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Abstract
In multi-task learning the learner is given data for a set of related learning tasks and aims
to improve the overall learning performance by transferring information between them. A
typical assumption exploited in this setting is that the tasks share a beneficial representation
that can be learned form the joint training data of all tasks. This way, the training data of
each task can be utilized to enhance the learning of other tasks in the set. Probabilistic
Lipschitzness (PL) is a parameter that reflects one way in which some data representation
can be beneficial for a classification learning task. In this work we propose to achieve
multi-task learning by learning a kernel function relative to which each of the tasks in the
set has a "high level" of probabilistic Lipschitzness. In order to be able to do that, we need
to introduce a new variant of PL - one that allows reliable estimation of its value from
finite size samples. We show that by having access to large amounts of training data in
total (possibly the union of training sets for various tasks), the learner can identify a kernel
function that would lead to fast learning rates per task when used for Nearest Neighbor
classification or in a cluster-based active labeling procedure.

1. Introduction

Traditionally machine learning research concentrates on developing algorithms for solving
individual learning problems. Significant progress has been achieved in this framework
from both theoretical and practical perspectives. However, this approach clearly neglects
important aspects of human learning. In particular, humans are often able to benefit from
having access to more than one problem at a time and comparing and contrasting several
learning concepts. This observation motivates the multi-task learning setting (Caruana,
1997), where the learner faces a set of learning tasks simultaneously and is able to transfer
information between them in order to improve the overall performance.

Intuitively, for information transfer to be useful, the tasks of interest should be related in
some way. A natural and commonly used approach to formalize task relatedness is through an
assumption that there exists a data representation that is beneficial for solving all the given
tasks. The corresponding methods differ by the type of representation they are searching for
and by the measure of its quality and focus on the cases when the type of predictors used
based on the obtained representation is predefined. One common approach is based on metric
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learning, where the representation has a form of a learned Mahalanobis distance. The quality
in this case depends on how well it satisfies the predefined constraints that typically resemble
intuition behind nearest neighbor approach for classification and force objects from the
same class to lie close to each other and objects from different classes to be far apart (Yang
et al., 2013). Another group of the multi-task methods for representation transfer focuses
on the case when every task is solved using a linear predictor and aims at learning a joint
representation together with the task-specific weight vectors. In this case the quality of the
representation is measured by the empirical error achieved by the linear predictors under this
representation that may have a form of projection on a low-dimensional subspace (Argyriou
et al., 2007a) or a dictionary of features that allows for sparse solutions for every task of
interest (Argyriou et al., 2008). In this work we, instead, propose to measure the quality
of representation by its Probabilistic Lipschitzness (Urner et al., 2011), which allows us to
obtain representation that could be useful in various scenarios such as classification using
Nearest Neighbors or active learning.

Benefits of representation transfer in multi-task learning from theoretical perspective
are captured by demonstrating a reduction of the number of samples per task needed for
reliable generalization, compared to those needed when every task is solved in isolation. This
reduction is a consequence of reducing the hypothesis set, used for solving each individual
task, from the initial one, described by the union of all considered representations, to the
one determined by the learned common representation. Thus, it only affects constant factors
of some of the complexity terms, while keeping the convergence rates O(1/

√
n), where n is

the number of samples per task.
To be able to demonstrate faster learning rates, it is necessary to assume low level of noise

in the labeling function. In particular, in this work we focus on the case of deterministic labels.
However, even this stronger assumption is not sufficient (Ben-David and Urner, 2014). One
way to overcome this problem is to add sufficient realizability assumption. However, this kind
of condition cannot be influenced by selecting an appropriate feature representation - it either
already holds for the initial hypothesis set that is a union over all considered representations,
or it does not hold for any of them. Alternative is given by the notion of Probabilistic
Lipschitzness (PL) (Urner et al., 2011) that is capable of quantifying "easiness" of data
and has been shown to control the sample complexity of Nearest Neighbor and potential
reductions in label complexity in active learning (Urner et al., 2013). The advantage of PL
is that it directly depends on the choice of feature representation - by changing the metric
one can transform an initially hard learning problem into an easier one (i.e. achieve faster
learning rate).

Probabilistic Lipschitzness (Urner et al., 2011) captures the intuition that under good
representations similar instances are likely to have similar labels. Consider for example a
set of image classification tasks, say a collection of detecting tasks for images captured by a
car camera; detecting if there is a person in sight, or a traffic sign, or some major obstacle
to driving. In all of those tasks it is rare to encounter two images that look similar from
a human perception point of view, and yet should be classified differently. In other words,
the human perception has some implicit common image representation under which each of
those tasks enjoys a high lever of Probabilistic Lipschitzness (PL). Our goal in this work is
to formalize this intuition and propose an algorithmic paradigm that can be shown to take
advantage of such relationships between learning tasks. Aiming to use PL for multi-task
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learning requires a way of evaluating the PL values of a given classification task based on
training samples. However, the versions of PL that have been proposed in previous works
cannot be reliably estimated from finite samples.

The first contribution of this work is the introduction of a modification of the original
notion of Probabilistic Lipschitzness that measures the probability of two points violating
Lipschitzness. The advantage of the proposed measure is that it can be reliably estimated
from finite data and thus it can be used for selecting a beneficial representation in the
multi-task setting. In particular, we demonstrate that for a family of kernels with finite
pseudodimension the learner can estimate the average multi-task PL for every kernel in
the family reliably by having access to large total number of samples. Thus, the overhead
associated with estimating PL for multiple kernel functions is spread across multiple tasks.
Assuming that in a given kernel family there exists a kernel with respect to which the
probability of two points having different labels decays sufficiently quickly as the kernel
similarity between them tends to one, we demonstrate two consequences of our result in
multi-task representation learning. First, we show how one could use it to select a kernel
that would lead to faster learning rates of Nearest Neighbor applied to every task. Second,
we demonstrate that it could also be used to identify a kernel with respect to which to run
an active labeling procedure with provable label complexity reductions. In this case, any
empirical risk minimization or regularized risk minimization method can be used later on for
solving all tasks of interest and one obtains faster rates in terms of label complexity.

