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Abstract

We study the problem of sequential prediction with coded side information under loga-
rithmic loss (log-loss). We show an operational equivalence between this setup and lossy
compression with log-loss distortion. Using this insight, together with recent work on lossy
compression with log-loss, we connect prediction strategies with distributions in a certain
subset of the probability simplex. This allows us to derive a Shtarkov-like bound for regret
and to evaluate the regret for several illustrative classes of experts. In the present work,
we mainly focus on the “batch” side information setting with sequential prediction.

1. Introduction

We study the problem of sequential prediction, or sequential probability assignment, with
logarithmic loss (log-loss). In this setting, the predictor sees realizations xt−1 ∈ X t−1 of
some sequence taking values on a finite or countably infinite alphabet X and aims to predict
the next realization of the sequence, xt. The predictor outputs soft information; that is, it
provides a distribution P̂ ∈ P(X ) over the possible values of xt. The loss incurred by the
predictor at time t is given by

`(xt, P̂ ) = log
1

P̂ (xt)
, (1)

thereby incurring a high loss if the actual outcome is unlikely under the predicted distribu-
tion P̂ . This problem has been well studied in information-theoretic and learning-theoretic
literature, see, for example, Merhav and Feder (1998), Cesa-Bianchi and Lugosi (2006,
Chapter 9) and references therein. In this work, we generalize the problem and allow the
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predictor access to coded side information prior to making its prediction. In our setting
there are two agents: a compressor and a predictor. The compressor knows the true se-
quence, but is only allowed a rate-limited connection to the predictor; thus it needs to
compress the sequence to facilitate the prediction task.

It is well known (e.g. Merhav and Feder (1998)) that the problem of sequential prediction
with log-loss is equivalent to the problem of lossless compression. Given a good compressor
for an information source, we can use this compressor to design a good predictor. Con-
versely, given a good predictor we can use it to design a good compressor. This connection
between lossless compression and prediction has far-reaching implications: it has given rise
to statistical inference frameworks such as the Minimum Description Length principle, see,
for example, Grünwald (2007). This work demonstrates an analogous correspondence be-
tween universal lossy compression with log-loss and sequential prediction with coded side
information. Such an equivalence establishes a nice duality between the two problems: in
universal lossy compression, the aim is to learn the distribution in order to lower distortion,
while in sequential prediction with coded side information the goal is to compress in order
to improve learning.

Universal lossy compression with log-loss has been previously studied in Shkel et al.
(2017) and tight bounds on redundancy with respect to a class of distributions were derived.
The operational equivalence stated here shows that these bounds also hold for sequential
prediction with coded side information. In this work, we focus on a learning-theoretic
style of analysis for these problems and characterize the regret with respect to a reference
class of experts. Because of the established equivalence our analysis also extends to lossy
compression with log-loss with respect to a reference class of experts. Moreover, since
conventional sequential prediction is equivalent to sequential compression, the present set
up also covers the problem of lossless sequential compression with coded side information.
For example, suppose a compression system assigns a fixed-length tag to the data file and
then adapts its lossless compression strategy according to this tag. In this case, the rate of
the lossy compressor is the number of distinct values the tag can take, while the loss of the
predictor is the length of the compressed file.

2. Preliminaries

We consider a variation on the conventional sequential prediction where there are two agents:
a compressor and a predictor. The compressor is omniscient: it sees the entire sequence
to be predicted, but can only communicate a rate-limited version of this sequence to the
predictor at time zero. At each time step, the predictor tries to guess the next observation
using the previously observed values and the message communicated by the compressor.

2.1 Compressor-predictor system

Definition 1 A batch compressor-predictor system with M messages is a collection of map-
pings:

Compressor: fc : X n → {1, . . . ,M} (2)

Predictor: ft : {1, . . . ,M} × X t−1 → P(X ), 1 ≤ t ≤ n. (3)
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Note that even though the side information encoding is batch, the prediction is still sequen-
tial. We discuss an extension to the sequential side information in Section 5.

We use the notation ft(·|m,xt−1) to denote the distribution selected by the predictor at
time t on the basis of the side information index m, and the sequence past xt−1. At each
time step t the predictor incurs the loss

`
(
xt, ft(·|m,xt−1)

)
= log

1

ft (xt|m,xt−1)
. (4)

The cumulative loss incurred by a batch compressor-predictor system f = {fc, f1, . . . , fn}
with M messages for a sequence xn is

Lf(x
n) =

n∑
t=1

`
(
xt, ft

(
·|m,xt−1

))
where m = fc(x

n). (5)

Next, recall the definition of a lossy code given in Shkel et al. (2017).

