastic blockmodel – a popular random graph model with
community structure. We will show that, here, our results provide much finer control over the
perturbation of eigenvalues and eigenvectors as compared to Weyl’s theorem and the theorem of
Davis and Kahan. Additionally, we show that the proof of a simple and intuitive graph clustering
algorithm is an easy corollary of our stronger perturbation bounds. We stress that this section serves
as an example of how our theory is applied in a special case; its purpose is to provide the reader
with a flavor of our more technical general results. The main results of the paper are stated in their
full generality in Sections 3 and 4.

To begin, we formally define the K-block model:

Definition 1. An (n,K)-stochastic blockmodel is a pair (z, P ), where z : [n] → [K] is a surjective
map and P is a K × K symmetric matrix of rank K, with Pij ∈ [0, 1]. We call z the assignment
and P the inter-community edge probability matrix. The edge probability matrix M is the n × n
symmetric matrix with entries Mij = Pz(i),z(j).

To generate a graph G from a blockmodel we sample to obtain its symmetric adjacency matrix
A = AG, where the upper triangular entries (j ≥ i) are such that Aij ∼ Bernoulli(Mij) and the
lower triangular entries (j < i) are constrained to Aij = Aji. We view the random matrix A as a
perturbation of M by the symmetric random matrix H = A −M , so that A = M + H. In what
follows, let the eigenvectors and eigenvalues of M be u(1), . . . , u(n) and λ1 ≥ · · · ≥ λn; similarly, let
the eigenvectors and eigenvalues of A be ũ(1), . . . , ũ(n) and λ̃1 ≥ · · · ≥ λ̃n.

We will study sequences of blockmodels in which the expected node degree is permitted to
grow sublinearly in the size the network; this is the sparse régime. For simplicity, we assume that
every community has the same number of nodes, and that P is shared by all blockmodels in the
sequence up to a density scaling factor of ρ. More precisely, we will adopt the following setting:

Setting 1 (ρ-sparse balanced blockmodel). Let K ∈ N+ be a constant
and fix a K×K inter-community edge probability matrix P (0). Assume
for simplicity that each of the eigenvalues of P (0) is positive and unique.
Let ρ : N+ → (0, 1] be such that each entry of ρ(i) ·P (0) is in the interval
[0, 1] for all i ∈ N+, and ρ = Ω(1/n). For any m ∈ N+, let n = mK
and define P (m) = ρ(n) · P (0). Consider a sequence of blockmodels
((z(m), P (m)))∞m=1 in which z(m) : [n]→ [K] is an assignment of n nodes
into K communities such that each is of size m.

ρ Ω(1/n), O(1)
E|Hij |k O(ρ), k ≥ 1
∥H∥ O(

√
ρn)

λt Θ(ρn)
∥u(t)∥∞ Θ(1/

√
n)

Table 1: t ∈ [K]

The sequence of blockmodels has associated sequences of edge probability matrices M (m), random
adjacency A(m) matrices, and so forth. For conciseness, we often omit the sequence index. We also
remark that the assumptions on the eigenvalues of P (0) are made to simplify the exposition; the
following results will hold in general with minor modification.

The asymptotic behaviors of the important quantities of Setting 1 are collected in Table 1
for t ∈ [K]. The fact that E|Hij |k = O(ρ) for all k ≥ 1 follows from a simple calculation (see
Lemma 2 in Appendix A.1). The bound on ∥H∥ follows from a result in the theory of random
matrices (see Theorem 14 in Appendix D.1). The nonzero eigenvalues of M are the eigenval-
ues of P scaled by ρn, and hence λt = Θ(ρn) for any t ∈ [K]. Since the eigenvalues of P are
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Figure 1: Empirical eigenvalue perturbations.
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Figure 2: Empirical eigenvector perturbations.

Classical Ours (Thm. 3)

|λ̃t − λt| O(
√
ρn)† O(

√
log n)

λ̃t Θ(ρn)
sin∠(ũ(t), u(t)) O(1/√ρn)
∥ũ(t) − u(t)∥2 O(1/√ρn)

∥ũ(t) − u(t)∥∞ O(1/√ρn) O
(

logξ n
n
√
ρ

)
Table 2: t ∈ [K], † : t ∈ [n]

assumed to be distinct in Setting 1, a gap of size
Θ(ρn) is ensured between the non-zero eigenval-
ues of M . It can also be shown that an eigenvec-
tor u of M which corresponds to a nonzero eigen-
value is constant on each block; i.e., z(i) = z(j)⇒
ui = uj . Since each community has m members,
it follows from the normalization constraint that
∥u(t)∥∞ = Θ(1/

√
m) = Θ(1/

√
n).

The predictions of the classical matrix pertur-
bation theory as applied in this setting are col-
lected in Table 2: Weyl’s theorem bounds the eigenvalues and Davis-Kahan bounds the eigenvectors.
To assess the quality of these bounds, the perturbation in the top eigenvalue and eigenvector of a
sequence of growing blockmodels (K = 1, ρ = 1, P = 1/2) was measured; the results are shown in
Figures 1 and 2. In the case of eigenvalues, we see that the actual perturbation is much smaller than
Weyl’s bound of ∥H∥. For eigenvectors, the perturbation in 2-norm is close to the bound provided
by the Davis-Kahan theorem, but the perturbation in ∞-norm is much smaller than predicted. Our
general perturbation theory will explain both of these phenomena. In particular, our general results
will imply the following in the current setting:

Theorem 3 (Special case: the stochastic blockmodel). Assume Setting 1; i.e., the ρ-sparse balanced
stochastic blockmodel with K ≥ 1. Suppose that ρ = Ω(n−1 logϵ n) for some ϵ > 2. Let 1 < ξ < ϵ/2.
Then there exist constants C1, C2 such that for any blockmodel in the sequence and all t ∈ [K], with
high probability as n→∞:

|λt − λ̃t| ≤ C1

√
log n and ∥u(t) − ũ(t)∥∞ ≤

C2(log n)
ξ

n
√
ρ

.

Our bounds are compared to their classical counterparts in Table 2. In particular, assume
ρ = Θ(1): then the eigenvalue perturbation bound is improved from O(

√
n) to O(

√
log n), and the

eigenvector perturbation bound in∞-norm is improved from O(1/
√
n) to O(n−1 logξ n); both bounds

are substantially better. The proof of Theorem 3 will be given in two examples in later sections
which serve to demonstrate how our more general perturbation results can be applied to specific
settings. The eager reader can find the proof for eigenvalues in Section 3, Example 1 and the proof
for eigenvectors in Section 4, Example 2.

2.1 A simple, consistent clustering algorithm
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Algorithm 1 Blockmodel clustering
Require: Adjacency matrix A, τ ∈ R+, K ∈ N+

λ̃s1 , . . . , λ̃sK ← top K eigvals of A by magnitude
ũ(s1), . . . , ũ(sK) ← corresponding eigvecs of A
M̂ ←

∑K
i=1 λ̃si ũ

(si) ⊗ ũ(si)

E ← {(i, j) : ∥M̂i − M̂j∥∞ < τ}
G← graph with node set [n], edge set E
return connected components of G

We will now show that the consistency
of a simple graph clustering algorithm is a
simple corollary of our Theorem 3. The fact
that the eigenvectors of the blockmodel can
be recovered to such precision motivates Al-
gorithm 1. The algorithm first computes a
rank-K approximation M̂ of M using the
top K eigenvectors of A ordered by the mag-
nitude of their eigenvalues. It then clus-
ters together all columns which are within
a threshold τ in ∞-norm.

Intuitively, the correctness of this algorithm relies on M̂ being close toM entrywise. A sufficiently-
tight bound on ∥M̂ −M∥max can indeed be obtained by applying a recent result from the low-rank
matrix completion literature to the current setting; in particular, see Lemma 2 of Jain and Netrapalli
(2015). In fact, roughly the same bound can be recovered as an easy corollary of our Theorem 3. In
particular, we obtain the following result, whose proof is located in Appendix A.2:

Corollary 1. Suppose that the assumptions of Theorem 3 hold. Define M̂ as in Algorithm 1. Then
∥M̂ −M∥max = O(

√
ρ/n · logξ n) with high probability.

The consistency of the algorithm follows easily; the formal statement of the result and its proof
are located in Appendix A.3.

It was remarked by Vu (2014) that Algorithm 1 is very natural, but difficult to analyze. Indeed,
while the Davis-Kahan theorem provides a useful bound on ∥M̂−M∥F , it implies only a trivial bound
on ∥M̂ −M∥max; for details, see Appendix A.4. In contrast, we are able to obtain a sufficiently-
strong bound on ∥M̂ −M∥max by controlling the entrywise perturbation of eigenvectors much more
tightly than what is implied by the Davis-Kahan theorem.

3. Eigenvalue perturbation
In this section we derive an eigenvalue perturbation bound that is stated in terms of the interaction
between the perturbation matrix H and the eigenvectors of the base matrix M . We will see that
in many cases, particularly when H is random, this bound is much tighter than Weyl’s. The
perturbation for eigenvectors is much more sophisticated to analyze, and will be given in Section 4.

To see how incorporating the interaction between H and the eigenvectors of M may lead to
improved bounds, consider the following informal analysis of the perturbation in the first eigenvalue.
As usual, let M and H be n × n and symmetric. The eigenvalues and eigenvectors of M are
λ1 ≥ · · · ≥ λn and u(1), . . . , u(n), and the eigenvalues/vectors of M + H are λ̃1 ≥ · · · ≥ λ̃n and
ũ(1), . . . , ũ(n). We have λ1 = ⟨u(1),Mu(1)⟩ and λ̃1 = ⟨ũ(1), (M +H) ũ(1)⟩. Intuitively, if ũ(1) is close
to u(1) then λ̃1 ≈ ⟨u(1), (M+H)u(1)⟩; hence λ̃1−λ1 ≈ ⟨u(1),Hu(1)⟩. In the worst case |⟨u(1),Hu(1)⟩|
can be as large as ∥H∥ and we recover Weyl’s bound. However, |⟨u(1),Hu(1)⟩| could be much smaller
than ∥H∥. For example, suppose that the entries of H are independent random variables with
standard Gaussian distribution. Then ⟨u(1),Hu(1)⟩ is the sum of centered and independent random
variables and therefore concentrates around zero. In this case the spectral norm of H is O(

√
n) while

|⟨u(1),Hu(1)⟩| is much smaller at O(
√
log n); this leads to an O(

√
log n) bound on the eigenvalue

perturbation instead of Weyl’s bound of O(
√
n).

We now formalize this argument. We use the following well-known characterization of eigenvalues.

Theorem 4 (Courant-Fischer-Weyl min-max/max-min principles Horn and Johnson (2012)). Let
B be an n × n symmetric matrix with eigenvalues µ1 ≥ . . . ≥ µt ≥ . . . µn. For any d ∈ {1, . . . , n},
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write Vd for the set of d-dimensional subspaces of Rn. Then

µt = min
V ∈Vn−t+1

max
x∈V
∥x∥=1

⟨x,Bx⟩ = max
V ∈Vt

min
x∈V
∥x∥=1

⟨x,Bx⟩ .

We will use the max-min principle to get a lower bound on the perturbed eigenvalue and the
min-max principle to obtain an upper bound. We prove the lower bound here to provide intuition:

Theorem 5 (Eigenvalue lower bound). Let T ∈ [n] and h be such that |⟨x,Hx⟩| ≤ h for all
x ∈ Span ({u(1), . . . , u(T )}). Then λ̃t ≥ λt − h for all t ≤ T .

Proof. The max-min principle tells us that

λ̃t = max
V ∈Vt

min
x∈V
∥x∥=1

⟨x, (M +H)x⟩ .

Let V ∗ = Span ({u(1), . . . , u(T )}). Then the above is lower-bounded by:

min
x∈V ∗

∥x∥=1

⟨x, (M +H)x⟩ ≥ min
x∈V ∗

∥x∥=1

⟨x,Mx⟩ − max
x∈V ∗

∥x∥=1

⟨x,Hx⟩ .

The first term is minimized by taking x = u(t), such that ⟨x,Mx⟩ =
⟨
u(t),Mu(t)

⟩
= λt. The

magnitude of the second term is bounded by h.

The proof of the following upper bound is more involved and is therefore located in Appendix B.1.

Theorem 6 (Eigenvalue upper bound). Let T ∈ [n] and h be such that |⟨x,Hx⟩| ≤ h for all
x ∈ Span ({u(1), . . . , u(T )}). Let t ≤ T and suppose that λt − λT+1 > 2∥H∥ − h. Then:

λ̃t ≤ λt + h+
∥H∥2

λt − λT+1 + h− ∥H∥
.

Similar lower and upper bounds can be obtained for eigenvalues at the bottom of the spectrum
by negating M and H. For ease of reference, the statement of that result is located in Appendix B.2.

3.1 Interactions with random perturbations
Theorems 5 and 6 show that a tighter bound on eigenvalue perturbations can be obtained when
|⟨x,Hx⟩| ≪ ∥H∥ for any x in a subspace spanned by the top (or bottom) eigenvectors of M . We
now show that this is often the case when H is random. The following is an application of the usual
Hoeffding inequality; the proof is located in Appendix D.2.