Related work. Multi-task methods based on feature learning typically rely on the assump-
tion that there exists a common representation that leads to low approximation error for
all tasks of interest and aim at inferring this representation from the data. In particular,
in (Argyriou et al., 2007a, 2008) this assumption was explored in the case where every task is
solved using a sparse combination of original features or their linear transformations. These
methods were later extended to be able to handle different levels of relatedness between
tasks (Argyriou et al., 2007b), disjoint (Zhang and Yeung, 2011) or overlapping (Kumar
and Daumé III, 2012) groups of related tasks and exploit known unrelated tasks (Romera-
Paredes et al., 2012). This paradigm was also applied to kernel methods, where the common
representation is assumed to be described by a kernel function (Jebara, 2004, 2011; Zhou
et al., 2010).

Potential benefits of representation learning in the multi-task setting have been also
theoretically analyzed for cases when this representation takes form of a sparse combination
of initial features (Maurer and Pontil, 2013; Lounici et al., 2009), their linear transforma-
tions (Maurer, 2006; Maurer et al., 2014, 2013) or a kernel function (Pentina and Ben-David,
2015). However, such theoretical studies focus on the cases when the learning method that is
used in conjunction with the learned representation is predefined and typically is an empirical
risk minimization. And the advantages of learning a representation based on multiple tasks
takes a form of a reduction of the complexity terms corresponding to the overhead of learning
that representation and in the limit of infinitely many tasks the corresponding guarantees
typically are reduced to those for single-task learning with beneficial representation known in
advance. Thus, the convergence rate with respect to the number of samples per task reduces
only by some constant factor.
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2. Probabilistic Lipschitzness

Let X be the domain set equipped with a distance measure dist and Y = {0, 1} be the label
set. Throughout this paper we focus on tasks that are defined by a pair consisting of a
probability distribution D over X and a deterministic labeling function l : X → Y.

Many learning paradigms, such as Nearest Neighbor or geometrically defined classifiers,
implicitly assume that there is some correlation between the geometry of the input space,
the marginal distribution and the labels. The notion of Probabilistic Lipschitzness (PL),
introduced in (Urner et al., 2011), quantifies this correlation. In particular, it relaxes the
condition of Lipschitzness on the labeling rule and formalizes the intuition that under suitable
feature representation the probability of two close points having different labels is small. We
will refer to the original definition of PL (Urner et al., 2011) as PL-Unary :

Definition 1 (PL-Unary (Urner et al., 2011)) The labeling function l satisfies φU -PL-
Unary if for all λ > 0:

Pr
x1∼D

[
Pr
x2∼D

[l(x1) 6= l(x2) and dist(x1, x2) < λ] > 0

]
≤ φU (λ). (1)

A slightly different version of this measure was used in (Kushagra and Ben-David, 2015),
which we refer to as PL-Conditional :

Definition 2 (PL-Conditional (Kushagra and Ben-David, 2015)) The labeling func-
tion l satisfies φC-PL-Conditional if for all λ > 0:

Pr
x1,x2∼D

[l(x1) 6= l(x2) | dist(x1, x2) < λ] ≤ φC(λ). (2)

Both PL-Unary and PL-Conditional have been used to demonstrate faster learning rates for
nicer distributions. In particular, they have been shown to characterize the sample complexity
of the Nearest Neighbor classifier. In addition, PL-Unary has also been used to quantify
the label complexity savings in active learning paradigm (Urner et al., 2013). These results
imply that the faster the decay of φU (λ) (or φC(λ)) as λ→ 0, the nicer the distribution and
the easier it is to learn the task of interest (in terms of the sample complexity).

A distinctive feature of PL-Unary and PL-Conditional is that they directly depend on
the geometry of the input space. In particular they indicate that by changing the distance
measure one could make the task of interest easier or harder to learn. Thus, it would
be advantageous if one could automatically select a feature representation under which
the correlation between the input space and the labeling function, as measured by PL, is
strong and the task of interest becomes easier to learn. Of course, selecting such a good
data representation is likely to be as difficult as learning a good classifier. However, in the
multi-task setting, under the assumption that for a set of tasks there exists a representation
under which they all enjoy good PL, the required training sample can be divided between
the different tasks. As a result, the more tasks there are in the pool the less data per task
it takes to improve the data representation. This is where one leverages the multi-task
aspect of the learning process. Such selection process would naturally require comparison of
φU (λ) (or φC(λ)) for various feature representations. However, because the true marginal
distribution D and labeling function f are not known to the learner, neither are φU (λ)
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and φC(λ). Thus, one would need to estimate them from the data. However, both these
quantities are not reliably estimable from finite samples. Indeed, estimating PL-Unary would
require determining for any given ball whether the minority label in it has non-zero mass,
which would require large number of samples if that mass of the minority label is close to
0. In (Kushagra and Ben-David, 2015) the authors proposed to estimate PL-Conditional
by representing the conditional probability as a ratio and estimate the nominator and the
denominator separately. However, as the authors notice it would not be reliable for small
values of λ, since for them both the denominator and the nominator are expected to be
close to 0 and even small additive errors could result in large multiplicative errors. Thus, we
propose a different version of PL which we refer to as PL-Pairwise:

Definition 3 (PL-Pairwise) The labeling function l satisfies φP -PL-Pairwise if for all
λ > 0:

Pr
x1,x2∼D

[l(x1) 6= l(x2) and dist(x1, x2) < λ] ≤ φP (λ). (3)

As we show in the next sections, the advantage of PL-Pairwise over previously used versions
of PL is that it can be reliably estimated from finite samples (Section 3) and used in the
multi-task setting to identify a feature representation that leads to fast convergence rates
when used in conjunction with the nearest neighbor classifier (Sections 4) or in active learning
paradigm (Section 5).