Definition 2 A fixed-length lossy code of size M for the log-loss distortion criterion is a
pair of mappings:

Compressor: fc : X n → {1, . . . ,M}
Decompressor: fd : {1, . . . ,M} → P(X n).

The distortion incurred by a lossy code (fc, fd) on a sequence xn is denoted by

d(xn, fd(fc(x
n))) = log

1

P̂ (xn)
, P̂ = fd(fc(x

n)). (6)

It turns out that the compressor-predictor systems in Definition 1 are operationally
equivalent to lossy compressors in Definition 2, as is shown in the following lemma.

Lemma 1 Given a compressor-predictor system f, we can construct a lossy code (fc, fd)
such that

Lf(x
n) = d(xn, fd(fc(x

n))) (7)

for all xn ∈ X n. The reverse is also true: given a lossy code (fc, fd) we can construct a
compressor-predictor system f such that (7) holds.

Proof Given a compressor-predictor system f = {fc, f1, . . . , fn} we can construct a lossy
code (fc, fd):

fd(m) = P̂m, where P̂m(xn) =
n∏
t=1

ft(xt|m,xt−1). (8)

Likewise, given a lossy code (fc, fd) we can construct a compressor-predictor system f:

ft
(
xt|m,xt−1

)
=

∑
x̃nt+1∈Xn−t P̂m

(
xt · x̃nt+1

)
∑

x̃nt ∈Xn−t+1 P̂m (xt−1 · x̃nt )
, (9)
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where P̂m = fd(m) and a · b denotes the concatenation of strings a and b. Then

Lf(x
n) =

n∑
t=1

log
1

ft (xt|fc(xn), xt−1)
= log

1

P̂m(xn)
= d (xn, fd (fc (xn))) . (10)

Note that in Shkel et al. (2017) the definition of lossy codes and subsequent derivation
of non-asymptotic bounds uses the so-called “single-shot approach”, where everything is
derived for an arbitrary alphabet X , and no Cartesian product structure or blocklength n
is assumed. In contrast, in the present prediction problem we cannot follow the single-shot
approach, as the dynamical aspect of the problem is of the essence. Nevertheless, the two
approaches are equivalent from the compression viewpoint. Indeed, we can always take
n = 1 to recover the single-shot results. Conversely, if a statement is true for an arbitrary
alphabet Y, it is also true for Y = X n.

2.2 Redundancy and Regret

Lemma 1 shows that, under log-loss, the problem of lossy compression is equivalent to the
problem of prediction with coded side information in a very strong sense. That is, we can
establish a one-to-one correspondence between lossy compression schemes and compressor-
predictor schemes. This correspondence is such that the distortion incurred by the lossy
compressor is the same as the loss incurred by the corresponding compressor-predictor
system simultaneously for every xn ∈ X n. This, in turn, means that most of the fundamental
limits of interest for these two problems are going to be the same.

In particular, suppose that the sequence Xn is randomly generated according to some
distribution Pθ. We do not know Pθ exactly, but we do know that it belongs to some family
of distributions indexed by θ ∈ Λ. In this case, we can immediately leverage redundancy
bounds for lossy compression. Let

L∗n,θ(M) = inf
f : |fc|≤M

E [Lf(X
n)] (11)

denote the smallest cumulative loss incurred by any compressor-predictor system where
Xn ∼ Pθ ∈ P(X n) and |fc| denotes the cardinality of the image fc(X n).

Definition 3 (Redundancy) The redundancy for the family of distributions {Pθ : θ ∈ Λ}
is defined to be

Rn(M,Λ) = inf
f : |fc|≤M

sup
θ∈Λ

{
E [Lf(X

n)]− L∗n,θ(M)
}

where Xn ∼ Pθ. (12)

To state our results, let R ∈ [0, log |X |] and define

Qν(X n) = {Q ∈ P(X n) : H∞(Q) ≥ ν} (13)

= {Q ∈ P(X n) : Q(xn) ≤ exp(−ν) ∀xn ∈ X n} (14)
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where

H∞(Q) = min
xn∈Xn

log
1

Q(xn)
(15)

denotes the min-entropy of Q. Recall that the relative entropy between P and reference
measure Q is given by

D(P‖Q) = E
[
log

P (X)

Q(X)

]
, P � Q and X ∼ P. (16)

The following is a direct corollary of Shkel et al. (2017, Theorem 1) and Lemma 1.