Lemma 1. Let u, v be any two fixed unit vectors in Rn. Let H be an n × n symmetric random
matrix with independent entries along the upper-triangle such that for all j ≥ i, EHij = 0 and Hij

is sub-Gaussian with parameter σij ≤ σ. Then P(|⟨u,Hv⟩| ≥ γ) ≤ 2 exp{−γ2/(8σ2)}.

Lemma 1 applies generally to many types of random perturbation, including Gaussian noise and
Bernoulli noise, as well as the random graph noise encountered in the stochastic blockmodel example
in Section 2. We typically integrate the lemma with Theorems 5 and 6 in the following way: We first
partition the spectrum into a top (large positive) and the remainder (small positive and negative)
by choosing T ∈ [n] such that λT ≫ λT+1. We then apply Lemma 1 to argue that |⟨u(i),Hu(j)⟩| is
small (≤ h) with high probability for any indices i, j ≤ T . It follows that |⟨x,Hx⟩| ≤ Th for any
unit vector x lying within the span of the top T eigenvectors of M ; see Lemma 5 in Appendix D.3
for a proof. To bound the negative eigenvalues we negate M and H and repeat the above process.
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Example 1: Proof of eigenvalue perturbation bound stated in Theorem 3. To demonstrate
the application of our eigenvalue perturbation results, we will prove that in the blockmodel setting
assumed in Theorem 3, |λ̃t − λt| ≤ C

√
log n for t ∈ [K]. We begin by applying Lemma 1. Since

λK+1, . . . , λn are zero, we naturally choose T = K such that λT − λT+1 = λT = Θ(ρn). Each
entry along the diagonal and in the upper triangle of H is bounded and hence sub-Gaussian with
a variance parameter upper-bounded by some constant σ. Choosing γ =

√
C log n in Lemma 1, we

find that |⟨u(i),Hu(j)⟩| ≤
√
C log n for all i, j ≤ T w.h.p. Thus |⟨x,Hx⟩| ≤ T

√
C log n = O(

√
log n)

for all x ∈ Span({u(s) : s ≤ T}). We therefore bound h by O(
√
log n) w.h.p. in Theorems 5 and 6.

In Theorem 3 it was assumed that ρ = Ω(n−1 log2 n) = ω(n−1 log n). It follows from this and the
results in Table 1 that λt + h− ∥H∥ is dominated by λt, and is therefore Θ(ρn). Hence the second
term in Theorem 6 is O(∥H∥2

/λt) = O(1), and both the upper and lower bounds are dominated by
h = O(

√
log n).

4. Eigenvector perturbation
We now study how a tigher bound on eigenvector perturbations might be achieved by analyzing
the interaction between H and eigenvectors of M . Proofs of results in this section are rather
technical and mostly in appendices. To build intuition, we make a series of simplifying assump-
tions; our formal theory will be much more general. First suppose that all eigenvalues of M are
non-negative and that λ1 ≫ λ2. By writing ũ(1) as αu(1) + βu⊥ for some unit vector u⊥ orthog-
onal to u(1) and using the definition of an eigenvector, we obtain: ũ(1) = λ̃−1

1 (M +H) ũ(1) =
λ̃−1
1

(
αλ1u

(1) + βMu⊥ + αHu(1) + βHu⊥
)
. Note that ∥Mu⊥∥2 ≤ ∥Mu(2)∥2 = λ2 ≪ λ1. If λ2 is

sufficiently small, the contribution of βMu⊥ to ũ(1) is negligible. Assume that this is so, that
λ̃1 ≈ λ1, and that α ≈ 1 such that β ≪ 1. Then u(1) − ũ(1) ≈ λ−1

1 (Hu(1) + βHu⊥). Therefore we
see that to bound the norm of the perturbation it suffices to control the norms of Hu(1) and Hu⊥.

The classical approach is to bound these quantities by the spectral norm of H. For instance,
to derive a bound in 2-norm we observe that ∥Hu(1)∥2 ≤ ∥H∥ and that ∥βHu⊥∥2 ≤ ∥βH∥, and
therefore ∥ũ(1) − u(1)∥2 ≲ λ−1

1 ∥H∥. Furthermore, since the 2-norm upper-bounds the ∞-norm, we
get a bound of ∥ũ(1) − u(1)∥∞ ≲ λ−1

1 ∥H∥ “for free”. However, the spectral norm does not utilize
information about the interaction between H and M . Our hope is that by analyzing this interaction,
tighter bounds on the norms of Hu(1) and Hu⊥ might be obtained.

In particular, consider a random, centered H and u(1) (which is independent of H). Unfor-
tunately, ∥Hu(1)∥2 is typically on the same order as ∥H∥ and analyzing the interaction does not
improve the bound. On the other hand, ∥Hu(1)∥∞ is often much smaller than ∥H∥ and analyzing the
interaction leads to much tighter bounds. To see why, note that ∥Hu(1)∥22 =

∑n
i=1(

∑n
j=1Hiju

(1)
j )2.

As the summand of the outer sum is squared and thus non-negative, it does not concentrate around
zero. In contrast, the sum in |[Hu(1)]i| = |

∑n
j=1Hiju

(1)
j | does concentrate around zero, and is often

much less than the worst-case bound of ∥H∥. For example, if H is the random Gaussian matrix
described above then [Hu(1)]i is on the order of one, and a union bound over the n entries results
in a high-probability bound of ∥Hu(1)∥∞ ≤

√
log n. On the other hand, ∥H∥ = O(

√
n).

In this case and in others, ∥Hu(1)∥∞ can be bounded to be much smaller than ∥H∥. Can a
similar analysis be used to show that ∥Hu⊥∥∞ is much smaller than ∥H∥? It turns out that this is
difficult for a subtle reason: while u(1) is fixed, u⊥ depends on the perturbation. When H is random,
u⊥ is also random and statistically dependent on H. As such, the interaction between H and u⊥

is often difficult to analyze, and we must resort to using the worst-case bound of ∥Hu⊥∥∞ ≤ ∥H∥,
giving:

∥u(1) − ũ(1)∥∞ ≲ λ̃−1
(
∥Hu(1)∥∞ + ∥βH∥

)
. (1)

In many cases ∥βH∥ is small enough that it is dominated by our bound on ∥Hu(1)∥∞ and we have
∥u(1) − ũ(1)∥∞ ≲ λ̃−1∥Hu(1)∥∞. For example, it can be shown that in the sparse stochastic block-

8



model described in Setting 1, ∥Hu(1)∥∞ = O(
√
ρ log n) w.h.p., while ∥βH∥ = O(1). Therefore, if

ρ = Ω(1/logn), the bound on ∥Hu(1)∥∞ dominates and we have ∥ũ(1)−u(1)∥∞ = O(ρ−1/2 n−1
√
log n).

Comparing this to the trivial bound of O(1/√ρn) implied by Davis-Kahan, we see that analyzing the
interaction leads to a Õ(1/

√
n) improvement over the classical theory.

4.1 The Neumann trick
There are important settings, however, in which using the spectral norm to bound Hu⊥ is sub-
optimal; for instance, in the blockmodel described above when ρ = o(1/logn) In this sparser régime,
∥βH∥ = O(1) dominates our bound on ∥Hu(1)∥∞ and we find that ∥ũ(1) − u(1)∥∞ = O(1/λ̃1) =
O(1/ρn), which is not tight. In general, if ∥Hu(1)∥∞ can be bounded to be much smaller than ∥βH∥,
the latter term dominates Equation (1). Therefore, while the simple approach described in the
previous section improves upon the classical bound, the presence of the hard-to-control Hu⊥ limits
its effectiveness.

It turns out that we can often obtain a better bound by applying what we call the Neumann trick,
which we now describe for ũ(1). From the definition of an eigenvector, we have (M+H)ũ(1) = λ̃1ũ

(1),
which implies (λ̃1−H)ũ(1) =Mũ(1). If λ̃1 is not an eigenvalue of H we may invert (λ̃1−H) to obtain
ũ(1) = λ̃−1

1 (I −H/λ̃1)−1Mũ(1). Expanding the inverse in a Neumann series and decomposing ũ(1)
as above, we find: ũ(1) = λ̃−1

1

∑
p≥0 (

H/λ̃1)
p [
αλ1u

(1) + βMu⊥
]
. Assuming that α ≈ 1 and λ1 ≈ λ̃1,

we have:

u(1) − ũ(1) ≈

∑
p≥1

(H/λ̃1)
p
u(1)

+

 β
λ̃1

∑
p≥0

(H/λ̃1)
p
Mu⊥

 . (2)

If the series involving u⊥ converges, it is dominated by its first term: Mu⊥. Since u⊥ lies in the
subspace orthogonal to u(1), ∥Mu⊥∥2 is upper-bounded by λ2, and hence so is ∥Mu⊥∥∞. Hence:

∥u(1) − ũ(1)∥∞ ≲

∥∥∥∥∥∥
∑
p≥1

(H/λ̃1)
p
u(1)

∥∥∥∥∥∥
∞

+
|β|λ2
λ̃1

. (3)

Thus the contribution of u⊥ is bounded here by λ̃−1
1 |β|λ2. Comparing this to the previous result of

Equation (1) in which the contribution of u⊥ was bounded by λ̃−1
1 |β|·∥H∥, we see that the Neumann

trick permits us to replace ∥H∥ with the top eigenvalue corresponding to the subspace orthogonal
to u(1). The tradeoff is that we must now analyze the interaction between all powers of H and u(1)

in order to bound the first term in Equation (3).
The Neumann trick allows us to tighten the eigenvector perturbation bound in the sparse stochas-

tic blockmodel discussed above. We have seen that the first approach of Equation (1) leads to a bound
of ∥ũ(1) − u(1)∥∞ = O(1/ρn) when ρ = o(1/logn). Now if we use Neumann trick, we can show that
the norm of the series in Equation (3) is O(logξ n/(

√
ρn)), where ξ > 1. Assume the blockmodel has

only one block (for multiple blocks we will use the more general results in Theorem 7). Then λ2 = 0
and the second term in Equation (3) disappears. We thus have ∥ũ(1) − u(1)∥∞ = O(logξ n/(

√
ρn)),

which significantly outperforms O(1/ρn) in this sparse régime (where ρ = o(1/ log n)).
We now formally state the general Neumann trick. See Appendix C.1 for the proof.

Theorem 7 (Neumann trick). Fix a t ∈ [n]. Suppose that ∥H∥ < |λ̃t|. Then:

ũ(t) =

n∑
s=1

λs

λ̃t
·
⟨
ũ(t), u(s)

⟩∑
p≥0

(
H

λ̃t

)p

u(s).

Observe that the contribution of u(s) is filtered by its eigenvalue, λs. In the special case when
M is rank-K, ũ(t) is expressed totally in terms of u(1), . . . , u(K). The Neumann trick can be used in
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combination with Weyl’s theorem and the Davis-Kahan theorem to obtain a tighter bound on the
elementwise perturbation of eigenvectors.

The following theorem states the result in its full generality, where M may be full-rank with
non-distinct eigenvalues. Its proof in Appendix C.4 is a corollary of Theorem 12 in Appendix C.2.
Let uα denote the α-th entry of vector u.

Theorem 8. For any s ∈ [n], let Λs = {i : λi = λs}. Define ds = |Λs|, and let the gap be defined
as δs = mini ̸∈Λs

|λs − λi|. For any s, t ∈ [n], let ∆−1
s,t = min{di/δi}i∈{s,t}. Define λ∗s = |λs| − ∥H∥.

There exists an orthonormal set of eigenvectors u(1), . . . , u(n) satisfying Mu(s) = λsu
(s) such that

for all t ∈ [n]:

∣∣∣ũ(t)α − u(t)α

∣∣∣ ≤ ∣∣∣u(t)α

∣∣∣ ·(8dt [∥H∥
δt

]2
+
∥H∥
λ∗t

)
+

(
|λt|
λ∗t

)2

· ζα(u(t);H,λt)

+
2
√
2 · ∥H∥
λ∗t

∑
s̸=t

|λs|
∆s,t

[
|u(s)α |+

|λt|
λ∗t
· ζα(u(s);H,λt)

]
, (4)

where ζ(u;H,λ) is the n-vector whose αth entry is defined to be ζα(u;H,λ) =
∣∣∣[∑p≥1

(
H
λ

)p
u
]
α

∣∣∣.
4.2 Interactions with random perturbations
The interaction between the eigenvectors of M and the perturbation H appears in Theorem 8
through ζ; in many applications ζ will dominate the bound. It turns out that when H is random
and the eigenvectors of M have small ∞-norm, ζ is also small. The following result makes this
precise. See Appendix E.3 for the proof.

Theorem 9. Let H be an n × n symmetric random matrix with independent entries along the
diagonal and upper triangle satisfying EHij = 0. Suppose γ is such that E|Hij/γ|p ≤ 1/n for all
p ≥ 2. Choose ξ > 1 and κ ∈ (0, 1). Let λ ∈ R and suppose that γ < λ(log n)ξ and λ > ∥H∥. Fix
u ∈ Rn. Then: with probability 1− n− 1

4 (logb n)ξ−1(logb e)−ξ+1, where b =
(
κ+1
2

)−1.∥∥∥∥∥∥
∑
p≥1

(
H

λ

)p

u

∥∥∥∥∥∥
∞

≤ γ(log n)ξ

λ− γ(log n)ξ
· ∥u∥∞ +

∥H/λ∥⌊κ
8 (logn)ξ+1⌋

1− ∥H/λ∥
· ∥u∥2. (5)

As an example, we apply Theorem 9 to bound the perturbation of eigenvectors in the stochastic
blockmodel.