3. Estimating PL-Pairwise

In the multi-task setting the learner is given a collection of T training sets S1, . . . , ST ,
where each St = {(xt1, lt(xt1)), . . . , (xtn, lt(x

t
n))} consists of n examples sampled i.i.d. from the

task-specific data distribution Dt and labeled by the ground truth labeling function lt. We
consider the setting where the learner is given a family of kernel functions K and its goal
is to identify the best kernel in this family. As a quality measure of kernel we will use the
following multi-task version of PL-Pairwise:

Definition 4 A set of tasks 〈D1, l1〉, . . . , 〈DT , lT 〉 satisfies Φ-MT-PL-Pairwise with respect
to a kernel function K if for all λ > 0:

1

T

T∑
t=1

Pr
x,x′∼Dt

[lt(x) 6= lt(x
′) ∧ ‖x− x′‖K < λ] = Φ(λ,K). (4)

The following theorem shows that this quantity can be reliably estimated from a collection
of finite training sets. In particular, note that the quality of estimation (α(k)) vanishes
as 1√

Tn
, therefore what matters is the total size of the training data. This indicates the

advantage of having access to multiple tasks - as the number of tasks T grows, the amount
of training examples per task n, sufficient for reliable estimation, decreases.

Theorem 5 For any tasks 〈D1, l1〉, . . . , 〈DT , lT 〉, any set K of B2-bounded kernels with
pseudodimension p and any δ > 0, with probability at least 1 − 2δ over S = S1 . . . , ST the
following holds uniformly for all K ∈ K and all k = 1, 2, . . . :

Φ(2−k,K)− α(k) ≤ Φ̂S(2−(k−1),K) ≤ Φ(3 · 2−k,K) + α(k). (5)
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where

α(k) =

√
32p

Tn
log

(
30eT 2n2B2 · 22k

p

)
+

32

Tn
log

2

δ
+

32k

Tn
= Õ

(√
pk

Tn

)
(6)

Φ̂S(λ,K) =
1

T

T∑
t=1

2

n(n− 1)

∑
1≤i<j≤n

Jyti 6= ytj ∧ ‖xti − xtj‖K < λK (7)

Proof First, we utilize the standard 3-step procedure for some fixed λ.
Step 1. Symmetrization. Define:

Q = {S ∈ (X ×Y)(T,n) : ∃K : Φ(λ,K) ≥ Φ̂S(2λ,K) + ε}

R = {(S, S̃) ∈ (X ×Y)(T,n) × (X ×Y)(T,n) : ∃K : Φ̂S̃(λ,K) ≥ Φ̂S(2λ,K) + ε/2}

By triangle inequality:

Φ(λ,K) ≥ Φ̂S(2λ,K) + ε ∧ Φ(λ,K) ≤ Φ̂S̃(λ,K) +
ε

2
⇒ Φ̂S̃(λ,K) ≥ Φ̂S(2λ,K) +

ε

2
. (8)

Therefore:

Pr(R) ≥ Pr{∃K : Φ(λ,K) ≥ Φ̂S(2λ,K) + ε ∧ Φ(λ,K) ≤ Φ̂S̃(λ,K) + ε/2} (9)

For S ∈ Q fix some K such that Φ(λ,K) ≥ Φ̂S(2λ,K) + ε. Then, by McDiarmid’s inequality
Pr{Φ(λ,K) > Φ̂S̃(λ,K) + ε/2} ≤ 0.5 if Tnε2 > 8 log 2. Consequently Pr(Q) ≤ 2 Pr(R).
Step 2. Permutations. Define Γ to be a set of permutations on pairs {(1, 1), . . . , (T, 2n)}
such that {σ(i, j), σ(i, n + j)} = {(i, j), (i, n + j}) for every i = 1, . . . , T and j = 1, . . . , n.
Then:

Pr(R) ≤ max
(S,S̃)

Pr
σ
{σ((S, S̃)) ∈ R}. (10)

Step 3. Reduction to a finite class. Fix (S, S̃) such that there exists a kernel K:

Φ̂S̃(λ,K) ≥ Φ̂S(2λ,K) + ε/2. (11)

Let K̃(3λ2/2) be a subset of kernel family K such that for every K ∈ K there exists a
K̃ ∈ K̃(3λ2/2) such that for every xti, x

t
j ∈ S ∪ S̃:

‖xti − xtj‖2K̃ − 3λ2/2 ≤ ‖xti − xtj‖2K ≤ ‖xti − xtj‖2K̃ + 3λ2/2. (12)

Then:

‖xti − xtj‖K̃ ≤
√

2.5λ⇒ ‖xti − xtj‖K ≤ 2λ; ‖xti − xtj‖K ≤ λ⇒ ‖xti − xtj‖K̃ ≤
√

2.5λ

Therefore:
Φ̂S̃(
√

2.5λ, K̃) ≥ Φ̂S(
√

2.5λ, K̃) + ε/2. (13)

As a result, using McDiarmid’s inequality:

Pr(R) ≤ max
(S,S̃)

Pr
σ
{σ((S, S̃)) ∈ R} ≤ |K̃(3λ2/2)| exp

(
− 2ε2/4

Tn(4/Tn)2

)
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According to Lemma 13 in Appendix A:

|K̃(3λ2/2)| ≤ N ‖·‖
2

2Tn (K, 3λ2/2) ≤
(

30eT 2n2B2

pλ2

)p
. (14)

By re-writing the above in terms of δ we obtain that for a fixed λ w.p. 1− δ for all K ∈ K:

ΦT (λ,K) ≤ Φ̂S(2λ,K) +

√
32p

Tn
log

(
30eT 2n2B2

pλ2

)
+

32

Tn
log

2

δ
. (15)

Step 4. Union bound. Now we take a union bound over all λ of form 2−k by setting the
corresponding δ to δ/2k. As a result we obtain that w.p. at least 1 − δ uniformly for all
K ∈ K and k = 1, 2, . . . :

ΦT (2−k,K) ≤ Φ̂S(2−(k−1),K) +

√
32p

Tn
log

(
30eT 2n2B2 · 22k

p

)
+

32

Tn
log

2

δ
+

32k

Tn
. (16)

By repeating the same procedure in the opposite direction, we obtain the statement of
Theorem 5.

4. Application to Nearest Neighbor

Both PL-Unary and PL-Conditional have been shown to characterize the sample complexity
of the Nearest Neighbor classifier (Urner et al., 2011; Kushagra and Ben-David, 2015). The
following theorem shows that similar result can be obtained using PL-Pairwise (proof can be
found in Appendix B.1).