Theorem 1 The redundancy for a family of distributions Λ satisfies∣∣∣∣∣ min
Q∈QlogM (Xn)

max
θ∈Λ

{
D(Pθ‖Q)− min

Q̃∈QlogM (Xn)
D(Pθ‖Q̃)

}
−Rn(M,Λ)

∣∣∣∣∣ ≤ log 2 (17)

where the left side is zero whenever M = 1 or M = |X n|.
Note that, when M = 1, the present problem reduces to the sequential prediction with

no side information. In that case, Theorem 1 recovers

Rn(1,Λ) = min
Q∈P(Xn)

max
θ∈Λ

D(Pθ‖Q) (18)

which is well known to be the redundancy of sequential prediction with log-loss, see, for ex-
ample, Merhav and Feder (1998). When M = |X n|, there is only one reasonable compressor-
predictor strategy: to losslessly encode every element of X n and to incur no prediction loss.
In that case, the distribution of the source is irrelevant, and Theorem 1 recovers

Rn(|X n|,Λ) = 0. (19)

The minimax bound in Theorem 1 is further analyzed in Shkel et al. (2017), while
this work focuses on a learning-theoretic analysis of sequential prediction with coded side
information, i.e. the regret with respect to a class of experts.

Definition 4 (Regret) Let F be an expert class of compressor-predictor systems with M
messages. The regret with respect to F is

Vn(M,F) = inf
g : |gc|≤M

sup
xn∈Xn

{
Lg(xn)− inf

f∈F
Lf(x

n)

}
. (20)

For M = 1, (20) denotes the regret of sequential prediction with no coded side infor-
mation. In this case, the minimax optimal forecaster can be determined explicitly, and the
minimax regret characterized exactly, as

Vn(1,F) = log
∑

xn∈Xn

sup
f∈F

exp(−Lf(x
n)), (21)

see (Cesa-Bianchi and Lugosi, 2006, Theorem 9.1) and Shtarkov (1987). In the next section
we extend this result for any 1 ≤M ≤ |X n|.

Finally, we note that the expert setting for prediction with coded side information is
indeed distinct from other side information settings previously studied, for example Cesa-
Bianchi and Lugosi (2006, Chapter 9.9). In the present setting, the side information is not
assumed to be common to all of the experts; instead, each expert is allowed to design its
own side information.
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3. Bounds on regret

We begin by deriving sequence-wise versions of Shkel et al. (2017, Lemmas 1 and 2 ) which
connect compressor-predictor schemes to distributions in QlogM (X n). We then derive a
Shtarkov bound for Vn(M,F) for an arbitrary family of experts F .

3.1 Characterizing compressor-predictor systems

First, we state the following regularity condition on a compressor-predictor system f: the
compressor-predictor system satisfies

P̂m(xn) = 0, where P̂m =
n∏
t=1

ft(·|m,xt−1), ∀m 6= fc(x
n) (22)

for all xn ∈ X n. Note that (22) imposes an obvious optimality criterion on a compressor-
predictor system; for further justification of this regularity condition see Appendix A. We
will assume that all compressor-predictor systems in our subsequent discussion satisfy (22).

Lemma 2 Given a compressor-predictor system f with M messages, there exists Q ∈
QlogM (X n) such that

Lf(x
n) = log

1

Q(xn)
− logM (23)

holds for all xn ∈ X n.

Proof Given a compressor-predictor system f, define

Q(xn) =
1

M

M∑
m=1

n∏
t=1

ft
(
xt|m,xt−1

)
=

1

M

n∏
t=1

ft
(
xt|fc(xn), xt−1

)
(24)

where the second equality in (24) follows from (22) and it is straightforward to verify that
Q is indeed a distribution in QlogM (X n). Then

n∑
t=1

`
(
xt, ft

(
·|fc(xn), xt−1

))
= log

1

MQ(xn)
. (25)

Lemma 2 shows that every compressor-predictor system can be associated with a dis-
tribution in QlogM . The reverse is not true: that is, given a distribution in QlogM it may
not be possible to construct a compressor-predictor system that satisfies (23). However, it
is possible to construct one that satisfies it approximately, as the following lemma shows.

Lemma 3 Given any Q ∈ QlogM (X n) it is possible to construct a compressor-predictor
system f such that

Lf(x
n) ≤ log

1

Q(xn)
− log(M + 1) + log 2 < log

1

Q(xn)
− logM + log 2 (26)

for all xn ∈ X n. Moreover, (26) can be tighrened to Lf(x
n) = log 1

Q(xn) − logM whenever

M = 1 or M = |X n|.
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Equation (26) follows by using the greedy construction from Shkel and Verdú (2018, The-
orem 4) which we include for completeness in Appendix B. The main idea is to construct
a compressor that tries to equalize the probability assigned to each message according to
distribution Q and outputs a posterior distribution of xn given the message. If such a
compressor exists, then (23) would be satisfied. A simple greedy compressor achieves such
equalization up to a factor of 2M

M+1 . This greedy compressor then induces a compressor-
predictor scheme per Lemma 1. In general, it is not possible to do better than (26) as the
next example shows.