Example 2: Proof of eigenvector perturbation bound stated in Theorem 3. Consider again
the setting of Theorem 3. We will use Theorems 8 and 9 to derive the bound of ∥u(t) − ũ(t)∥∞ =
O(ρ−1/2 n−1 logξ n) w.h.p. for all t ∈ [K].

First note that all but K − 1 terms of the sum in Equation (4) vanish due to λs being zero;
only the terms corresponding to s ∈ [K] remain. Fix a t ∈ [n]. Referring to Table 1, we find that:
∥H∥ = O(

√
ρn), λ∗t = Θ(ρn), δt = Θ(ρn), and ∥u(s)∥∞ = Θ(1/

√
n) for any s ∈ [K]. Substituting

these bounds into Equation (4) and assuming that Z is an upper bound for ∥ζ(u(s);H,λt)∥∞ for
all s ∈ [K], we see that the first term in Theorem 8 is O(n−1ρ−1/2), the second term is O(Z) and
the third term is O(n−1ρ−1/2 + (ρn)−1/2Z). Therefore ∥u(t) − ũ(t)∥∞ = O(n−1ρ−1/2 + Z) with high
probability.

We now bound Z. Consulting Table 1, we see that E|Hij |k = O(ρ) for all k ≥ 1. Therefore, for a
constant C sufficiently large, setting γ = C

√
ρn results in E|Hij/γ|k ≤ 1/n for all k ≥ 2 w.h.p. Since

ρ = ω(n−1 logϵ n) and ϵ > 2ξ by the assumptions of Theorem 3, λt − γ(log n)ξ is dominated by λt
and so the first term in Equation (5) is O(λ−1

t γ · ∥u(s)∥∞ · logξ n) = O(logξ n/(
√
ρn)). Next, we have
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∥H/λt∥ = O(1/√ρn) w.h.p. Since κ and ξ are fixed constants, the exponent κ
8 logξ n is unbounded

as n→∞ and hence the second term is dominated by the first. Using this result as Z, we find that
∥u(t) − ũ(t)∥∞ = O(logξ n/(

√
ρn)) w.h.p.

5. Conclusion
In this paper, we have seen that the classical perturbation theories of Weyl (1912) and Davis and
Kahan (1969) are substantially improved by incorporating information about the interaction between
the perturbation and the structure. Considering such interactions has been a fruitful line of recent
research into spectral perturbation theory (Fan et al., 2016; Vu, 2010; O’Rourke et al., 2013; Jain
and Netrapalli, 2015), however, it is typically assumed that the structure matrix is of low-rank and
the noise is random. In contrast, our results hold for structure matrices of full rank and for arbitrary
perturbations.

Still, we feel that the story of spectral perturbation theory is incomplete. First, it is not clear that
improved eigenvector bounds should only be achieved when the structure is low-rank (or approxi-
mately so); numerical experiments indeed show that random perturbations change the eigenvectors
of a full-rank matrix by much less than the bound provided by Davis-Kahan would suggest. We
posit that the low-rank setting commonly assumed in the literature is merely a tractable special case
of a more general phenomenon which is yet to be explained.

Second, we seek to better understand the connection between the perturbation of eigenvalues
and the perturbation of eigenvectors; this connection plays a central role in the classical theory. For
instance, a useful application of the Davis-Kahan theorem requires that the eigengap is bounded
away from zero – this means that the perturbation in eigenvalues must not be too large compared
to the gap between them. Given the ubiquity of the Davis-Kahan theorem, it is easy, perhaps, to
conclude that recovery of the eigenvectors is impossible if the eigenvalue perturbation is too large.
But this is clearly not true, as the spectral theorem tells us that any polynomial of a diagonalizable
matrix leaves eigenvectors unchanged, while potentially greatly perturbing eigenvalues. In general,
the connection between eigenvalue perturbations and eigenvector perturbations depends upon the
nature of the perturbation itself. We conjecture that random perturbations are one instance in
which eigenvector perturbations are less sensitive to eigenvalue perturbations than the classical
theory suggests. If this is indeed the case, it would seem that the eigenvectors of the unperturbed
matrix are possible to recover even when the eigengap is much smaller than that required by Davis-
Kahan. This would potentially make spectral analysis feasible for problems in statistics and machine
learning for which Davis-Kahan provides no meaningful bound.
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Appendix A. Regarding the stochastic blockmodel
A.1 On the entries of H
Lemma 2. For any k ≥ 1, E|Hij |k = O(ρ).

Proof. Recall that we define H = A −M , and hence Hij = Aij −Mij . Aij is 1 with probability
Mij , and 0 with probability 1−Mij . Therefore:

Hij =

{
1−Mij , with probability Mij ,

−Mij , with probability 1−Mij .

Therefore:

E|Hij |k = (1−Mij)
k ·Mij + (Mij)

k · (1−Mij).

Recall that Mij = ρ · P (0)
z(i),z(j), where z is the assignment map from nodes to communities. In

Setting 1, is assumed that each entry of ρ ·P (0) is in the unit interval; therefore, 0 ≤Mij ≤ 1. Hence
0 ≤ (1−Mij)

k ≤ 1 for all k ≥ 0, and we have:

≤Mij + (Mij)
k.

Suppose k ≥ 1. Then since 0 ≤Mij ≤ 1, we have (Mij)
k ≤Mij . Hence:

≤ 2Mij .

Since Mij = ρ · P (0)
z(i),z(j), and P (0) is a fixed matrix with constant entries, Mij = Θ(ρ). Therefore:

= O(ρ).

A.2 Proof of Corollary 1
We now prove the following result which was originally stated in Section 2:

Corollary 1. Suppose that the assumptions of Theorem 3 hold. Define M̂ as in Algorithm 1. Then
∥M̂ −M∥max = O(

√
ρ/n · logξ n) with high probability.

Proof. Recall that we define M̂ to be the rank-K approximation of M using the top K eigenvectors
of A in magnitude. Let s1, . . . , sK be such that |λs1 | ≥ |λs2 | ≥ · · · ≥ |λsK | are the top K eigenvalues
of M in absolute value. We first argue that |λ̃s1 | ≥ |λ̃s2 | ≥ · · · ≥ |λ̃sK | are the top eigenvalues of A in
absolute value with high probability as n→∞. This follows from a simple eigenvalue perturbation
argument: By Weyl’s theorem, for any t ∈ [n], |λ̃t − λt| ≤ ∥H∥ = O(

√
ρn). As a result, if λt = 0

then λ̃t = O(
√
ρn). Since λ̃s1 , . . . , λ̃sK are Θ(ρn), there is a gap of size Θ(ρn) w.h.p., between them

and the remaining eigenvalues of A, and therefore the top K eigenvalues of A are as claimed.
Therefore, we assume that the top K eigenvalues of A in absolute value are λ̃s1 , . . . , λ̃sK . Then:

M̂ =

K∑
k=1

λ̃sk ũ
(sk) ⊗ ũ(sk),

where ũ(sk) ⊗ ũ(sk) is the outer product of these two vectors. Since M is rank K, we have

M =

K∑
k=1

λsku
(sk) ⊗ u(sk).
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As a result, we have

Mij =

K∑
k=1

λsku
(sk)
i u

(sk)
j , M̂ij =

K∑
k=1

λ̃sk ũ
(sk)
i ũ

(sk)
j .

For any t ∈ {s1, . . . , sK}, define ∆(t) = ũ(t) − u(t) and let ϵt = λ̃t − λt. Then ũ(t) = u(t) +∆(t) and
λ̃t = λt + ϵt. Hence:

M̂ij =

K∑
k=1

(λsk + ϵsk)(u
(sk)
i +∆

(sk)
i )(u

(sk)
j +∆

(sk)
j ).

From Theorem 3, we have that |∆(t)
i | ≤ Cρ−1/2n−1 logξ n simultaneously for all t ∈ {s1, . . . , sK}

and i ∈ [n] with high probability. Furthermore, consulting Table 1 shows that |u(t)i | = Θ(1/
√
n).

Combining this with Weyl’s bound of ϵt ≤ ∥H∥ = O(
√
ρn), it is easy to see that:

M̂ij =Mij +O

(
K∑

k=1

λsku
(sk)
i ∆

(sk)
j

)
,

=Mij +O

(
K · ρn · 1√

n
· log

ξ n

n
√
ρ

)
,

=Mij +O

(√
ρ

n
logξ n

)
.

A.3 Proof of Algorithm 1’s consistency
We now prove the consistency of Algorithm 1.

Theorem 10 (Consistency of Algorithm 1). Suppose that the assumptions of Theorem 3 hold. Let
τ = ω(

√
ρ/n · logξ n) and τ = o(ρ). Define Γ = {z−1(k)}Kk=1 to be the partition of [n] into the ground-

truth communities, and let Γ̂ be the clustering returned by Algorithm 1 with inputs A, τ = τ(n), and
K. Then P(communities recovered exactly) = P(Γ = Γ̂)→ 1 as n→∞.

Proof. We will use Corollary 1 to show that, with high probability as n → ∞, for all pairs of
graph nodes i and j simultaneously, i and j belong to the same latent community if and only if
∥Mi −Mj∥∞ < τ .

Recall that we write z(i) to denote the latent community label of node i. Define:

∆ = min
i,j

z(i)̸=z(j)

∥Mi −Mj∥∞.

Since Mij = ρ · P (0)
z(i),z(j) we have:

∆ = ρ · min
k ̸=k′
∥P (0)

k − P (0)
k′ ∥∞ = Θ(ρ).

Thus there exists a constant C (depending on P (0)) such that for all blockmodels in the sequence, if
i and j belong to different communities, then ∥Mi −Mj∥∞ ≥ Cρ. Therefore we are able to recover
the communities exactly if M is known.
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Observe that:

∥M̂i − M̂j∥∞ = ∥Mi + (M̂i −Mi)−Mj − (M̂j −Mj)∥∞,
= ∥(Mi −Mj) + (M̂i −Mi)− (M̂j −Mj)∥∞.

As a result, ∣∣∣∥Mi −Mj∥∞ − ∥M̂i − M̂j∥∞
∣∣∣ ≤ ∥M̂i −Mi∥∞ + ∥M̂j −Mj∥∞,

= O

(√
ρ

n
· logξ n

)
,

where we have substituted the result of Corollary 1. Since ξ < ϵ/2 by assumption, we have that

logξ n√
n

= o

(√
logϵ n

n

)
= o(
√
ρ),

where in the last step we used the assumption that ρ = ω(n−1 logϵ n). Therefore
√

ρ/n · logξ n = o(ρ).
In particular, if i and j belong to different communities then

∥M̂i − M̂j∥∞ ≥ Cρ−O
(√

ρ

n
· logξ n

)
= Ω(ρ).

Hence if τ = o(ρ), ∥M̂i − M̂j∥∞ > τ w.h.p. and thus i and j will be clustered into different
communities by Algorithm 1 with high probability as n→∞.

On the other hand, suppose that i and j belong to the same community. Then, as shown above,
∥M̂i − M̂j∥∞ = O(

√
ρ/n · logξ n). Therefore, if τ = ω(

√
ρ/n · logξ n), ∥M̂i − M̂j∥∞ ≤ τ with high

probability as n→∞, and therefore i and j are clustered together.

A.4 A remark on the classical theory
It was remarked above that the Davis-Kahan theorem provides only a trivial bound on ∥M̂−M∥max.
We now expand on this remark.

We have seen that in the context of the sparse stochastic blockmodel (i.e., Setting 1) the classical
bound on the perturbation of the top K eigenvectors in 2-norm is Θ(1/√ρn); see Table 2 and the
discussion in Theorem 3 for reference. We now argue that this implies a bound of

∥M̂ −M∥F =

√∑
i,j

(M̂ij −Mij)2 = O(
√
ρn).

Recall that we have assumed for simplicity that the eigenvalues of M are non-negative. Then the
top K eigenvalues of M in absolute value are simple λ1, . . . , λK , and:

M =

K∑
k=1

λku
(k) ⊗ u(k).

Assume that the top K eigenvalues of A are the largest in magnitude – as argued above, this will
be true with high probability as n→∞. Then the rank K approximation of M is:

M̂ =

K∑
k=1

λ̃kũ
(k) ⊗ ũ(k).
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Consider the tth eigenvalue and eigenvector for t ∈ [K]; the following argument will hold for the
remaining of the top K eigenvalues since they are of the same order. Write λ̃t = λt + ϵt. We have:

∥λtu(t) ⊗ u(t) − λ̃tũ(t) ⊗ ũ(t)∥F = ∥λtu(t) ⊗ u(t) − (λt + ϵt)ũ
(t) ⊗ ũ(t)∥F ,

≤ λt∥u(t) ⊗ u(t) − ũ(t) ⊗ ũ(t)∥F︸ ︷︷ ︸
A

+ |ϵt| · ∥ũ(t) ⊗ ũ(t)∥F︸ ︷︷ ︸
B

,

Weyl’s theorem gives a bound of |ϵt| ≤ ∥H∥ = O(
√
ρn). Since ũ(t) is a unit vector, ∥ũ(t)⊗ũ(t)∥F ≤

1, and so B = O(
√
ρn).