Theorem 6 Let X be the input domain equipped with a distance measure d. Assume that
the tasks 〈D1, l1〉, . . . , 〈DT , lT 〉 satisfy MT-PL-Pairwise with function Φ(λ) (with respect to
the distance dist). Let S1, . . . , ST be T training sets, where every Si consists of n points
sampled i.i.d. according to the task-specific marginal distribution Di and labeled by li. Then
the following holds:

E
S1,...,ST

1

T

T∑
t=1

ert(NN(St)) ≤ min
λ

(
r(λ)

ne
+ nΦ(λ)

)
, (17)

where ert(NN(St)) is the expected error of the nearest neighbor classifier on task 〈Dt, lt〉
obtained based on the training set St and r(λ) is the number of sets of diameter at most λ
needed to cover the input space.

This result shows that Φ(λ) can be used to characterize how easy (on average) it is to
learn given tasks using Nearest Neighbor. In general, the faster the decay of Φ(λ) with
λ→ 0, the fewer samples per task n are sufficient to guarantee low average expected error.
In order to see how Theorem 6 compares to the analogous results for PL-Unary (Urner
and Ben-David, 2013) and PL-Conditional (Kushagra and Ben-David, 2015) (fully stated
in Appendix B.2), consider the case of a single task, T = 1, and X ⊂ [0, 1]d with Euclidean
metric. In this case r(λ) behaves as λ−d.
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Exponential Lipschitzness First suppose that PL-Pairwise is satisfied with φP (λ) =
e−1/λ. In this case Theorem 6 leads to sample complexity O

(
1
εδ logd 1

εδ

)
. With the same

condition on PL-Conditional (Theorem 15) gives the same complexity bound. The same
condition on PL-Unary (Theorem 14) results in O

(
1
εδ logd 1

ε

)
. So we see that under exponen-

tially decaying PL Theorem 6 provides essentially the same sample complexity guarantees
for Nearest Neighbor, as the previously known measures.

Polynomial Lipschitzness Suppose now that the labeling function satisfies PL-Pairwise
with φP (λ) = λm for some m ∈ N, m ≥ d. In this case Theorem 6 leads to sample

complexity of O
((

1
εδ

)m+d
m−d

)
. Under the same assumption but on PL-Unary (Theorem 14)

one obtains O
(

1
δ

(
1
ε

) d+m
m

)
. Finally, the same condition on PL-Conditional (Theorem 15)

leads to O
((

1
εδ

)m+d
m

)
. Thus, it might appear like the result of Theorem 6 is weaker than

those based on PL-Unary and PL-Conditional. However, it is based on potentially weaker
assumption, because PL-Pairwise might be decaying regardless of the labeling function just
because having two λ-close points might be unlikely. In fact, as the following theorem shows,
these results are incomparable (proof can be found in Appendix B.2.1):

Theorem 7 Let the domain be X ⊂ [−1, 1] and the labeling function be l(x) = sign(x).
Then there exist distributions D1 and D2 such that guarantees provided by Theorem 6 based
on PL-Pairwise are stronger than those based on PL-Unary and PL-Conditional for D1 and
weaker for D2.

Now we show how Theorem 6, combined with Theorem 5 can be used to select a kernel
for using it later with the nearest neighbor classification and obtaining faster learning rates.

4.1. Selecting a kernel for Nearest Neighbor

Assume that for all kernels K r(K,λ) behaves as λ−d and that there exists a kernel K∗ ∈ K
such that Φ(K,λ) = λm for some m > d. For fixed ε and δ select a kernel K̂ for which λ̂
satisfying

Φ̂(2λ,K)r(λ) < ε2δ2/2 (18)

is the largest. For λ∗ ∼ (εδ)
2

m−d and Tn ∼ Õ
((

1
εδ

) 2m
m−d

)
:

r(λ∗)α(− log λ∗) < ε2δ2/4; r(λ∗)Φ(3λ∗,K∗) < ε2δ2/4

Thus, according to Theorem 5:

r(λ∗)Φ̂(2λ∗,K∗) ≤ r(λ∗)(Φ(3λ∗,K∗) + α(− log λ∗)) < ε2δ2/2. (19)

Therefore, due to the choice of K̂, λ̂ ≥ λ∗. Thus, using Theorem 5 again:

r(λ̂)Φ(λ̂, K̂) ≤ r(λ̂)(Φ̂(2λ̂, Ĥ) + α(− log λ̂)) ≤ ε2δ2/2 + r(λ)α(− log λ∗) < ε2δ2, (20)
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which means that (ε, δ)-multi-task-guarantees for Nearest Neighbor using kernel K̂ are implied
with the number of sample per task n satisfying:

n ∼

√
r(λ̂)

Φ(λ̂, K̂)
∼
(

1

εδ

)m+d
m−d

.

Thus one can identify a beneficial kernel and learn every given task using Nearest Neighbor

with access to T ∼ Õ
(

1
εδ

)
tasks and n ∼ O

((
1
εδ

)m+d
m−d

)
labeled samples per task. This

example shows how overhead associated with estimation of Φ(λ,K) and identification of a
beneficial kernel function spreads across the tasks and by having access to sufficiently many
tasks one can recover the sample guarantees in terms of number of samples per task, as if
that beneficial kernel was known in advance.

5. Application in active learning

The usefulness of the notion of Probabilistic Lipschitzness in cluster-based active learning
was demonstrated in (Urner et al., 2013). The authors proposed a labeling procedure, called
PLAL, that takes an unlabeled training set, queries labels of some of the sample points
and returns a, possibly erroneous, full labeling of the sample. It starts with partitioning
the input space into large regions and automatically assigns labels to those that seem to
be label-homogeneous after a few queries, all the remaining clusters are refined and the
procedure repeats recursively. The authors showed that it is possible to control the amount
of incorrect labels that PLAL assigns and therefore this algorithm can be safely used as a
pre-procedure to various learning methods, such as empirical risk or regularized empirical risk
minimization. Moreover, the amount of queries that PLAL makes, and thus the potential
savings in terms of label complexity that it offers, can be characterized using PL-Unary. As
in the case of the sample complexity of Nearest Neighbor, the faster the decay of φU (λ), the
fewer queries PLAL needs to produce a full labeling of the initial set. Thus, by selecting
a data representation, under which this decay is fast, one could obtain significant savings
in terms of label complexity. In the following we show that the number of queries that a
refined version of PLAL, proposed in (Kpotufe et al., 2015), makes can be also characterized
using PL-Pairwise.