Example 1 Let X = {0, 1} and M = 2k for some 1 ≤ k ≤ n. Consider a compressor-
predictor system f defined by the following ingredients:

• The compressor fc is a bijection from X k to {1, . . . ,M} that maps the first k bits of
xn to a unique message.

• For 1 ≤ t ≤ k let

ft(·|m,xt−1) = δyt , where yk = f−1
c (m) (27)

and δx denotes a point mass at x.

• For k + 1 ≤ t ≤ n let

ft(0|m,xt−1) = ft(1|m,xt−1) =
1

2
. (28)

Then the distribution guaranteed to exist by Lemma 2 is given by Q(xn) = 2−n for all
xn. On the other hand, consider constructing a compressor-predictor system for Q when
M = 2n − 1. Using the compressor in Appendix B we can construct a compressor-predictor
that will satisfy (26) with equality for two distinct elements in X n. It is not possible to
improve on this. Indeed, by the pigeonhole principle, there exists a message m, such that
the pre-image of m contains two distinct elements of X n. Let xn and yn be these elements
and let t be the smallest index at which xt 6= yt. Then, it must be the case that

ft(xt|m,xt−1) = ft(yt|m, yt−1) =
1

2
(29)

for (26) to be satisfied. In this case (26) is satisfied with equality for xn and yn.

3.2 Shtarkov bound for compressor-predictor strategies

Lemmas 2 and 3 connect compressor-predictor strategies with M messages to distributions
in QlogM (X n). This is a pleasing extension of the usual sequential prediction with log-loss
where prediction strategies are associated with elements of the probability simplex. Using
Lemma 2 we can rewrite the regret in Definition 4 as

Vn(M,F) = inf
g : |gc|≤M

sup
xn∈Xn

log
supf∈F Qf(x

n)

Qg(xn)
(30)

where Qf denotes the distribution corresponding to the strategy f, see (24). We have now
laid the necessary groundwork to characterize the regret for sequential prediction with coded
side information.
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Theorem 2 (Shtarkov sum) Let Qf denote the distribution associated with f ∈ F via
Lemma 2, see (24). Then,

log
∑

xn∈Xn

sup
f∈F

Qf(x
n) ≤ Vn(M,F) ≤ log

∑
xn∈Xn

sup
f∈F

Qf(x
n) + log 2 (31)

or, equivalently,

log
∑

xn∈Xn

sup
f∈F

exp(−Lf(x
n))− logM ≤ Vn(M,F) (32)

≤ log
∑

xn∈Xn

sup
f∈F

exp(−Lf(x
n))− logM + log 2. (33)

Proof Define

Q(xn) =
supf∈F Qf(x

n)∑
x̃n∈Xn supf̃∈F Qf̃(x̃

n)
(34)

and observe that Q(xn) ∈ QlogM . Let g be the strategy associated with Q guaranteed by
Lemma 3 and let Qg be the distribution associated with g via Lemma 2. Then

log
Q(xn)

Qg(xn)
≤ log 2 (35)

and

Vn(M,F) ≤ sup
xn∈Xn

log
supf∈F Qf(x

n)

Qg(xn)
(36)

≤ sup
xn∈Xn

log
∑

xn∈Xn

sup
f∈F

Qf(x
n) + log 2 (37)

= log
∑

xn∈Xn

sup
f∈F

Qf(x
n) + log 2. (38)

For the lower bound, let g be the strategy that achieves (20). Then

Vn(M,F) = sup
xn∈Xn

log
supf∈F Qf(x

n)

Qg(xn)
(39)

≥ sup
xn∈Xn

log
supf∈F Qf(x

n)

Q(xn)
= log

∑
xn∈Xn

sup
f∈F

Qf(x
n) ∀xn ∈ X n (40)

where (40) holds since Q is the minimizer of infQ∈P(Xn) supxn∈Xn log
supf∈F Qf(x

n)
Q(xn) .

Finally, we note that the gap between the lower and upper bounds in Theorem 2 is
an artifact of the compression part of sequential prediction with coded side information.
Indeed, the Shtarkov bound suffers from a similar gap in the problem of lossless compression
with expert advice.
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4. Compressor-predictor expert classes

We have established in Lemmas 2 and 3 that compressor-predictor systems are elements
of a subset of the probability simplex. From this perspective, much of the literature on
sequential prediction with expert advice carries over to the problem of sequential prediction
with coded side-information. This includes, for example, the covering number approaches
in Cesa-Bianchi and Lugosi (2006, Chapter 9.10) and Rakhlin and Sridharan (2015).