We now bound A. Let ∆ = ũ(t) − u(t). We have:

∥u(t) ⊗ u(t) − ũ(t) ⊗ ũ(t)∥F = ∥u(t) ⊗ u(t) − (u(t) +∆)⊗ (u(t) +∆)∥F ,
≤ ∥u(t) ⊗∆∥F + ∥∆⊗ u(t)∥F + ∥∆⊗∆∥F .

Using the submultiplicative property of the Frobenius norm, we bound each of these terms by
∥∆∥F = ∥∆∥2 = O(1/√ρn). Then, since λt = Θ(ρn), we have a bound on A and also ∥M̂ −M∥F of
O(
√
ρn).

Such a bound is not sufficient to cluster the columns of M̂ in a way that recovers the correct
clustering exactly with high probability. For instance, suppose that i and j belong to different
clusters. Let M̂ be the matrix which is identical to M , except that column and row i is made
to look exactly like column j. It is easy to see that M̂ differs from M in O(n) entries, and each
difference has magnitude ρ. Therefore, ∥M̂ −M∥F = O(

√
ρn). But by construction it is impossible

to distinguish i from j using M̂ . On the other hand, our bound on ∥M̂ −M∥max is sufficient, as
shown in the proof of Theorem 10 above.

Appendix B. Eigenvalue perturbation proofs
B.1 Proof of Theorem 6
Theorem 6 (Eigenvalue upper bound). Let T ∈ [n] and h be such that |⟨x,Hx⟩| ≤ h for all
x ∈ Span ({u(1), . . . , u(T )}). Let t ≤ T and suppose that λt − λT+1 > 2∥H∥ − h. Then:

λ̃t ≤ λt + h+
∥H∥2

λt − λT+1 + h− ∥H∥
.

Proof. The min-max priciple says

λ̃t = min
S∈Sn−t+1

max
x∈S

∥x∥=1

x⊺(M +H)x,

where Sn−t+1 is the set of all subspaces of Rn of dimension n− t+1. In particular, fix the subspace
to be St:n = Span({u(t), . . . , u(n)}) such that

≤ max
x∈St:n

x⊺(M +H)x.

We may write any unit vector x ∈ St:n as αu + βu⊥ for some unit vector u ∈ St:T and some unit
vector u⊥ ∈ ST+1:n, with the constraint α2+β2 = 1. As such, the above maximization is equivalent
to:

= max
α,β

α2+β2=1

max
u∈St:T

max
u⊥∈ST+1:n

(αu+ βu⊥)
⊺(M +H)(αu+ βu⊥).
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Expanding the quadratic form:

= max
α,β

α2+β2=1

max
u∈St:T

max
u⊥∈ST+1:n

{
α2u⊺Mu+ α2u⊺Hu

+((((((hhhhhh2αβu⊺Mu⊥ + 2αβu⊺Hu⊥

+ β2u⊺⊥Mu⊥ + β2u⊺⊥Hu⊥}
.

The u⊺Mu⊥ term drops, since Mu⊥ ∈ ST+1:n, and this subspace is orthogonal to St:T , of which u
is a member. We bound the remaining terms individually. First, u⊺Mu is at most λt, since u is
restricted to St:T . We then bound u⊺Hu ≤ h using the assumption. Both u⊺Hu⊥ and u⊺⊥Hu⊥ can
be at most ∥H∥. Lastly, u⊺⊥Mu⊥ can be at most λT+1, since u⊥ ∈ ST+1:n. Collecting these upper
bounds, we have:

≤ max
α,β

α2+β2=1

{
α2λt + α2h+ 2αβ∥H∥+ β2λT+1 + β2∥H∥

}
.

Now, αβ∥H∥ ≤ |β|∥H∥ due to the constraint α2 + β2 = 1. As such, the above is bounded by:

≤ max
0≤β≤1

{
(1− β2)λt + (1− β2)h+ 2β∥H∥+ β2λT+1 + β2∥H∥

}
,

= λt + h+ max
0≤β≤1

{
β2 (λT+1 − λt − h+ ∥H∥) + 2β∥H∥︸ ︷︷ ︸

g(β)

}
,

= λt + h+ max
0≤β≤1

g(β).

Thus we bound λ̃t by maximizing g(β) subject to β ∈ [0, 1]. The derivative is:

g′(β) = 2β (λT+1 − λt − h+ ∥H∥) + 2∥H∥.

Solving g′(β∗) = 0 for β∗, we have:

β∗ =
∥H∥

λt − λT+1 + h− ∥H∥
.

Note that β∗ ∈ [0, 1] as a consequence of the assumption λt−λT+1 > 2∥H∥−h. Lastly, substituting
this maximizing value into g(β), we obtain:

λ̃t ≤ λt + h+ g(β∗),

≤ λt + h− ∥H∥2

λt − λT+1 + h− ∥H∥
+

2∥H∥2

λt − λT+1 + h− ∥H∥
,

= λt + h+
∥H∥2

λt − λT+1 + h− ∥H∥
.

B.2 Bounding perturbations at both ends of the spectrum
We now give the general result which bounds the perturbation of eigenvalues at both ends of the
spectrum.
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Theorem 11 (Eigenvalue perturbation). Let s↑, s↓ ∈ {0, . . . , n+ 1} be such that s↑ < s↓. Let h be
such that |⟨x,Hx⟩| ≤ h for all x ∈ Span ({u(1), . . . , u(s↑)}) and for all x ∈ Span ({u(s↓), . . . , u(n)}).
Then for any t ≤ s↑, if λt − λs↑+1 > 2∥H∥ − h:

λt − h ≤ λ̃t ≤ λt + h+
∥H∥2

λt − λs↑+1 + h− ∥H∥
,

and for any t ≥ s↓, if λs↓ − λt > 2∥H∥ − h:

λt − h−
∥H∥2

λs↓+1 − λt + h− ∥H∥
≤ λ̃t ≤ λt + h.

Proof. The statement for t ≤ s↑ has already been proven in Theorems 5 and 6. The statement
for t ≥ s↓ follows from a symmetric argument. Let M̂ = −M and Ĥ = −H. Let µ1 ≥ · · · ≥ µn

be the eigenvalues of M̂ . Then µi = −λn−i+1 for any 1 ≤ i ≤ n. Similarly, λi = −µn−i+1.
Furthermore, define v(i) = u(n−i+1). Then v(i) is an eigenvector of M̂ for the eigenvalue µi. It
follows that for any x ∈ Span({v(1), . . . , v(n−s↓+1)}), we have |x⊺M̂x| ≤ h. In addition, we have
µn−s↓+1 − µn−s↓+2 > 2∥H∥ − h. Therefore, applying Theorems 5 and 6 to M̂ + Ĥ, we have, for
any t ≤ n− s↓ + 1:

µt − h ≤ µ̃t ≤ µt + h+
∥H∥2

µt − µn−s↓+2 + h− ∥H∥
.

Now, µ̃t = −λ̃n−t+1, such that:

−µt − h−
∥H∥2

µt − µn−s↓+2 + h− ∥H∥
≤ λ̃n−t+1 ≤ −µt + h.

And recall that −µt = λn−t+1. Hence, for any t ≤ n− s↓ + 1:

λn−t+1 − h−
∥H∥2

λs↓−1 − λn−t+1 + h− ∥H∥
≤ λ̃n−t+1 ≤ λn−t+1 + h.

Finally, we make a change of index such that t 7→ n− t+ 1. Then for any t ≥ s↓:

λt − h−
∥H∥2

λs↓−1 − λt + h− ∥H∥
≤ λ̃t ≤ λt + h.

Appendix C. Eigenvector perturbation proofs
C.1 Proof of Theorem 7: the Neumann trick
Theorem 7 (Neumann trick). Fix a t ∈ [n]. Suppose that ∥H∥ < |λ̃t|. Then:

ũ(t) =

n∑
s=1

λs

λ̃t
·
⟨
ũ(t), u(s)

⟩∑
p≥0

(
H

λ̃t

)p

u(s).

Proof. Since ũ(t) is an eigenvector of M + H with eigenvalue λ̃t, we have (M + H)ũ(t) = λ̃tũ
(t).

Rearranging, we obtain Mũ(t) = (λ̃tI −H)ũ(t). By the assumption that ∥H∥ < |λ̃t| it follows that
λ̃t is not an eigenvalue of H, and and so (λ̃tI −H) is invertible. Therefore:

ũ(t) =
1

λ̃t

(
I − H

λ̃t

)−1

Mũ(t).
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Since ∥H∥ < λ̃t, we may expand (I −H/λ̃t) in a Neumann series:

=
1

λ̃t

∑
k≥0

(
H

λ̃t

)k

Mũ(t).

The eigenvectors ofM form an orthonormal basis for Rn. We may therefore write ũ(t) =
∑n

s=1⟨ũ(t), u(s)⟩u(s).
Using this in the above, we find:

=
1

λ̃t

∑
k≥0

(
H

λ̃t

)k n∑
s=1

⟨
ũ(t), u(s)

⟩
Mu(s),

=
1

λ̃t

∑
k≥0

(
H

λ̃t

)k n∑
s=1

λs

⟨
ũ(t), u(s)

⟩
u(s),

=

n∑
s=1

λs

λ̃t

⟨
ũ(t), u(s)

⟩∑
k≥0

(
H

λ̃t

)k

u(s).

C.2 A general perturbation bound based on the Neumann trick
The result stated in Theorem 8 is a corollary of a more general perturbation result, which we state
below. The theorem takes as input bounds on the perturbation of eigenvalues and the angle of the
perturbation in eigenvectors. Theorem 8 uses Weyl’s theorem and the Davis-Kahan to provide these
bounds, however if better bounds are available the following result will take advantage of them.
Theorem 12. Fix t ∈ [n]. Define ϵ = |λt − λ̃t|/|λt| and let θs be the angle between ũ(t) and u(s).
Then: ∣∣∣u(t)α − ũ(t)α

∣∣∣ ≤ ∣∣∣u(t)α

∣∣∣ · (sin2 θt + ϵ

|λt| − ϵ

)
+

(
|λt|
|λt| − ϵ

)2

· ζ(s)α

+
∑
s̸=t

|λs| · |cos θs|
|λt| − ϵ

·
(∣∣∣u(s)α

∣∣∣+ [ |λt|
|λt| − ϵ

]
· ζ(s)α

)
.

where ζ(s) is the n-vector whose αth entry is defined to be

ζ(s)α =

∣∣∣∣∣∣
∑
k≥1

(
H

λt

)k

u(s)


α

∣∣∣∣∣∣.
Proof. Define

ψ(s) =
λs

λ̃t

⟨
ũ(t), u(s)

⟩∑
k≥0

(
H

λ̃t

)k

u(s).

Note that ψ(s) is a vector, and we write ψ
(s)
α to denote its αth element. Using this notation,

Theorem 7 is simply restated as: ũ(t) =
∑n

s=1 ψ
(s). In particular we have equality for every entry,

such that:
ũ(t)α =

n∑
s=1

ψ(s)
α .

Our goal is to bound |u(t)α − ũ(t)α |. Using the above expression for ũ(t)α , we obtain:∣∣∣u(t)α − ũ(t)α

∣∣∣ = ∣∣∣∣∣u(t)α −
n∑

s=1

ψ(s)
α

∣∣∣∣∣.
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We extract the s = t term from the sum and use the triangle inequality to obtain:

=

∣∣∣∣∣∣u(t)α − ψ(t)
α −

∑
s̸=t

ψ(s)
α

∣∣∣∣∣∣,
≤
∣∣∣u(t)α − ψ(t)

α

∣∣∣+∑
s̸=t

∣∣∣ψ(s)
α

∣∣∣. (6)

We begin by bounding the first term. We have:

∣∣∣u(t)α − ψ(t)
α

∣∣∣ =
∣∣∣∣∣∣u(t)α −

λt

λ̃t

⟨
ũ(t), u(t)

⟩∑
k≥0

(
H

λ̃t

)k

u(t)


α

∣∣∣∣∣∣,
=

∣∣∣∣∣∣u(t)α −
λt

λ̃t
· cos θt ·

∑
k≥0

(
H

λ̃t

)k

u(t)


α

∣∣∣∣∣∣.
Here we used the assumption that the angle between ũ(t) and u(t) is acute. We extract the k = 0
term from the series and use the triangle inequality again:

=

∣∣∣∣u(t)α −
λt

λ̃t
· cos θt · u(t)α

∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣∣∣λtλ̃t · cos θt ·
∑
k≥1

(
H

λ̃t

)k

u(t)


α

∣∣∣∣∣∣︸ ︷︷ ︸
B

. (7)

We now bound A. We have∣∣∣∣u(t)α −
λt

λ̃t
cos θtu

(t)
α

∣∣∣∣ = ∣∣∣u(t)α

∣∣∣ · ∣∣∣∣1− λt

λ̃t
cos θt

∣∣∣∣,
=
∣∣∣u(t)α

∣∣∣ · ∣∣∣∣∣1− λ̃t + (λt − λ̃t)
λ̃t

cos θt

∣∣∣∣∣,
=
∣∣∣u(t)α

∣∣∣ · ∣∣∣∣∣1−
(
1− λt − λ̃t

λ̃t

)
cos θt

∣∣∣∣∣,
≤
∣∣∣u(t)α

∣∣∣ ·(|1− cos θt|+

∣∣∣∣∣λt − λ̃tλ̃t
· cos θt

∣∣∣∣∣
)
.