The algorithm from (Kpotufe et al., 2015) (for completeness the pseudo-code is provided
in Appendix C) takes as input accuracy and confidence parameters ε and δ, an unlabeled
training set and a hierarchical partition of the input space:

Definition 8 A hierarchical partition P = {Pl, l ∈ N} is a collection of partitions of the
domain X . Formally, for every l ∈ N Tl is a collection of disjoint sets C such that:

• for every C ∈ C diam(C) = supx,x′∈C dist(x, x′) ≤ 2−l

• X ⊂ ∪C∈CC

• every C ∈ Pl has a parent C ′ in Pl−1 such that C ⊂ C ′

The hierarchical partition P has tree-growth rate κ ≥ 1 if for every l |Pl| ≤ 2κl.
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The following theorem provides the guarantees for this method in terms of PL-Pairwise:

Theorem 9 Let X be the input domain equipped with a distance measure d with diameter at
most 1. Let 0 < ε, δ < 1/2 and τ = 1/2− ε/162. Assume that the tasks 〈D1, l1〉, . . . , 〈DT , lT 〉
satisfy MT-PL-Pairwise with function Φ(λ) (with respect to the distance d). Let X1, . . . , XT

be T training sets, where every Xi consists of n points sampled i.i.d. according to the task-
specific marginal distribution Di. Assume that n ≥ 81(16VP log(2n) + log(8T/δ))/ε2, where
VP is the Vapnik-Chervonenkis dimension of the class of all clusters of P . Then the following
holds:

• running algorithm from (Kpotufe et al., 2015) on each of Xt with parameters ε and
δ/T produces a full labeling of Xt with at most ε-fraction of labels being incorrect with
probability at least 1− δ

• the expected number of queries that the algorithm makes, averaged across all tasks, is
at most:

min
l

(
2κl · 2κlnε+ 7δn+ n ·

√
2 · 2κlΦ(2−l)

1− 4τ2
ε

)
. (21)

The first statement of the above theorem follows directly from (Kpotufe et al., 2015). The
proof of the second statement can be found in Appendix C.1.

To better see the implications of this result and how it compares to the result of Kpotufe
et al. (2015) , consider the case of one task, T = 1, and suppose the the data distribution
satisfies polynomial Lipschitzness: φP (λ) = λm. Then the expected number of queries, as
guaranteed by Theorem 9, is at most:

Õ

((
1

ε

) 4κ+m
κ+m

)
. (22)

Analogously to the case of the nearest neighbor classification, it leads to the conclusion that
as the distribution gets nicer, i.e. m→∞, the query complexity of the labeling procedure
reduces to Õ

(
1
ε

)
. Under the same assumption on PL-Unary, from Theorem 11 in (Kpotufe

et al., 2015) one obtains the label complexity of:

C2κα/(κ+α) · εα/(κ+α) log(1/ε) · n = Õ

((
1

ε

) 2κ+α
κ+α

)
(23)

While it may seem like, as in the case of Nearest Neighbors, the guarantees provided by
Theorem 9 are weaker than (23), both results lead to the same conclusion: as the distribution
gets nicer, i.e. α → ∞, the query complexity of the labeling procedure reduces to Õ

(
1
ε

)
.

Moreover, in fact, the following theorem shows that they are incomparable (the proof can be
found in Appendix C.2):

Theorem 10 Let the domain be X ⊂ [−1, 1] and the labeling function be l(x) = sign(x).
Then there exist distributions D1 and D2 such that guarantees provided by Theorem 9 based
on PL-Pairwise are stronger than those based on PL-Unary for D1 and weaker for D2.

10
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Now we show that in combination with Theorem 5, we obtain a method for selecting a
kernel in a given kernel family, such that when used in algorithm from Kpotufe et al. (2015),
it would lead to label complexity saving, while providing a full labeling of initially unlabeled
samples which then can be safely used by any (regularized) empirical risk minimization
method.

5.1. Selecting a kernel for active learning

Suppose that for all kernels in K there exists a hierarchical partition with tree-growth rate κ
and that there exists a kernel K∗ for which Φ(λ,K∗) = λm for some m > κ. Consider two
cases.

Case 1: m is known. Let K̂ be a kernel for which λ̂ satisfying:

Φ̂(2λ, K̂)

λκ
≤ ε

3(m−κ)
m+κ (24)

is the largest. For λ∗ ∼ ε
3

m+k and Tn ∼
(

1
ε

) 6m
m+κ according to Theorem 5:

Φ̂(2λ∗,K∗)

(λ∗)κ
≤ Φ(2λ∗,K∗) + α(− log λ∗)

(λ∗)κ
≤ ε

3(m−κ)
m+κ

Thus, λ̂ ≥ λ∗. Moreover, again by Theorem 5:

Φ(λ̂, K̂)

λ̂κ
≤ Φ̂(2λ̂, K̂) + α(− log λ̂)

λ̂κ
≤ 2ε

3(m−κ)
m+κ . (25)

Therefore, the expected average number of queries that algorithm from Kpotufe et al. (2015)
based on kernel K̂ will perform on T tasks is at most: ε

λ̂κ
+

√
Φ(λ̂, K̂)

λ̂κε

 · n′ ≤ ( ε

(λ∗)κ
+ ε

m−2κ
m+κ

)
· n′ ∼ Õ

((
1

ε

)m+4κ
m+κ

)
, (26)

which for large m is less than Õ
(

1
ε2

)
and recovers the guarantees for label complexity when

using a kernel with φP (λ) = λm.