Rather than treating the expert class as an arbitrary subset of the probability simplex,
in this section we define classes of experts which are natural from the operational point of
view. The first example considers naive greedy experts. We obtain these classes of experts
by modifying existing sequential experts to use all of their available compression budget
on the first k realizations of the sequence xn. The second example considers subset-myopic
experts. Each of these experts uses its available compression budget to minimize prediction
loss on a particular subset of X n. Both of these expert classes allow us to study the effect
of the compression budget on the prediction loss and regret.

4.1 Naive greedy experts

Given an existing prediction strategy we can extend it to the coded side-information setting
in the following way. We define an expert that spends all of its compression budget early
on, and then falls back on its original prediction strategy once the budged is exhausted.

Definition 5 (Greedy experts) Fix 1 ≤ k ≤ n and let M = |X |k. Given a sequential
prediction strategy f̃ (with no coded side-information), we define a new compressor-predictor
strategy f with M messages in the following way:

• Let the compressor fc be a bijection from X k to {1, . . . ,M} that maps the first k letters
of xn to a unique message.

• For 1 ≤ t ≤ k, let

ft(·|m,xt−1) = δyt , where yk = f−1
c (m) (41)

and δx denotes a point mass at x.

• For k + 1 ≤ t ≤ n, let

ft(·|m,xt−1) = f̃t(·|xt−1). (42)

We call f a greedy M message extension of f̃. Given a class F of sequential experts (no
coded side-information), FM is a greedy extension of F with M messages if it is obtained
by greedy extensions of experts in F .

Next, fix a class of experts F (no coded side-information) and xk ∈ X k. We define a
new class of experts, denoted F(xk), on X n−k. This class consists of all experts of the form

ft(·|yt) = f̃t(·|xkyt−1) (43)

for 1 ≤ t ≤ n− k, yt ∈ X t, and f̃ ∈ F .
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Lemma 4 Let F be a class of experts (no coded side-information) and let M = |X |k for
some 1 ≤ k ≤ n. Then

inf
xk∈Xk

Vn−k
(

1,F
(
xk
))
≤ Vn (M,FM ) ≤ sup

xk∈Xk

Vn−k
(

1,F
(
xk
))

(44)

Proof Let g be the greedy extension of the strategy that achieves Vn(1,F) and denote by
gxk the strategy that achieves Vn−k(1,F(xk)). Note that FM and F(xk) can be connected
via

inf
f∈FM

Lf(x
n) = inf

f∈F(xk)
Lf(x

n
k+1) and, likewise, Lg(xn) = Lg

xk
(xnk+1). (45)

Then

Vn(M,FM ) ≤ sup
xn∈Xn

{
Lg(xn)− inf

f∈FM

Lf(x
n)

}
(46)

= sup
xk∈Xk

sup
yn−k∈Xn−k

{
Lg

xk
(yn−k)− inf

f∈F(xk)
Lf(y

n−k)

}
(47)

= sup
xk∈Xk

Vn−k(1,F(xk)). (48)

The lower bound follows since

Vn(M,FM ) ≥ log
∑

xn∈Xn

sup
f∈FM

exp(−Lf(x
n))− logM (49)

= log
∑
xk∈Xk

∑
yn−k∈Xn−k

sup
f∈F(xk)

exp(−Lf(y
n−k))− logM (50)

≥ inf
xk∈Xk

log |X k|
∑

yn−k∈Xn−k

sup
f∈F(xk)

exp(−Lf(y
n−k))− logM (51)

= inf
xk∈Xk

log
∑

yn−k∈Xn−k

sup
f∈F(xk)

exp(−Lf(y
n−k)) (52)

= inf
xk∈Xk

Vn−k(1,F(xk)) (53)

where (49) follows from Theorem 2 and (50) follows from (45).

The upper and lower bounds in Lemma 4 turn out to be tight for many expert classes.

Example 2 (Static experts) Let F be the set of static experts, that is, F is the set of all
experts such that ft(·|xt−1) = P for all t and some P ∈ P(X ). Then, F(xk) is still the set
of static experts on X n−k for all xk ∈ X k and

Vn(M,FM ) = Vn−k(1,F). (54)

Let X = {0, 1} and consider rate R ∈ [0, 1) compressor-predictor schemes: that is, Mn =
2nR. Using (54) together with Cesa-Bianchi and Lugosi (2006, Theorem 9.2) we obtain

Vn (Mn,FMn) =
1

2
log n+

1

2
log(1−R) +

1

2
log

π

2
+ o(1). (55)

10



Sequential prediction with coded side information

Example 2 demonstrates that the greedy extension of the optimal strategy for static experts
is actually the optimal strategy for greedy extension of static experts. Surprisingly, this even
holds for classes with memory, as the next example shows.