Since θt is an acute angle, we have 0 ≤ cos θt ≤ 1, and so |1 − cos θt| = 1 − cos θt. But cos θt =√
1− sin2 θt ≤ 1− sin2 θt, such that:

≤
∣∣∣u(t)α

∣∣∣ ·(sin2 θt +
∣∣∣∣∣λt − λ̃tλ̃t

∣∣∣∣∣
)
. (8)

Because we view λ̃t as a perturbation of λt, it is natural to assume that λt is known and that
we have a bound on |λt − λ̃t|, and that we do not know λ̃t. It is therefore desirable to upper bound
1/|λ̃t| in terms of ϵ = |λt − λ̃t| and λt. We have:

1∣∣∣λ̃t∣∣∣ =
1∣∣∣λt + λ̃t − λt

∣∣∣ ≤ 1

|λt| −
∣∣∣λ̃t − λt∣∣∣ =

1

|λt| − ϵ
. (9)
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Therefore we may write Equation (8) as:∣∣∣∣u(t)α −
λt

λ̃t

⟨
ũ(t), u(t)

⟩
u(t)α

∣∣∣∣ ≤ ∣∣∣u(t)α

∣∣∣ · (sin2 θt + ϵ

|λt| − ϵ

)
.

We now turn to bounding part B of Equation (7). We have:∣∣∣∣∣∣
∑
k≥1

(
H

λ̃t

)k

u(t)


α

∣∣∣∣∣∣ ≤
∑
k≥1

∣∣∣∣∣
[(

H

λ̃t

)k

u(t)

]
α

∣∣∣∣∣,
≤
∑
k≥1

∣∣∣∣∣
[(

λt

λ̃t

)k (
H

λt

)k

u(t)

]
α

∣∣∣∣∣,
=
∑
k≥1

∣∣∣∣λtλ̃t
∣∣∣∣k ·
∣∣∣∣∣
[(

H

λt

)k

u(t)

]
α

∣∣∣∣∣,
From Equation (9), we have:

≤
∑
k≥1

(
|λt|
|λt| − ϵ

)k

·

∣∣∣∣∣
[(

H

λt

)k

u(t)

]
α

∣∣∣∣∣,
≤ |λt|
|λt| − ϵ

·
∑
k≥1

∣∣∣∣∣
[(

H

λt

)k

u(t)

]
α

∣∣∣∣∣,
=
|λt|
|λt| − ϵ

· ζ(t)α (10)

As such, part B is bounded as:∣∣∣∣∣∣λtλ̃t · cos θt ·
∑
k≥1

(
H

λ̃t

)k

u(t)


α

∣∣∣∣∣∣ ≤
∣∣∣∣λtλ̃t
∣∣∣∣ · cos θt ·

∣∣∣∣∣∣
∑
k≥1

(
H

λ̃t

)k

u(t)


α

∣∣∣∣∣∣,
≤
(
|λt|
|λt| − ϵ

)2

· ζ(t)α .

Where we used the fact that cos θt ≤ 1 in the last line. We have therefore bounded the first term in
Equation (6) by: ∣∣∣u(t)α − ψ(t)

α

∣∣∣ ≤ ∣∣∣u(t)α

∣∣∣ · (sin2 θt + ϵ

|λt| − ϵ

)
+

(
|λt|
|λt| − ϵ

)2

· ζ(t)α . (11)

We now bound the second term in Equation (6):

∣∣∣ψ(s)
α

∣∣∣ =
∣∣∣∣∣∣λsλ̃t

⟨
ũ(t), u(s)

⟩∑
k≥0

(
H

λ̃t

)k

u(s)


α

∣∣∣∣∣∣,
First, the magnitude of the dot product is |cos θs| by definition, hence:

=

∣∣∣∣λsλ̃t
∣∣∣∣ · |cos θs| ·

∣∣∣∣∣∣
∑
k≥0

(
H

λ̃t

)k

u(s)


α

∣∣∣∣∣∣.
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Extracting the k = 0 term from the sum, we have:

=

∣∣∣∣λsλ̃t
∣∣∣∣ · |cos θs| ·

∣∣∣∣∣∣u(s)α +

∑
k≥1

(
H

λ̃t

)k

u(s)


α

∣∣∣∣∣∣,
≤
∣∣∣∣λsλ̃t

∣∣∣∣ · |cos θs| ·
∣∣∣u(s)α

∣∣∣+
∣∣∣∣∣∣
∑
k≥1

(
H

λ̃t

)k

u(s)


α

∣∣∣∣∣∣
 .

We can bound the sum as we did in Equation (10). We obtain:

≤
∣∣∣∣λsλ̃t

∣∣∣∣ · |cos θs| · (∣∣∣u(s)α

∣∣∣+ [ |λt|
|λt| − ϵ

]
· ζ(s)α

)
.

Using the bound for 1/|λ̃t| derived in Equation (9), we have:

≤ |λs|
|λt| − ϵ

· |cos θs| ·
(∣∣∣u(s)α

∣∣∣+ [ |λt|
|λt| − ϵ

]
· ζ(s)α

)
.

Substituting this result and Equation (11) into Equation (6), we arrive at:∣∣∣u(t)α − ũ(t)α

∣∣∣ ≤ ∣∣∣u(t)α

∣∣∣ · (sin2 θt + ϵ

|λt| − ϵ

)
+

(
|λt|
|λt| − ϵ

)2

· ζ(s)α

+
∑
s̸=t

|λs| · |cos θs|
|λt| − ϵ

·
(∣∣∣u(s)α

∣∣∣+ [ |λt|
|λt| − ϵ

]
· ζ(s)α

)
.

C.3 Results concerning the perturbation of subspaces
In this section, we state results on the perturbation of subspaces which are used in various proofs;
in particular, the proof of Theorem 8. The purpose of these results is to handle the case when an
eigenspace U of M has dimensionality larger than one. In this case, the basis of U is determined
only up to an orthogonal transformation. In most practical applications, however, we assume that
the corresponding subspace of the perturbed matrix M +H has a fixed basis. Therefore we wish to
find a basis of U and a bijection between its basis vectors and the basis of Ũ such that each vector
is close to its counterpart in angle.

To begin, recall the definition of the principal angles between subspaces:

Definition 2 (Principal angles between subspaces Zhu and Knyazev (2013)). Let U and Ũ be two
d-dimensional subspaces of Rn, and let U and Ũ be any orthogonal matrices whose columns form
orthonormal bases for U and Ũ respectively. Let σ1 ≥ · · · ≥ σd be the singular values of U⊺Ũ . The
ith principal angle between U and Ũ is defined to be cos−1 σi. We write

Θ(U , Ũ) = Θ(U, Ũ) = diag(cos−1 σ1, . . . , cos
−1 σd),

for the d× d diagonal matrix of principal angles, and sinΘ(U , Ũ) = Θ(U, Ũ) for the diagonal matrix
obtained by applying sine to every principal angle.

The Davis-Kahan theorem in its full generality bounds the principal angles between the subspaces
of M and the perturbation M +H:
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Theorem 13 (Davis-Kahan for statisticians; Yu et al. (2015)). Let M and H be n× n symmetric
matrices. Let the eigenvalues of M and M + H be λ1 ≥ · · · ≥ λn and λ̃1 · · · λ̃n respectively.
Fix 1 ≤ r ≤ s ≤ n and define δ = min(λr−1 − λr, λs − λs+1), where we have defined λ0 = ∞ and
λn+1 = −∞ for convenience. Assume that δ > 0. Let d = s−r+1, and let U = (u(r), u(r+1), . . . , u(s))
and Ũ = (ũ(r), ũ(r+1), . . . , ũ(s)) be orthonormal n × d matrices such that Mu(i) = λiu

(i) and (M +
H)ũ(i) = λ̃iũ

(i) for all i ∈ {r, . . . , s}. Then:

∥sinΘ(U, Ũ)∥F ≤ 2
√
d · ∥H∥

δ
.

The next result shows that if the basis of Y is fixed and we know that the maximum principal
angle between Y and another subspace X is small, then we can find a suitable orthonormal basis for
X such that the basis vectors of both subspaces are roughly aligned.

Lemma 3. Let X and Y be d-dimensional subspaces of Rn. Suppose that the maximum principal
angle1 between X and Y is θ, and define δ = sin θ. Then for any orthonormal basis y1, . . . , yd for
Y, there exists an orthonormal basis x̂1, . . . , x̂d for X such that

⟨x̂i, yi⟩ ≥ 1− δ2, ∀i,
|⟨x̂i, yj⟩| ≤ δ2, when i ̸= j.

Proof. Let Y = (y1, . . . , yd) be the n × d matrix of basis vectors of Y. Let X = (x1, . . . , xd) be an
n×d matrix whose orthonormal columns form a basis for X ; the choice of basis is arbitrary. It known
that the principal angles between subspaces can be calculated by a singular value decomposition. In
particular, let UΣV ⊺ be the SVD ofX⊺Y . Assume that the singular values σi are placed in decreasing
order along the diagonal of Σ. Let θi be the ith smallest principal angle. Then σi = cos θi. Note
that

cos θi =

√
1− sin2 θi ≥

√
1− sin2 θ ≥

√
1− δ2 ≥ 1− δ2,

and therefore every singular value is bounded as 1− δ2 ≤ σi ≤ 1.
Let X̃ = XU and Ỹ = Y V . Then

X̃⊺Ỹ = U⊺X⊺Y V = U⊺UΣV ⊺V = Σ,

where we used the fact that U and V are orthonormal d × d matrices. Next, note that Y = Ỹ V ⊺,
and define X̂ = X̃V ⊺. We claim that the columns of X̂ form an orthonormal basis for X . To see
this, we first show orthonormality of the columns. We have

X̂⊺X̂ = V X̃⊺X̃V ⊺ = V (XU)⊺(XU)V ⊺ = V U⊺X⊺XUV ⊺ = I,

where in the last step we use the fact that the columns of X are orthonormal, and that U and V
are orthonormal matrices. Next we show that the columns of X̂ form a basis for X . We do so by
proving that the projection operator X̂X̂⊺ is in fact equal to XX⊺. We have

X̂X̂⊺ = (X̃V ⊺)(X̃V ⊺)⊺,

= X̃V ⊺V X̃,

= X̃X̃⊺,

= (XU)(XU)⊺,

= XUU⊺X⊺,

= XX⊺.

1. A principal angle θi is such that 0 ≤ θi ≤ π/2 by definition.
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And so our claim is proven.
Now we wish to show that the basis given by X̂ is “aligned” with the basis given by Y in the

sense that the angle between corresponding basis elements is small. See that

X̂⊺Y = V X̃⊺Ỹ V ⊺ = V ΣV ⊺.

Defining x̂i as the ith column of X̂, we have that ⟨x̂i, yj⟩ is the ij element of V ΣV ⊺. Therefore:

⟨x̂i, yj⟩ =
d∑

k=1

VikσkVjk.

Write σk = 1− rk, where 0 ≤ rk ≤ δ2. Then:

=

d∑
k=1

VikVjk(1− rk),

=

d∑
k=1

VikVjk −
d∑

k=1

rkVikVjk.

The first sum is simply the dot product between the ith and jth column of V . Since V is orthogonal,
this is 1 if i = j, and 0 otherwise. Using the notation δi,j for the Kronecker function, we have:

= δi,j −
d∑

k=1

rkVikVjk.

We can easily bound the magnitude of the remaining sum:∣∣∣∣∣
d∑

k=1

rkVikVjk

∣∣∣∣∣ ≤
d∑

k=1

rk |VikVjk| ,

= rk

d∑
k=1

|Vik||Vjk|,

≤ δ2
d∑

k=1

|Vik||Vjk|.

Define the d-vector ṽ(ℓ) to be the entrywise absolute value of the ℓ-th row of V ; i.e., ṽ(ℓ)k = |Vℓk|.
Then the above is:

= δ2⟨ṽ(i)k , ṽ
(j)
k ⟩.

Applying the Cauchy-Schwarz inequality, we find:

≤ δ2∥ṽ(i)k ∥∥ṽ
(j)
k ∥.

It is easily seen that ∥ṽ(ℓ)k ∥ is the norm of the ℓ-th row of V . Since V is orthonormal, this is simply
one. Therefore:

≤ δ2.

As such, ⟨x̂i, yj⟩ is not more than δ2 away from δi,j , proving the result.
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The following result combines the previous lemma with the Davis-Kahan theorem.