Case 2: m is unknown. Let K̂ be a kernel for which λ̂ satisfying:

Φ̂(2λ, K̂)

λκ
≤ ε3 (27)

is the largest. For λ∗ ∼ ε
3

m−k and Tn ∼
(

1
ε

) 6m
m−κ according to Theorem 5:

Φ̂(2λ∗,K∗)

(λ∗)κ
≤ Φ(2λ∗,K∗) + α(− log λ∗)

(λ∗)κ
≤ ε3

Thus, λ̂ ≥ λ∗. By Theorem 5:

Φ(λ̂, K̂)

λ̂κ
≤ Φ̂(2λ̂, K̂) + α(− log λ̂)

λ̂κ
≤ 2ε3. (28)

11
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Therefore, the expected average number of queries that the algorithm from Kpotufe et al.
(2015) based on kernel K̂ will perform on T tasks is at most: ε

λ̂κ
+

√
Φ(λ̂, K̂)

λ̂κε

 · n′ ≤ ( ε

(λ∗)κ
+ ε

)
· n′ ∼ Õ

((
1

ε

)m+2κ
m−κ

)
, (29)

which again for large m leads to improvement over querying all n′ ∼ O
(

1
ε2

)
labels.

Thus, in both cases, under an assumption of existence of a beneficial kernel (with
sufficiently quickly decaying Φ(K,λ)), using Theorem 5 one is able to identify a kernel that
would lead to siginifcant label complexity reductions when used in active labeling procedure
from Kpotufe et al. (2015) and thus, would lead to label complexity savings regardless of
which risk minimization method is used later on for solving all tasks of interest.

6. Conclusion

In this work we have shown an alternative approach to multi-task representation learning
that uses the notion of Pairwise-PL as a quality measure of kernel functions. We have shown
that PL-Pairwise, in contrast to previously proposed versions of PL, can be reliably estimated
from finite data. In particular, we demonstrated how to select a representation (a kernel
function) that would lead to faster learning rates it terms of number of samples per task
when used for the nearest neighbor classification or in active learning paradigm. However,
our analysis of these two applications is limited by the assumption that the covering number
of the input space in case of NN classification and tree-width of hierarchical partition in
active learning behave equally for all kernels in the family. In practice, this assumption might
not be satisfied and one would need to take it into account. In this work we focused only
on statistical aspects of learning a kernel based on PL-Pairwise. Thus an important future
direction is to develop an efficient algorithmic solution for the proposed approach.
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Appendix A. Supplementary results

For a sample x = {x1, . . . , xn} define:

Dx
∞(K, K̃) = max

i,j
|K(xi, xj)− K̃(xi, xj)|. (30)

Definition 11 The uniform `∞ kernel covering number Nn,∞(K, ε) of a kernel family K is
given by considering all possible samples x of size n:

Nn,∞(K, ε) = sup
x
NDx

∞(K, ε). (31)

Lemma 12 (Lemma 3 in (Srebro and Ben-David, 2006)) For any kernel family K
bounded by B2 with pseudodimension p:

Nn,∞(K, ε) ≤
(
en2B2

εp

)p
. (32)

Define:

Dx
∞,‖·‖2(K, K̃) = max

i,j

∣∣∣‖xi − xj‖2K − ‖xi − xj‖2K̃∣∣∣ , (33)

N ‖·‖2n,∞(K, ε) = sup
x
NDx

∞,‖·‖2
(K, ε). (34)

By definition:
‖x− x′‖2K = K(x, x)− 2K(x, x′) +K(x′, x′). (35)

Therefore:

Dx
∞,‖·‖2(K, K̃) ≤ 4Dx

∞(K, K̃) (36)

and, consequently:

Lemma 13 For any kernel family K bounded by B2 with pseudodimension p:

N ‖·‖2n,∞(K, ε) ≤
(

4en2B2

εp

)p
. (37)
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Appendix B. Nearest Neighbor

B.1. Proof of Theorem 6

Partition the domain X with r(λ) sets with diameter λ for some λ > 0. For any x ∈ X
denote by C(x) (any of) the set it belongs to and by NNS(x) its nearest neighbor in the set
S. Then:

erD(NN(S)) = Pr
x∼D

Jl(NNS(x)) 6= l(x)K ≤ Pr
x∼D

[S ∩ C(x) = ∅]+ (38)

Pr
x∼D

[NNS(x) ∈ C(x) ∧ l(x) 6= l(NNS(x))]. (39)

By Lemma 19.2 in (Shalev-Shwartz and Ben-David, 2014):

E
S

Pr
x∼D

[S ∩ C(x) = ∅] ≤ r(λ)

ne
. (40)

To analyze the second term we use the definition of φ:

E
S

Pr
x∼D

[NNS(x) ∈ C(x) ∧ l(x) 6= l(NNS(x))] =

E
S
E
x
JNNS(x) ∈ C(x) ∧ l(x) 6= l(NNS(x)) ∧ dist(x,NNS(x)) ≤ λ] = (41)

Pr
S,x

[l(x) 6= NNS(x) ∧ dist(x,NNS(x)) ≤ λ] ≤ (42)

Pr
S,x

[∃i ∈ [0, n] : dist(xi, x) ≤ λ ∧ l(xi) 6= l(x)] ≤ (43)

n Pr
x1,x

[dist(x1, x) ≤ λ ∧ l(x1) 6= l(x)] ≤ (44)

nφ(λ). (45)

By combining (40) and (45) we obtain the statement of the theorem.

B.2. Comparison to previously known results

In terms of PL-Unary and PL-Conditional the sample complexity of Nearest Neighbor can
be characterized as follows:

Theorem 14 (Urner and Ben-David (2013)) Let the domain be X ⊂ [0, 1]d. Assume
that the labeling function l is deterministic and satisfies PL-Unary with function φU . Then
the sample complexity of Nearest Neighbor is upper bounded by:

Pr
S

[erD(NN(S)) > ε] ≤ 2

εne

( √
d

φ−1
U (ε/2)

)d
(46)

Theorem 15 (Kushagra and Ben-David (2015)) Let the domain be X ⊂ [0, 1]d. As-
sume that the labeling function l is deterministic and satisfies PL-Conditional with function
φC . Then the sample complexity of Nearest Neighbor is upper bounded by:

Pr
S

[erD(NN(S)) > ε] ≤ min
λ∈(0,1)

 1

neε

(√
d

λ

)d
+
φC(λ)

ε

 . (47)
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Similarly, from Theorem 6, we obtain:

Theorem 16 Let the domain be X ⊂ [0, 1]d and S = {(x1, l(x1), . . . , (xn, l(xn)} be the
training set of n points sampled i.i.d. according to D. Assume that the labeling function l is
deterministic and satisfies PL-Pairwise with function φP . Then for any ε > 0:

Pr
S

[erD(NN(S)) > ε] ≤ min
λ∈(0,1)

 1

neε

(√
d

λ

)d
+
nφP (λ)

ε

 . (48)

B.2.1. Proof of Theorem 7

Example 1. Let X+ be a set of points on [−1, 1] of form 1
2k

and let X− be a set of points
of form − 1

2k
for k ≥ 0. Let X be a union of these two sets. All points in X− are assigned

label −1 and all points in X+ are assigned label +1. Finally, assume the following marginal
distribution:

p

(
1

2k

)
=

15

32
· 1

24k

p

(
− 1

2k

)
=

3

8
· 1

22k

Fix λ > 0 such that 1
2k
< λ ≤ 1

2k−1 for some k > 1. Now we can compute the values of
PL-Unary, PL-Pairwise and PL-Conditional for this distribution.

1. PL-Unary

Pr
x

(
Pr
y

(l(x) 6= l(y) ∧ dist(x, y) ≤ λ) > 0

)
=
∑
n≥k

p

(
− 1

2n

)
+
∑
n≥k

p

(
1

2n

)
=

∑
n≥k

3

8
· 1

22n
+
∑
n≥k

15

32
· 1

24n
=

3

8
· 1

22k

∑
n≥0

1

22n
+

15

32
· 1

24k

∑
n≥0

1

24n
=

1

2
· 1

22k
+

1

2
· 1

24k
≤

0.5λ2 + 0.5λ4 ≤ λ2

2. PL-Pairwise

Pr
x,y

(l(x) 6= l(y) ∧ dist(x, y) ≤ λ) = Pr
y

(
l(x) 6= l(y) ∧ dist(x, y) ≤ λ

∣∣∣x)Pr(x) =

∑
n≥k

p

(
− 1

2n

)
·

∑
m≥k

p

(
1

2m

)+
∑
n≥k

p

(
1

2n

)
·

∑
m≥k

p

(
− 1

2m

) =

2

∑
n≥k

3

8
· 1

22n

 ·
∑
m≥k

15

32
· 1

24m

 =
2 · 3 · 15

8 · 32
· 1

22k
· 1

24k

∑
n≥0

1

22n

∑
m≥0

1

24m

 ≤ 0.5λ6

3. PL-Conditional

Pr
x,y

(dist(x, y) ≤ λ) ≥
∑
n≥k

p

(
− 1

2n

)∑
m≥k

p

(
− 1

2m

) =
9

64

1

22k
· 1

22k
· 16

9
=

1

4
· 1

24k
≥ 4λ4
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Pr
x,y

(dist(x, y) ≤ λ) ≤
∑

n≥k−1

p

(
− 1

2n

) ∑
m≥k−1

p

(
− 1

2m

)
+

∑
m≥k−1

p

(
1

2m

)+

∑
n≥k−1

p

(
1

2n

) ∑
m≥k−1

p

(
− 1

2m

)
+

∑
m≥k−1

p

(
1

2m

) =

 ∑
n≥k−1

p

(
− 1

2n

)2

+

 ∑
n≥k−1

p

(
1

2n

)2

+ 2

 ∑
n≥k−1

p

(
− 1

2n

) ∑
n≥k−1

p

(
1

2n

) =

(
1

2
· 1

24(k−1)

)2

+

(
1

2
· 1

22(k−1)

)2

+ 2
1

2
· 1

24(k−1)
· 1

2

1

22(k−1)
=

26

28k
+

4

24k
+

25

26k
≤

64λ8 + 4λ4 + 32λ6 ≤ 100λ4

Pr
x,y

(
l(x) 6= l(y)

∣∣∣dist(x, y) ≤ λ
)

=
Prx,y (l(x) 6= l(y) ∧ dist(x, y) ≤ λ)

Prx,y (dist(x, y) ≤ λ)
= Θ(λ2)

Consequently, bounds for sample complexity of the Nearest Neighbor classifier in terms
of PL-Unary and PL-Conditional give:

O

((
1

ε

) 2+1
2

)
= O

((
1

ε

) 3
2

)
(49)

while based on PL-Pairwise we obtain:

O

((
1

ε

) 6+1
6−1

)
= O

((
1

ε

) 7
5

)
(50)

Example 2. Let X be [−1, 1] and the marginal distribution have the following density
function:

p(x) = |x|. (51)

Fix 1
2 λ > 0. Then:

1. PL-Unary

Pr
x

(
Pr
y

(l(x) 6= l(y) ∧ dist(x, y) ≤ λ) > 0

)
=

∫ λ

−λ
|x|dx = λ2

2. PL-Pairwise

Pr
x,y

(l(x) 6= l(y) ∧ dist(x, y) ≤ λ) = 2

∫ λ

0
x

∫ 0

x−λ
(−y)dydx =

5

12
λ4

3. PL-Conditional

Pr
x,y

(dist(x, y) ≤ λ) ≥
∫ 1−λ

0
x

∫ x+λ

x
ydydx =

1

2

∫ 1−λ

0
x(2λx+ λ2)dx =

λ(1− λ)3

3
+
λ2(1− λ)2

4
≥ λ

24
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Pr
x,y

(
l(x) 6= l(y)

∣∣∣dist(x, y) ≤ λ
)

=
Prx,y (l(x) 6= l(y) ∧ dist(x, y) ≤ λ)

Prx,y (dist(x, y) ≤ λ)
≤ 5 · 24 · λ4

12λ
= 10λ3

Consequently, bounds for sample complexity of the Nearest Neighbor classifier in terms
of PL-Unary and PL-Conditional give:

O

((
1

ε

) 2+1
2

)
= O

((
1

ε

) 3
2

)
(52)

and:

O

((
1

ε

) 3+1
3

)
= O

((
1

ε

) 4
3

)
(53)

while based on PL-Pairwise we obtain:

O

((
1

ε

) 4+1
4−1

)
= O

((
1

ε

) 5
3

)
(54)