Example 3 (Markov experts) Let F be the set of all Markov experts. We can show that
F(xk) is still the set of all Markov experts (see Appendix C) on X n−k for all xk ∈ X k and

Vn(M,FM ) = Vn−k(1,F). (56)

In fact, the upper and lower bounds in Lemma 4 are tight even for some large non-parametric
expert classes such as the monotonically increasing “static” experts introduced in Cesa-
Bianchi and Lugosi (2006, Chapter 9.11). However, Lemma 4 is not tight for greedy exten-
sions of arbitrary expert families. In those cases, the next lemma would be more useful.

Lemma 5 Let F be a class of experts (no coded side-information) and let M = |X |k for
some 1 ≤ k ≤ n. Then

log
1

M

∑
xk∈Xm

exp
(
Vn−k

(
1,F

(
xk
)))

≤ Vn(M,FM ) (57)

≤ log
1

M

∑
xk∈Xk

exp
(
Vn−k

(
1,F

(
xk
)))

+ log 2

(58)

Proof The lemma follows by particularizing Theorem 2 to greedy experts.

4.2 Subset-myopic experts

Next, we consider experts defined with respect to some subset S ⊂ X n. These experts
design their compressor-predictor schemes with the aim of minimizing the maximum loss
on S. They disregard all other sequences xn /∈ S.

Definition 6 (Subset-myopic experts) Given a subset S ⊂ X n an S-myopic expert f
with M ≤ |S| messages is given by

f = arg min
f : |fc|≤M

sup
xn,yn∈S

|Lf(x
n)− Lf(y

n)| . (59)

If M > |S| an S-myopic expert f is given by

f = arg min
f : |fc|≤M,∑

xn∈S Lf (x
n)=0

sup
yn /∈S

Lf(y
n). (60)

Example 4 (Constant composition subsets) Let X = {0, 1} and FM be a class of S-
myopic experts with M messages defined by a collection {Sk}nk=0 where

Sk = {xn : xn has exactly k ones }. (61)

Consider rate R ∈ [0, 1) compressor-predictor schemes: that is, Mn = 2nR. Then using
Theorem 2 together with Stirling’s approximation we obtain

Vn(Mn,F) = logn+ log(1− 2h−1(R)) + o(1) (62)

where h−1 denotes the inverse of the binary entropy function on (0, 1
2 ].
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5. Discussion

We have developed a framework to address sequential prediction with coded side information
under log-loss. There are two main insights that lay the groundwork for our results. First,
we show an operational equivalence between the problem of universal lossy compression and
the problem of sequential prediction with coded side information. Secondly, we leverage this
equivalence, together with insights from Shkel et al. (2017), to connect prediction strategies
to distributions on a subset of the probability simplex. Establishing this connection between
compressor-predictor schemes and probability distributions lets us transplant the tools from
sequential prediction with no side information to the setting with coded side information.

In the present paper we made the assumption that the compressor is “batch”; that is,
the compressor sees the whole sequence in a non-causal manner and sends a compressed
version of it to the predictor at time zero. In some settings, it is certainly more natural to
assume that the compressor might see ahead for some fixed number of time steps and has a
compression budget at each time t; in other words, the coded side information is constrained
to be sequential. The problem of prediction with sequential side information is equivalent
to a corresponding sequential lossy compression problem. Moreover, it is straightforward
to show a counterpart of Lemma 2 for this setting: the caveat is that now the subset of
the probability simplex would have additional constraints which would depend on the exact
setup of the sequential compression aspect of the problem, see Appendix D. The main
difficulty in extending the present work to the sequential side information setting is to show
a counterpart of Lemma 3: that is, we need to demonstrate a compression scheme for a given
Q that allows us to get close to the bound in Lemma 2. For example, it is possible to chain
together such a scheme with a repeated application of Lemma 3, but this incurs a penalty
of log 2 at each time step. A more promising direction is to extend the arithmetic coding
scheme, Rissanen (1976), to the lossy compression (or equivalently compressor-predictor)
setting, and this is the focus of our ongoing work.