Lemma 4. Let M and H be n×n symmetric matrices. Let the eigenvalues of M be λ1, . . . , λn, and
the eigenvalues of M +H be λ̃1, . . . , λ̃n. Let ũ(1), . . . , ũ(n) be an orthonormal set of eigenvectors of
M +H such that (M +H)ũ(t) = λ̃tũ

(t). For any s ∈ [n], let Λs = {i : λi = λs}. Define ds = |Λs|,
and let the gap be defined as δs = mini ̸∈Λs

|λs − λi|. Denote by θs the angle between ũ(t) and u(s).
There exists an orthonormal set of eigenvectors u(1), . . . , u(n) satisfying Mu(s) = λsu

(s) such that
for t ∈ [n]:

sin θt ≤ 2
√
2dt ·

∥H∥
δt

, |cos θs| ≤ 2
√
2 · ∥H∥ ·min

{√
di
δi

}
i∈{s,t}

.

Proof. We first show that there exists an orthonormal basis u(1), . . . , u(n) of eigenvectors of M such
that u(i) is close in angle to ũ(i) for all i ∈ [n], provided that the perturbation is too large. Choose
any s ∈ [n]. Define Xs to be the subspace of the range of M corresponding to Λs. That is:

Xs = Span ({x :Mx = λsx}) .

Similarly:
Ys = Span({ũ(i) : i ∈ Λs}).

Let θ be the maximum principal angle between Xs and Ys. In particular, |sin θ| ≤ ∥Θ(Xs,Ys)∥F .
Therefore, applying the Davis-Kahan theorem, we have that |sin θ| ≤ 2

√
ds · ∥H∥/δs. Lemma 3

states that there exists an orthonormal basis {u(i)}i∈Λs
for Xs such that for every i ∈ Λs:⟨

ũ(i), u(i)
⟩
≥ 1− sin2 θ = 1− 4ds

(
∥H∥
δs

)2

.

Since Xs is a ds-dimensional subspace spanned by eigenvectors with the same eigenvalue, any vector
in the subspace is an eigenvector. Namely, {u(i)}i∈Λs

is an orthonormal set of eigenvectors spanning
Xs. We can repeat this process for each eigenspace of M , resulting in the desired orthonormal basis.

Assume this basis, and consider t as fixed. Note that for any r ∈ [n] we have:

√
1−

⟨
ũ(r), u(r)

⟩2 ≤
√√√√1−

[
1− 4dr ·

(
∥H∥
δr

)2
]2
,

Expanding the square:

=

√√√√1−

[
1− 8dr ·

(
∥H∥
δr

)2

+ 16d2r ·
(
∥H∥
δr

)4
]
,

=

√
8dr ·

(
∥H∥
δr

)2

− 16d2r ·
(
∥H∥
δr

)4

,

≤

√
8dr ·

(
∥H∥
δr

)2

,

= 2
√

2dr ·
∥H∥
δr

.

Define θs to be the angle between ũ(t) and u(s). Namely, we have

sin2 θt = 1− cos2 θt = 1−
⟨
ũ(t), u(t)

⟩2
≤ 8dt ·

(
∥H∥
δt

)2

.
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By the same token:

|cos θs| =
∣∣∣⟨ũ(t), u(s)⟩∣∣∣,

≤
√
1−

⟨
ũ(s), u(s)

⟩2
,

≤ 2
√
2ds ·

∥H∥
δs

.

But we also have

|cos θs| =
∣∣∣⟨ũ(t), u(t)⟩∣∣∣,

≤
√

1−
⟨
ũ(s), u(t)

⟩2
,

≤ 2
√
2dt ·

∥H∥
δt

.

Therefore: ∣∣∣⟨ũ(t), u(s)⟩∣∣∣ ≤ 2
√
2 · ∥H∥ ·min

{√
di
δi

}
i∈{s,t}

.

C.4 Proof of Theorem 8
We will prove the following theorem which was originally stated in Section 4.

Theorem 8. For any s ∈ [n], let Λs = {i : λi = λs}. Define ds = |Λs|, and let the gap be defined
as δs = mini ̸∈Λs

|λs − λi|. For any s, t ∈ [n], let ∆−1
s,t = min{di/δi}i∈{s,t}. Define λ∗s = |λs| − ∥H∥.

There exists an orthonormal set of eigenvectors u(1), . . . , u(n) satisfying Mu(s) = λsu
(s) such that

for all t ∈ [n]:∣∣∣ũ(t)α − u(t)α

∣∣∣ ≤ ∣∣∣u(t)α

∣∣∣ ·(8dt [∥H∥
δt

]2
+
∥H∥
λ∗t

)
+

(
|λt|
λ∗t

)2

· ζα(u(t);H,λt)

+
2
√
2 · ∥H∥
λ∗t

∑
s̸=t

|λs|
∆s,t

[
|u(s)α |+

|λt|
λ∗t
· ζα(u(s);H,λt)

]
, (4)

where ζ(u;H,λ) is the n-vector whose αth entry is defined to be ζα(u;H,λ) =
∣∣∣[∑p≥1

(
H
λ

)p
u
]
α

∣∣∣.
Proof. The proof is an immediate corollary of combining Theorem 12 (given in Appendix C.2)
with Lemma 4 (given in Appendix C.3), and using Weyl’s bound of ∥H∥ for the perturbation of
eigenvalues.

Appendix D. Results concerning random perturbations
In this section we collect the proof of various results on random perturbations which are used
throughout the paper. In what follows, the term symmetric random matrix will have a technical
meaning.

Definition 3. A symmetric random matrix H is an n×n matrix whose entries are random variables
satisfying EHij = 0. Furthermore, we assume that the entries along the diagonal and in the upper-
triangle (j ≥ i) are statistically independent, while the entries in the lower-triangle (j < i) are
constrained to be equal to their transposes: Hij = Hji.
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D.1 The spectral norm of random matrices
Throughout this paper we have used the following standard result from random matrix theory:

Theorem 14 (Spectral norm of random matrices, Vu (2007)). There are constants C and C ′ such
that the following holds. Let H be an n× n symmetric random matrix whose entries satisfy,

EHij = 0, E (Hij)
2 ≤ σ2, |Hij | ≤ B.

where σ ≥ C ′n−1/2B log2 n. Then, almost surely:

∥H∥ ≤ 2σ
√
n+ C

√
Bσ · n1/4 log n.

It can be shown that a similar lower bound holds in many cases. For instance, when the entries
of H have the Gaussian distribution with unit variance, the spectral norm of H is not only O(

√
n),

but Θ(
√
n) with high probability. Since we typically use ∥H∥ to obtain an upper-bound on the size

of the perturbation, we will not need this result.

D.2 Proof of Lemma 1
Lemma 1. Let u, v be any two fixed unit vectors in Rn. Let H be an n × n symmetric random
matrix with independent entries along the upper-triangle such that for all j ≥ i, EHij = 0 and Hij

is sub-Gaussian with parameter σij ≤ σ. Then P(|⟨u,Hv⟩| ≥ γ) ≤ 2 exp{−γ2/(8σ2)}.

Proof. We have

⟨u,Hv⟩ =
n∑

i=1

n∑
j=1

uiHijvj =

n∑
i=1

uiviHii +
∑
j>i

(uivj + ujvi)Hij .

The right hand side is a sum of independent random variables. We therefore apply the Hoeffding
inequality in its general form for sub-Gaussian random variables to obtain an upper bound (see
Proposition 5.10 in Vershynin (2010)). We find:

P(|⟨u,Hv⟩| ≥ γ) ≤ 2 exp

{
−

1
2γ

2∑n
i=1(uiviσii)

2 +
∑

j>i [(uivj + ujvi)σij ]
2

}
,

≤ 2 exp

− 1
2γ

2

σ2
[∑n

i=1(uivi)
2 +

∑
j>i(uivj + ujvi)2

]
 . (12)

We have
n∑

i=1

(uivi)
2 ≤

n∑
i=1

n∑
j=1

(uivj)
2 =

n∑
i=1

u2i

n∑
j=1

v2j = ∥u∥22 · ∥v∥22 = 1. (13)

Similarly, ∑
j>i

(uivj + ujvi)
2 ≤

∑
j>i

[
(uivj)

2 + (ujvi)
2 + 2|uiujvivj |

]
,

=
∑
j>i

(uivj)
2 +

∑
j>i

(ujvi)
2 +

∑
j>i

+2|uiujvivj |,

≤
n∑

i=1

n∑
j=1

(uivj)
2 +

n∑
i=1

n∑
j=1

(ujvi)
2 +

∑
j>i

+2|uiujvivj |.
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The first two sums are each bounded by 1, as before:

≤ 2 +
∑
j>i

+2|uiujvivj |,

≤ 2 +

n∑
i=1

n∑
j=1

|uiujvivj |,

= 2 +

n∑
i=1

|uivi|
n∑

j=1

|ujvj |.

Each sum is bounded by 1 by an application of Cauchy-Schwarz. Therefore we find that the total
sum is bounded by 3. Substituting this and Equation (13) into Equation (12) we see that

P(|⟨u,Hv⟩| ≥ γ) ≤ 2 exp

{
− γ2

8σ2

}
.

D.3 Proof of Lemma 5
Lemma 5. Let {u(1), . . . , u(d)} be an orthonormal set of d vectors, and suppose that |⟨u(i),Hu(j)⟩| ≤
h for all i, j ∈ [d]. Then |⟨x,Hx⟩| ≤ dh for any unit vector x ∈ Span(u(1), . . . , u(d)).

Proof. Since u(1), . . . , u(d) form an orthonormal basis for the space in which x lies, we can expand x
as

x =

d∑
i=1

αiu
(i),

where αi = ⟨x, u(i)⟩. Therefore:

⟨x,Hx⟩ =

⟨
d∑

i=1

αiu
(i), H

d∑
j=1

αju
(j)

⟩
,

=

d∑
i=1

d∑
j=1

αiαj

⟨
u(i),Hu(j)

⟩
,

≤ h
d∑

i=1

d∑
j=1

|αiαj |,

= h

(
d∑

i=1

|αi|

) d∑
j=1

|αj |

 .

Let α be the vector (α1, . . . , αd)
⊺. Then:

= h∥α∥21.

We know that ∥α∥2 = 1 since x is a unit vector. The 1-norm is bounded by
√
d times the 2-norm.

Hence ∥α∥1 ≤
√
d · ∥α∥2 =

√
d. Hence |⟨x,Hx⟩| ≤ hd.
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Appendix E. Powers of random matrices and their interaction with
delocalized vectors

We have seen that using the Neumann trick to bound the perturbation in eigenvectors requires
bounding series expansions of the form

ζ(u;H,λ) =
∑
p≥0

(
H

λ

)p

u,

where H is a random matrix. We have given one result in Theorem 9 which shows that the∞-norm
of this series is small when u has small ∞-norm. In this section we will prove this result. In this
and what follows, symmetric random matrix has the precise meaning as given in Definition 3 above.

E.1 Proof of the main interaction
The proof of Theorem 9 depends heavily on the following Theorem 15. Much of the proof of
Theorem 15 is due to Erdős et al. (2011). We have amended this proof to provide precise bounds
on the probability of the event.

Theorem 15. Let X be a symmetric and centered random matrix of size n × n. Let u be an
n-vector with ∥u∥∞ = 1. Choose ξ > 1 and 0 < κ < 1. Define µ =

(
κ+1
2

)−1. Then with probability
1− n− 1

4 (logµ n)ξ−1(logµ e)−ξ , for any k ≤ κ
8 (log n)

ξ, if E|Xij |p ≤ 1
n for all p ≥ 2, we have∣∣(Xku

)
α

∣∣ < (log n)
kξ
.

Proof. We will bound
∣∣(Xku

)
α

∣∣ with a high-moment Markov inequality. Let p be a positive even
integer. Then

P
(∣∣(Xku

)
α

∣∣) ≤ E
[(
Xku

)p
α

]
tp

. (14)

Bounding the expectation is non-trivial. We will utilize the following proof is to be found in the
next subsection.

Lemma 6. If E [|Xij |s] ≤ 1/n for all s ≥ 2, then

E
[(
Xku

)p
α

]
≤ (2pk)pk.

Returning to the Markov inequality in Equation (14), we will choose t = (log n)kξ, giving:

P
(∣∣(Xku

)
α

∣∣ ≥ (log n)kξ
)
≤

E
[(
Xku

)p
α

]
[(log n)kξ]

p ,

We now apply Lemma 6 to bound the expectation:

≤ (2pk)pk

(log n)pkξ
,

=

[
2pk

(log n)ξ

]pk
.

The bound above holds for any positive even integer p. We will choose p = p̂, where p̂ is the smallest
even integer greater than or equal to p̃ = 1

4k (log n)
ξ. Since k < 1

8 (log n)
ξ, we have p̃ ≥ 2, and so
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p̂ ≥ 2. Furthermore, we have p̂ = p̃+ δ, where 0 ≤ δ < 2. Hence:[
2p̂k

(log n)ξ

]p̂k
=

[
2(p̃+ δ)k

(log n)ξ

](p̃+δ)k

,

=

[
2(p̃+ δ)k

(log n)ξ

]p̃k
·
[
2(p̃+ δ)k

(log n)ξ

]δk
.

We see that 2p̃k/(log n)ξ = 1/2, hence:

=

[
1

2
+

2δk

(log n)ξ

]p̃k
·
[
1

2
+

2δk

(log n)ξ

]δk
.

Because 0 ≤ δ < 2, we have 1
2 <

1
2 + 2δk

(logn)ξ
< 1. And since δk > 0, the second term in the above is

at most 1. Therefore:

≤
[
1

2
+

2δk

(log n)ξ

]p̃k
.