Appendix C. Active learning

C.1. Proof of Theorem 9

We begin by repeating arguments from the proof of Theorem 7 in (Kpotufe et al., 2015).
Fix one task t and any level l. The number of labels requested up to level l (including

those requested at level l) is bounded by n · ε · 2κl(2κl). Now we bound the number of labels
yet to request at later levels. For any x let Cl(x) denote the cluster at level l that it belongs
to. Define:

X l =

{
x ∈ X :

∣∣∣∣ηCl(x) −
1

2

∣∣∣∣ ≥ τε} (55)

Consider any x ∈ X l. If µn(Cl(x)) < ε by construction x is labeled at level l. If instead
µn(Cl(x)) ≥ ε by combining Lemma 16 and Corollary 14 in (Kpotufe et al., 2015) one can
show that with high probability η̂S ≤ ε/3 and thus all of Cl(x) is labeled by the procedure.
Combining it all together, Kpotufe et al. (2015) have shown that with probability at least
1− 7δ for every level l, for every x ∈ X l cluster Cl(x) is labeled by the procedure at level l.
Thus, the number of points left to label is at most |X \ X l |. In the original proof of Kpotufe
et al. (2015) this quantity is upper-bounded using the notion of clusterability of labels. We,
instead will use PL-Pairwise.

Define C̄l to be the set of all clusters at level l for which:∣∣∣∣ηC − 1

2

∣∣∣∣ < τε. (56)

We need to bound µ(X \X l) = µ(∪C∈C̄lC) =
∑

C∈C̄l µ(C). First, note that for every C ∈ C̄l:

Pr[lt(x) 6= lt(x
′)|x, x′ ∈ C] = 2η(C)(1− η(C)) ≥ 1

2
− 2τ2

ε . (57)
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With this we obtain the following sequence of derivations with r = 2−l:

Pr
x,x′∼Dt

[lt(x) 6= lt(x
′) ∧ ‖x− x′‖ ≤ r] ≥

∑
C∈C̄l

Pr
x,x′∼Dt

[lt(x) 6= lt(x
′) ∧ x, x′ ∈ C] =

∑
C∈C̄l

Pr
x,x′∼Dt

[lt(x) 6= lt(x
′)|x, x′ ∈ C] Pr

x∼Dt
[x ∈ C] Pr

x′∼Dt
[x′ ∈ C] ≥

∑
C∈C̄l

(
1

2
− 2τ2

ε

)
µ2(C) ≥

(
1

2
− 2τ2

ε

) (∑
C∈C̄l µ(C)

)2
|C̄l|

≥
(

1

2
− 2τ2

ε

) (∑
C∈C̄l µ(C)

)2
2κl

.

Therefore: ∑
C∈C̄l

µ(C) ≤

√
2 · 2κl Prx,x′∼Dt [lt(x) 6= lt(x′) ∧ ‖x− x′‖ ≤ 2−l]

1− 4τ2
ε

. (58)

Thus, for every task t the expected number of label queries is bounded by:

min
l

2κl · 2κlnε+ 7δn+

√
2 · 2κl Prx,x′∼Dt [lt(x) 6= lt(x′) ∧ ‖x− x′‖ ≤ 2−l]

1− 4τ2
ε

 . (59)

Therefore, the expected number of queries, averaged across all T tasks is upper bounded
by:

min
l

2κl · 2κlnε+ 7δn+
1

T

T∑
t=1

√
2 · 2κl Prx,x′∼Dt [lt(x) 6= lt(x′) ∧ ‖x− x′‖ ≤ 2−l]

1− 4τ2
ε

 ≤
min
l

2κl · 2κlnε+ 7δn+

√
2 · 2κl 1

T

∑T
t=1 Prx,x′∼Dt [lt(x) 6= lt(x′) ∧ ‖x− x′‖ ≤ 2−l]

1− 4τ2
ε

 ≤
min
l

(
2κl · 2κlnε+ 7δn+

√
2 · 2κlΦ(2−l)

1− 4τ2
ε

)
,

which concludes the proof.

C.2. Proof of Theorem 10

Example 1. Consider the marginal distribution with density function p(x) = 0.5 on [−1, 0]
and p(x) = 2.5x4 on (0, 1]. Then:

PL-Unary:

Pr
x

(
Pr
y

(l(x) 6= l(y) ∧ dist(x, y) ≤ λ) > 0

)
=

∫ 0

−λ
0.5dx+

∫ λ

0
2.5x4dx = 0.5λ+ 0.5λ5

PL-Pairwise:

Pr
x,y

(l(x) 6= l(y) ∧ dist(x, y) ≤ λ) =

∫ 0

−λ
0.5

∫ x+λ

0
2.5y4dydx+

∫ λ

0
2.5x4

∫ 0

x−λ
0.5dydx =

5

4

∫ 0

−λ

(x+ λ)5

5
dx+

5

4

∫ λ

0
x4(λ− x)dx =

1

4

λ6

6
+

5

4

(
λ6

5
− λ6

6

)
=
λ6

12
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MTL based on PL

Suppose that as hierarchical partition one uses dyadic tree and so κ = 1. Then the guarantees
provided by Theorem 9 result in label complexity of Õ

((
1
ε

) 10
7

)
. At the same time, based on

PL-Unary, we obtain label complexity of Õ
((

1
ε

) 3
2

)
.

Example 2. Consider example 2 from Theorem 7.

Algorithm 1 Labeling procedure from (Kpotufe et al., 2015)
Input parameters X,P, ε, δ
set the active cluster set Cl = P0

for l = 0, 1, . . . do
δl = δ/|Cl|2l+1

nl(ε) = 9′log(8/δl)/ε
for each C ∈ Cl do
if µn(C) < ε then
request all labels for points in C ∩X and skip to the next cluster in Cl

end if
S =labeled sample from C ∩X (with replacement) of size nl(ε)
η̂S - probability of label 1 in S
if min{η̂S , 1− η̂S} ≤ ε/3 then
label all C ∩X with the majority label from S

else
add children of C to Cl+1

end if
end for
if all of X is labeled then
return labeled sample X

end if
end for
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