Finally, we mention another important extension of the current work in which the com-
pressor does not see the sequence to be predicted, but instead sees a correlated sequence. It
is again possible to establish an equivalence between this compression-prediction problem
and a lossy compression problem. The resulting noisy lossy compression problem has re-
ceived much attention in the probabilistic setting, see, for example, Nazer et al. (2017) and
references therein. A sequential version of the noisy compression problem could further be
related to online learning with log-loss studied in Fogel and Feder (2017). It is possible that
the tools developed for lossy compression with log-loss could be leveraged for this learning
problem as well. Conversely, it would be interesting to see if the tools from learning theory
could be used to get further insight for sequential compression and noisy compression with
log-loss.
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Appendix A. Regularity condition (22) for compressor-predictor systems

In this section we justify (22) by demonstrating that if f is not regular, it is always possible
to construct an f∗ such that

Lf(x
n) ≥ Lf∗(x

n) ∀xn ∈ X n. (63)

Indeed, let (fc, fd) be the lossy compressor that corresponds to f via Lemma 1. We define
(f∗c , f

∗
d) by

f∗c (xn) = fc(x
n), (64)

f∗d(u) = P ∗u where P̂u = fd(u),

P ∗u (xn) =


0, fd(xn) 6= u,

P̂u(xn)∑
x̃n : fd(x̃

n)=u P̂u(x̃n)
, fd(xn) = u and∑

x̃ : fd(x̃n)=u P̂u(x̃n) > 0,

P̃u(xn), o.w.

(65)

and P̃u is an arbitrary distribution supported on {xn : fd(xn) = u}. Note that by construc-
tion

P ∗f∗d (xn)(x
n) ≥ P̂fd(xn)(x

n) ∀xn ∈ X n (66)

which shows (63). Finally, we let f∗ be the compressor-predictor system that corresponds
to (f∗c , f

∗
d) via Lemma 1.

Appendix B. Proof of Lemma 3

Given a Q ∈ QlogM we construct a lossy compressor (fc, fd) that satisfies

d (xn, fd(fc(x
n))) ≤ log

1

Q(xn)
− log(M + 1) + log 2 (67)

for all xn ∈ X n. Moreover, if either M = 1 or M = |X n|, then the lossy compressor satisfies

d (xn, fd(fc(x
n))) = log

1

Q(xn)
− logM. (68)

Assume M = |X n| and observe that, in this case, the only distribution belonging to
QlogM is the uniform distribution over X n. Indeed, from (14) we have

Q(xn) ≤ 1

|X n|
, ∀xn ∈ X n (69)

which implies

Q(xn) =
1

|X n|
, ∀xn ∈ X n. (70)
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Let the compressor fc be a bijection between X n and {1, . . . ,M}. Let the decompressor be
fd(m) = δf−1(m), where δxn denotes the point mass at xn. Then, for every xn ∈ X n,

d(xn, fd(fc(x
n))) = log

1

δxn(xn)
= 0 (71)

which is also the right hand side of (68).
Assume M = 1. Let fc(x

n) = 1 for all xn ∈ X n and fd(1) = Q. Then, for every xn ∈ X n,

d(xn, fd(fc(x
n))) = log

1

Q(a)
(72)

which is also the right hand side of (68).
For 1 < M < |X n| the result is proved by means of the following greedy construction.
Compressor: Fix a distribution Q ∈ QlogM . Without loss of generality assume that the

elements of X n are sorted according to Q(xn). The compressor is defined sequentially in
|X n| steps. At the first M steps, f(a) = a. At steps a = {M + 1, . . . , |X n|} assign

fc(a) = arg min
m∈{1,...,M}

a−1∑
b=1

Q(b)1{fc(b) = m}. (73)

In other words, the sequence a is encoded to a message that has accrued the smallest total
probability so far according to Q. It is important to note that by construction, at every
intermediate step there is at least one message with accumulated probability strictly less
than 1

M . At the end, this remains true unless all M messages are equiprobable.

Decompressor: The decompressor is defined by fd(m) = P̂m, where

P̂m(a) =

{
Q(a)

PQ[fc(Xn)=m] , fc(a) = m

0, otherwise
(74)

Note that the decompressor assigns P̂m(a) to be PQ[Xn|fc(Xn) = m], the posterior distri-
bution of Xn given the message m.