Using δ < 2 and substituting the definitions of p̃ and k, we arrive at:

≤
[
1

2
+

4k

(log n)ξ

] 1
4 (logn)ξ

,

<

[
κ+ 1

2

] 1
4 (logn)ξ

.

We recognize the base of the exponent as µ−1, therefore:

= µ− 1
4 (logn)ξ ,

= µ− 1
4 (logµ n)ξ(logµ e)−ξ

,

= µ− 1
4 (logµ n)(logµ n)ξ−1(logµ e)−ξ

,

= n−
1
4 (logµ n)ξ−1(logµ e)−ξ

.

Therefore:

P
(∣∣(Xku

)
α

∣∣ ≥ (log n)kξ
)
≤
[

2p̂k

(log n)ξ

]p̂k
,

≤ n− 1
4 (logµ n)ξ−1(logµ e)−ξ

.

E.2 Proofs of moment bound, Lemma 6
In this subsection we derive a bound on E

[(
Xku

)p
α

]
under an assumption on the variance of the

entries of X. In particular, we will prove Lemma 6 which is a critical component of Theorem 15.

E.2.1 Some useful results

First we derive a formalism for working with moments of random matrix products. It follows from
the definition of matrix multiplication that the αth element of the vector Xku has the expansion:(

Xku
)
α
=

∑
i1,...,ik

Xαi1Xi1i2 · · ·Xik−1ikuik .
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As a result, we have:

E
[
(Xku)pα

]
= E

 ∑
i1,...,ik

Xαi1Xi1i2 · · ·Xik−1ikuik

p  ,
= E

 ∑
i
(1)
1 ,...,i

(1)
k

· · ·
∑

i
(p)
1 ,...,i

(p)
k

p∏
r=1

X
αi

(r)
1
X

i
(r)
1 i

(r)
2
· · ·X

i
(r)
k−1i

(r)
k

u
i
(r)
k

 .

Here there are p summations, each over an independently-varying set of k variables i(r)1 , . . . , i
(r)
k

which range from 1 to n. We replace the variables of summation with indexing functions, defined
as follows.

Definition 4. For positive integers p and k and an index α ∈ [n], a (p, k, α)-indexing function is a
discrete map τ : [p]× {0, . . . , k} → [n] satisfying τ(r, 0) = α for all r ∈ [p].

An indexing function τ corresponds to a single configuration of the variables of summation in the
expectation above. That is, we may interpret τ(r, ℓ) as the value of the variable i(r)ℓ in a particular
configuration. As such, we will use the shorthand notation τ (r)ℓ = τ(r, ℓ) so that X

i
(r)
ℓ−1i

(r)
ℓ

is replaced
by X

τ
(r)
ℓ−1τ

(r)
ℓ

.
Let Zp,k,α be the set of all (p, k, α)-index functions. The above expectation can be written as:

E
[
(Xku)pα

]
= E

 ∑
τ∈Zp,k,α

p∏
r=1

X
τ
(r)
0 τ

(r)
1
X

τ
(r)
1 τ

(r)
2
· · ·X

τ
(r)
k−1τ

(r)
k

u
τ
(r)
k

 ,
=

∑
τ∈Zp,k,α

E

[
p∏

r=1

X
τ
(r)
0 τ

(r)
1
X

τ
(r)
1 τ

(r)
2
· · ·X

τ
(r)
k−1τ

(r)
k

u
τ
(r)
k

]
,

≤
∑

τ∈Zp,k,α

∣∣∣∣∣E
[

p∏
r=1

X
τ
(r)
0 τ

(r)
1
X

τ
(r)
1 τ

(r)
2
· · ·X

τ
(r)
k−1τ

(r)
k

u
τ
(r)
k

]∣∣∣∣∣,
=

∑
τ∈Zp,k,α

∣∣∣∣∣
(

p∏
r=1

u
τ
(r)
k

)∣∣∣∣∣︸ ︷︷ ︸
ωu(τ)

·

∣∣∣∣∣E
[

p∏
r=1

X
τ
(r)
0 τ

(r)
1
X

τ
(r)
1 τ

(r)
2
· · ·X

τ
(r)
k−1τ

(r)
k

]∣∣∣∣∣︸ ︷︷ ︸
φ(τ)

,

=
∑

τ∈Zp,k,α

ωu(τ) · φ(τ). (15)

Here we write ωu to show that ωu is parametrized by the vector u. On the other hand, φ does not
depend on u. In the following two parts, we derive bounds on this quantity under assumptions on
the magnitude or variance of Xij . In each case the core approach is the same: we bound the size of
φ(τ) for any τ by using the assumptions on X, and then bound the number of τ for which φ and
ωu are non-zero.

The entries in the upper-triangle of the random matrix X are independent, but not necessarily
identically distributed. Rather, the assumptions that we will place on the entries of X will not
depend on the indices. As a result, it is not important to use the precise knowledge of which entries
of X are selected by an indexing function τ in order to bound φ(τ). We will therefore partition the
set of indexing functions into equivalence classes which characterize the important structure of the
indexing, and then derive a bound for each equivalence class independently.
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First, some notation: For a set of sets A, we write [A] to denote the union of all elements of A;
i.e., [A] =

∪
γ∈A γ. We introduce the following notion:

Definition 5. A (p, k)-index partition Γ is a partition of a subset of {1, . . . , p}×{0, . . . , k} with the
property that there exists a block γ̃ ∈ Γ such that every pair of the form (r, 0) is in γ̃; that is:

∃γ̃ ∈ Γ s.t. γ̃ ⊃ {(r, 0) : r ∈ {1, . . . , p}} .

We call γ̃ the root block of Γ.

Note that a (p, k)-index partition is a partition of a subset of [p] × {0, . . . , k}; i.e., it is not
necessarily the case that [Γ] is the full set [p] × {0, . . . , k}. For example, any (p − 1, k − 1)-index
partition is also a (p, k)-index partition by definition. We will later find it useful to make use of such
“subpartitions”, but for the time being we will only consider index partitions which in fact partition
the full set. Let Pp,k be the set of all “full” (p, k)-index partitions Γ such that [Γ] = [p]×{0, . . . , k}.

Next, note that an index partition Γ ∈ Pp,k defines an equivalence relation on [Γ]. We use the
following notation to denote this relation:

Notation. For pairs (r, ℓ), (r̃, ℓ̃) ∈ [Γ] we write (r, ℓ)
Γ∼ (r̃, ℓ̃) if and only if there exists a block γ ∈ Γ

such that γ contains both (r, ℓ) and (r̃, ℓ̃).

We relate indexing functions and index partitions in the following way:

Definition 6. We say that an indexing function τ respects the partition Γ ∈ Pp,k when τ (r)ℓ = τ
(r′)
ℓ′

if and only if (r, ℓ) Γ∼ (r′, ℓ′).

It is clear that for any indexing function τ , there is exactly one partition Γ ∈ Pp,k such that
τ respects Γ. As such, we have implicitly established an equivalence relation between indexing
functions: τ and τ ′ are equivalent if and only if they respect the same index partition. For an index
partition Γ ∈ Pp,k, write Zp,k,α{Γ} to denote the set of all indexing functions which respect Γ. Then
Equation (15) can be re-written as:

E
[(
Xku

)p
α

]
≤

∑
Γ∈Pp,k

∑
τ∈Zp,k,α{Γ}

ωu(τ) · φ(τ). (16)

Definition 7 (Twin property). Let Γ ∈ Pp,k. Let (r, ℓ) ∈ [Γ] and (r̃, ℓ̃) ∈ [Γ] be distinct and such
that ℓ, ℓ̃ > 0. We say that (r, ℓ) and (r̃, ℓ̃) are twins in Γ if either:

1. (r, ℓ)
Γ∼ (r̃, ℓ̃) and (r, ℓ− 1)

Γ∼ (r̃, ℓ̃− 1)); or

2. (r, ℓ)
Γ∼ (r̃, ℓ̃− 1) and (r, ℓ− 1)

Γ∼ (r̃, ℓ̃).

We say that a (p, k)-index partition Γ satisfies the twin property if for any pair (r, ℓ) ∈ [Γ] with ℓ > 0
there exists a distinct (r̃, ℓ̃) ∈ [Γ] with ℓ̃ > 0 such that (r, ℓ) and (r̃, ℓ̃) are twins in Γ.

Lemma 7. Let τ be an indexing function respecting the partition Γ. Then (r, ℓ) and (r̃, ℓ̃) are twins
in Γ if and only if X

τ
(r̃)

ℓ̃−1
τ
(r̃)

ℓ̃

= X
τ
(r)
ℓ−1τ

(r)
ℓ

.

Proof. Due to the symmetry of X and the independence of its entries along the upper triangle,
we have that for any indices i, j, i′, j′, Xij = Xi′j′ if and only if either 1) (i, j) = (i′, j′) or 2)
(i, j) = (j′, i′). This is the case if and only if τ (r̃)

ℓ̃−1
= τ

(r)
ℓ−1 and τ

(r̃)

ℓ̃
= τ

(r)
ℓ or 2) τ (r̃)

ℓ̃−1
= τ

(r)
ℓ and

τ
(r̃)

ℓ̃
= τ

(r)
ℓ−1 . The fact that that this holds if and only if (r, ℓ) and (r̃, ℓ̃) are twins follows from the

definition of twins and the notion of τ respecting the partition Γ.

32



Definition 8. For any index partition Γ ∈ Pp,k, denote by T{Γ} the set of equivalence classes of
the twin relation, defined on [p]× [k] by (r, ℓ) ∼ (r̃, ℓ̃) if and only if (r, ℓ) and (r̃, ℓ̃) are twins.

Notation. If τ is an indexing function which respects Γ and ρ ∈ T{Γ}, we write Xρ to denote the
random variable Xij such that Xij = X

τ
(r)
ℓ−1τ

(r)
ℓ

for every (r, ℓ) ∈ ρ; this is well-defined as a result of
Lemma 7.

Lemma 8. Let Γ ∈ Pp,k and suppose τ is an indexing function which respects Γ. Then:

φ(τ) =
∏

ρ∈T{Γ}

∣∣∣E [X |ρ|
ρ

]∣∣∣.
Proof. Lemma 7 implies that the equivalence classes of the twin relation partition the pk terms of the
product in φ into sets of random variables which are equal. Since the entries of X are independent
random variables, the expectation factors.

Since EX = 0, we have the following corollary:

Corollary 2. Suppose that Γ ∈ Pp,k does not satisfy the twin property; i.e., there exists a pair
(r̂, ℓ̂) ∈ [Γ] that does not have a twin in Γ. Then φ(τ) = 0 for every τ respecting Γ.

Corollary 2 implies that only partitions satisfying the twin property contribute to the sum in
Equation (16).

Lemma 9. Let F = {i : ui ̸= 0}. Fix α ∈ [n]. Suppose that Γ ∈ Pp,k is such that the root block γ̃
contains an element of the form (r, k) for some r ∈ [p]. Then if α ̸∈ F we have ωu(τ) = 0 for every
τ which respects Γ.

Proof. By the definition of an indexing function, τ (r)0 = α for every r ∈ [p]. Let r∗ be such that
(r∗, k) ∈ γ̃. If τ respects Γ, then it is necessarily the case that τ (r

∗)
k = τ

(r∗)
0 = α. Then u

τ
(r∗)
k

= uα.
If α ̸∈ F , then uα = 0 and hence ωu(τ) = 0.

Definition 9. Fix a set F ⊂ [n] and an index α ∈ [n]. We write P+(F,α)
p,k to denote the set of all

Γ ∈ Pp,k such that

1. Γ satisfies the twin property; and

2. if α ̸∈ F , the root block γ̃ ∈ Γ contains no elements of the form (r, k).

The partitions in P+(F,α)
p,k do not contribute to Equation (16). Hence:

E
[(
Xku

)p
α

]
≤

∑
Γ∈P+(F,α)

p,k

∑
τ∈Zp,k,α{Γ}

ωu(τ) · φ(τ).

It is necessary for a partition Γ to be an element of P+(F,α)
p,k in order for a τ respecting it to be such

that φ(τ) ̸= 0, however this is not a sufficient condition. Suppose that τ (r)k ̸∈ F for some r. Then
u
τ
(r)
k

= 0 and hence ωu(τ) = 0. Therefore, we can restrict ourselves to considering τ which map
(r, k) to F . Define:

Z+(F )
p,k,α{Γ} = {τ ∈ Zp,k,α{Γ} : τ (r)k ∈ F ∀r ∈ [p]}.

Then:

E
[(
Xku

)p
α

]
≤

∑
Γ∈P+(F,α)

p,k

∑
τ∈Z+(F )

p,k,α{Γ}

ωu(τ) · φ(τ).
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Fix Γ ∈ Pp,k. Suppose that φ(τ) ≤ ΦΓ for any τ ∈ Z+(F )
p,k,α{Γ}. Furthermore, suppose that

|Z+(F )
p,k,α{Γ}| ≤ ZΓ. Note that ωu(τ) ∈ [0, 1], since it is the product of magnitudes of entries of u

and ∥u∥∞ = 1. Therefore:

E
[(
Xku

)p
α

]
≤

∑
Γ∈P+(F,α)

p,k

ZΓ · ΦΓ.