Distortion analysis: Let a ∈ X n be the last element in X n assigned to m. If a ≤ M
(that is, a is one of the M most likely elements in X n) then

PQ[fc(X
n) = m] = Q(a) ≤ 1

M
. (75)

Otherwise,

PQ[fc(X
n) = m] ≤

∑a−1
b=1 Q(b)

M
+Q(a) ≤ 1−Q(a)

M
+Q(a) ≤ 1 + (M − 1)Q(a)

M
. (76)

Since Q(a) ≤ 1
M+1 we obtain

PQ[fc(X
n) = m] ≤ 2

M + 1
. (77)

Thus

P̂fc(xn)(x
n) ≤ Q(xn)

M + 1

2
(78)

and (67) holds for all xn ∈ X n.
Finally, Lemma 3 holds by letting f be a compressor-predictor system that corresponds

to the lossy compressor (fc, fd) via Lemma 1.
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Appendix C. Markov example

To fix ideas we assume that the Markov predictor initializes by appending zeros to the
beginning of the sequence. Let us denote F0 = F(xk) whenever xk = 0 and F1 = F(xk)
whenever xk = 1. Then F0 is a class of Markov predictors on X n−k and F1 is a class
of Markov predictors on X n−k that initializes by appending ones to the beginning of the
sequence. We can show that

Vn−k(1,F0) = Vn−k(1,F1) (79)

and this implies (56). Indeed, consider f ∈ F0 and an−k ∈ X n−k. Let the predictor g ∈ F1

be given by

gt(·|0) = 1− ft(·|0), gt(·|1) = 1− ft(·|1) (80)

and a sequence bn−k ∈ X n−k be given by

at = 1{bt = 0}. (81)

Then

Lf(a
n−k) = Lg(bn−k) (82)

which, together with the Shtarkov bound (21), implies (79).

Appendix D. Sequential side information

There are many variations of a sequential compression-prediction problem: these variations
include message budget constraints, number of look-ahead time steps and so on. Here, we
present an example of how the batch side information results can be generalized to the
sequential side information for one such variation.

Definition 7 A compressor-predictor system with {Mt}nt=1-message budget is a collection
of mappings:

Compressor: ft : X t → {1, . . . ,Mt}, (83)

Predictor: gt : {1, . . . ,Mt} × X t−1 → P(X ), 1 ≤ t ≤ n. (84)

At each time step t the predictor incurs a loss

`
(
xt, gt(·|ft(xt), xt−1)

)
= log

1

gt (xt|ft(xt), xt−1)
. (85)

The cumulative loss incurred by a compressor-predictor system (f, g) for a sequence xn is

Lf(x
n) =

n∑
t=1

`
(
xt, gt

(
·|mt, x

t−1
))

(86)

where mt = ft(xt).
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To show a counterpart of Lemma 2 define

QR1,...,Rn = {Q : Qt(·|xt−1) ∈ QRt ⊂ P(X ), ∀xt−1 ∈ X t−1 and 1 ≤ t ≤ n}. (87)

We can state a regularity condition on a compressor-predictor system f in the spirit
of (22). We assume that the compressor-predictor system satisfies

gt(xt|m,xt−1) = 0, ∀m 6= gt(xt) (88)

for all xt ∈ X .

Lemma 6 Given a compressor-predictor system (f, g) with {Mt}nt=1-message budget, there
exists Q ∈ QlogM1,...,logMn such that

L(f,g)(x
n) = log

1

Q(xn)
−

n∑
t=1

logMt (89)

holds for all xn ∈ X n.

Proof Given a compressor-predictor system (f, g), define

Q(xt|xt−1) =
1

Mt

Mt∑
m=1

gt
(
xt|m,xt−1

)
=

1

Mt
gt
(
xt|ft(xt), xt−1

)
(90)

where the second equality follows from the regularity assumption and it is straightforward
to verify that Q(·|xt−1) is indeed a distribution in QlogMt . Then

`
(
xt, gt

(
·|ft(xt), xt−1

))
= log

1

Q(xt|xt−1)
− logMt. (91)

The result follows by taking

Q(xn) =
n∏
t=1

Q(xt|xt−1) (92)

and summing the instantaneous loss.

Similarly to the batch side information case, we can show that QR1,...,Rn is convex and
derive the lower bound in Theorem 2.
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Y. Y. Shkel and S. Verdú. A single-shot approach to lossy source coding under logarithmic
loss. IEEE Transactions on Information Theory, 64(1):129–147, Jan 2018.

Y. M. Shtarkov. Universal sequential coding of single messages. Problemy Peredachi Infor-
matsii, 23(3):3–17, 1987.

17


	Introduction
	Preliminaries
	Compressor-predictor system
	Redundancy and Regret

	Bounds on regret
	Characterizing compressor-predictor systems
	Shtarkov bound for compressor-predictor strategies

	Compressor-predictor expert classes
	Naive greedy experts
	Subset-myopic experts

	Discussion
	Regularity condition (22) for compressor-predictor systems
	Proof of Lemma 3
	Markov example
	Sequential side information