If ZΓ · ΦΓ ≤ B for all Γ ∈ P+(F,α)
p,k , then:

≤
∑

Γ∈P+(F,α)
p,k

B,

=
∣∣∣P+(F,α)

p,k

∣∣∣ ·B.
We can bound the number of partitions loosely using the following lemma:

Lemma 10. |Pp,k| ≤ (2pk)pk.

Proof. Let P ′
p,k be the set of all partitions of {1, . . . , p}× {1, . . . , k}. The number of such partitions

is the pk-th Bell number; a well-known bound gives |P ′
p,k| ≤ (pk)pk. We generate Pp,k from P ′

p,k in
the following way: For every Γ ∈ P ′

p,k, we

1. Create a new block γ̃ = {(r, 0) : r ∈ {1, . . . , p}}.

2. For every element (r, ℓ) in {1, . . . , p}×{1, . . . , k}, make an independent decision about whether
to move (r, ℓ) from the block of Γ containing it to the new block γ̃. There are 2pk possible ways
of deciding which elements to move, and so there are 2pk partitions of {1, . . . , p} × {0, . . . , k}
generated from Γ.

For each partition Γ ∈ P ′
p,k we generate 2pk partitions; in total, we generate 2pk ·|P ′

p,k| = (2pk)pk.
It is clear that Pp,k is a subset of the generated partitions. Since some of the partitions generated
from Γ and a distinct partition Γ′ will be identical, (2pk)pk is only an upper-bound on |Pp,k|.

Since P+(F,α)
p,k ⊂ Pp,k, we have

∣∣∣P+(F,α)
p,k

∣∣∣ ≤ (2pk)pk. We have therefore derived the following
result:

Lemma 11. Fix a vector u and let F = {i : ui ̸= 0}. Fix an index α ∈ [n]. For an index
partition Γ ∈ P+(F,α)

p,k , suppose that φ(τ) ≤ ΦΓ for any τ ∈ Z+(F )
p,k,α{Γ}, and that |Z+(F )

p,k,α{Γ}| ≤ ZΓ.
If ZΓ · ΦΓ ≤ B for all Γ ∈ P+(F,α)

p,k , then:

E
[(
Xku

)p
α

]
≤ (2pk)pk ·B.

We will use this result as a starting point for proving Lemma 6. In the next two parts, we will
derive B under different assumptions on the entries of X.

Lemma 12. Fix a vector u and let F = {i : ui ̸= 0}. Let Γ ∈ P+(F,α)
p,k . Then∣∣∣Z+(F )

p,k,α{Γ}
∣∣∣ ≤ n|Γ|−1.

Moreover, let Q ⊂ Γ be the set of blocks in Γ which contain an element of the form (r, k) for some
r ∈ [p]. Suppose that α ̸∈ F . Then:∣∣∣Z+(F )

p,k,α{Γ}
∣∣∣ ≤ n|Γ|−|Q|−1 · |F ||Q|.
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Proof. By definition, τ (r)ℓ = τ
(r̃)

ℓ̃
if and only if (r, ℓ) Γ∼ (r̃, ℓ̃). Hence an indexing function τ respecting

Γ takes a distinct value on each γ ∈ Γ. Exactly one block of the partition contains the pairs of the
form (r, 0), and on this block τ must take the value α. On the remaining |Γ − 1| blocks τ takes a
value in [n]. Ignoring the constraint that these values be distinct between blocks to obtain an upper
bound, there are n|Γ|−1 possible choices for the values of τ on these blocks; this gives the desired
upper bound.

For the second part, recognize that since τ ∈ Z+(F )
p,k,α{Γ} we have τ

(r)
k ∈ F by assumption.

Hence the number of possible values which τ may take on a block in Q is bounded above by |F |.
Furthermore, it is true that Q does not contain the root block of the partition – this follows from
the definition of P+(F,α)

p,k and the assumption that α ̸∈ F . The result then follows immediately.

E.2.2 Proof of Lemma 6

In this part, we will bound E
[(
Xku

)p
α

]
under the assumption that E [|Xij |s] ≤ 1/n for all s ≥ 2. As

per Lemma 11, it is sufficient to bound ZΓ · ΦΓ for all partitions Γ satisying the twin property. In
the following two lemmas, let Γ ∈ P+(F,α)

p,k and suppose that E [|Xij |s] ≤ 1/n for all s ≥ 2.

Lemma 13. For any τ ∈ Z+(F )
p,k,α{Γ} we have φ(τ) ≤ ΦΓ, where ΦΓ = n−|T{Γ}|.

Proof. As a result of Lemma 8:

φ(τ) =
∏

ρ∈T{Γ}

∣∣∣E [X |ρ|
ρ

]∣∣∣.
We upper bound this by:

≤
∏

ρ∈T{Γ}

E
[
|Xρ||ρ|

]
.

Since Γ satisfies the twin property we have |ρ| ≥ 2. Then E
[
|Xρ||ρ|

]
≤ 1/n by assumption, and so:

≤
∏

ρ∈T{Γ}

n−1,

= n−|T{Γ}|.

Lemma 14. We have |Z+(F )
p,k,α{Γ}| ≤ ZΓ, where ZΓ = n|T{Γ}|.

Proof. From Lemma 12 we have |Z+(F )
p,k,α{Γ}| ≤ n|Γ|−1. We now show that |Γ| − 1 ≤ |T{Γ}|. It is

sufficient to find an injection from the set V ⊂ Γ of non-root blocks of Γ to T{Γ}; The existence
of an injection proves that |V | ≤ |T{Γ}|, and since Γ has exactly one root block it follows that
|Γ|−1 ≤ |T{Γ}|. We construct an injection g : V → T{Γ} as follows. For any block γ ∈ Γ, let min γ
be the pair (r∗, ℓ∗) ∈ γ which is the minimum element with respect to the natural lexicographical
order. That is, (r∗, ℓ∗) ∈ γ is the pair such that for any other (r, ℓ) ∈ γ, either r > r∗ or it is the
case that both r = r∗ and ℓ > ℓ∗. The injection g is defined by:

g : γ 7→ the equivalence class ρ ∈ T{Γ} containing min γ.

First note that this is a function since T{Γ} partitions the set [p]× [k] such that g(γ) is uniquely
defined. Next we show that it is indeed an injection. Suppose for a contradiction that γ and γ′ are
distinct members of Γ and that g(γ) = g(γ′). Let (r, ℓ) = min γ and (r′, ℓ′) = min γ′, and assume
(without loss of generality) that (r, ℓ) < (r′, ℓ′) with respect to the lexicographical order on pairs.
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The fact that g(γ) = g(γ′) implies that (r, ℓ) and (r′, ℓ′) are twins. Therefore one of two cases
hold: In the first case, (r, ℓ) Γ∼ (r′, ℓ′) and (r, ℓ−1)

Γ∼ (r′, ℓ′). This results in a contradiction, because
then γ = γ′; i.e., they are not distinct. In the second case, (r, ℓ) Γ∼ (r′, ℓ′− 1) and (r, ℓ− 1)

Γ∼ (r′, ℓ′).
In particular, (r, ℓ − 1) and (r′, ℓ′) are both in the same block γ′ of Γ. Note that (r′, ℓ′) = min γ′.
But (r, ℓ− 1) < (r, ℓ) < (r′, ℓ′). This is a contradiction. Since both cases lead to contradictions, the
assumption cannot hold. Therefore g(γ) ̸= g(γ′) when γ ̸= γ′, and g is an injection.

With these results it is easy to prove Lemma 6, restated below:

Lemma 6. If E [|Xij |s] ≤ 1/n for all s ≥ 2, then

E
[(
Xku

)p
α

]
≤ (2pk)pk.

Proof. Let ZΓ and ΦΓ be as defined in Lemma 11. Using the bounds derived in Lemmas 13 and 14,
we have for any Γ ∈ P+(F,α)

p,k :

ZΓ · ΦΓ ≤ n|T{Γ}| · n−|T{Γ}| = 1.

The result then follows immediately from Lemma 11.

E.3 Proof of Theorem 9
We will now prove Theorem 9. First, we will state a minor technical lemma which will be used in
the proof.

Lemma 15. Suppose that
∣∣(Xku

)
α

∣∣ ≤ Qk for all k ≤ K. Let η be a positive number, and suppose
η < min{Q−1, ∥X∥−1}. Then:∑

k≥1

∣∣[(ηX)ku
]
α

∣∣ ≤ ηQ

1− ηQ
+
∥u∥2 · ∥ηX∥K+1

1− ∥ηX∥
.

Proof. We have: ∑
k≥1

∣∣[(ηX)ku
]
α

∣∣ = K∑
k=1

∣∣[(ηX)ku
]
α

∣∣
︸ ︷︷ ︸

#1

+
∑
k>K

∣∣[(ηX)ku
]
α

∣∣.︸ ︷︷ ︸
#2

We begin by bounding #1. For each 1 ≤ k ≤ K, we have∣∣[(ηX)ku
]
α

∣∣ = ηk
∣∣(Xku

)
α

∣∣ ≤ (ηQ)k.

The last step follows from the assumption that ηQ < 1. As a result:
K∑

k=1

∣∣[(ηX)ku
]
α

∣∣ ≤ K∑
k=1

(ηQ)k,

≤
∞∑
k=1

(ηQ)k,

= ηQ

∞∑
k=0

(ηQ)k,

=
ηQ

1− ηQ
.
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We next bound #2. Here we will use the assumption that ∥ηX∥ < 1 combined with the fact
that the ∞-norm of a vector is bounded above by the 2-norm. We have:∑

k>K

∣∣[(ηX)ku
]
α

∣∣ ≤ ∑
k>K

∥∥(ηX)ku
∥∥
∞,

≤
∑
k>K

∥∥(ηX)ku
∥∥
2
,

≤
∑
k>K

∥∥(ηX)k
∥∥ · ∥u∥2,

=
∑
k>K

∥ηX∥k · ∥u∥2,

= ∥u∥2 · ∥ηX∥K+1
∑
k≥0

∥ηX∥k,

=
∥u∥2 · ∥ηX∥K+1

1− ∥ηX∥
.

We are now able to prove the main result of this section, restated below:
Theorem 9. Let H be an n × n symmetric random matrix with independent entries along the
diagonal and upper triangle satisfying EHij = 0. Suppose γ is such that E|Hij/γ|p ≤ 1/n for all
p ≥ 2. Choose ξ > 1 and κ ∈ (0, 1). Let λ ∈ R and suppose that γ < λ(log n)ξ and λ > ∥H∥. Fix
u ∈ Rn. Then: with probability 1− n− 1

4 (logb n)ξ−1(logb e)−ξ+1, where b =
(
κ+1
2

)−1.∥∥∥∥∥∥
∑
p≥1

(
H

λ

)p

u

∥∥∥∥∥∥
∞

≤ γ(log n)ξ

λ− γ(log n)ξ
· ∥u∥∞ +

∥H/λ∥⌊κ
8 (logn)ξ+1⌋

1− ∥H/λ∥
· ∥u∥2. (5)

Proof. We have

ζα =
∑
p≥1

∣∣∣∣[(Hλ
)p

u

]
α

∣∣∣∣,
= ∥u∥∞

∑
p≥1

∣∣∣∣[(Hλ
)p

· u

∥u∥∞

]
α

∣∣∣∣,
= ∥u∥∞

∑
p≥1

∣∣∣∣[(γλ · Hγ
)p

· u

∥u∥∞

]
α

∣∣∣∣,
Define X = H/γ, η = γ

λ , and v = u/∥u∥∞. Then:

= ∥u∥∞
∑
p≥1

|[(ηX)
p
v]α|. (17)

Note that E|Xij |p = E|Hij/γ|p. Thus for all p ≥ 2 we have E|Xij |p ≤ 1/n. We may therefore invoke
the first result in Theorem 15 to derive, for all p ≤ κ

8 (log n)
ξ,

P
(
|(Xpv)α|

k ≥ (log n)kξ
)
≤ 1− n− 1

4 (logµ n)ξ−1(logµ e)−ξ

. (18)

We now bound
∑

p≥1 |[(ηX)
p
v]α| by applying Lemma 15 with X = H/γ, η = γ/λ, Q = (log n)ξ

and K =
⌊
κ
8 (log n)

ξ
⌋
. One of the requirements of Lemma 15 is that η = γ/λ must satisfy:
γ

λ
< min

{
Q−1, ∥X∥−1

}
= min

{
(log n)−ξ, γ∥H∥−1

}
.
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Hence we must have γ < λ(log n)−ξ and λ > ∥H∥, as assumed. Then, applying the result of
Lemma 15, we have:

ζα(H,λ, u) = ∥u∥∞
∑
p≥1

|[(ηX)
p
v]α|,

≤ ∥u∥∞

(
γ(log n)ξ

λ− γ(log n)ξ
+
∥H/λ∥⌊κ

8 (logn)ξ+1⌋

1− ∥H/λ∥
· ∥u∥2
∥u∥∞

)
,

=
γ(log n)ξ

λ− γ(log n)ξ
· ∥u∥∞ +

∥H/λ∥⌊κ
8 (logn)ξ+1⌋

1− ∥H/λ∥
· ∥u∥2.
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