Appendices

In this section we prove Theorem 1 and Theorem 2.

A Preliminaries

A.1 Notation

We first introduce some relevant concepts from functional analysis. If E is Hilbert space we denote by $\langle ., . \rangle_E$ and $\|.\|_E$ its corresponding inner product and norm, respectively. If E and F are two Hilbert spaces, we use $\|.\|$ to denote the operator norm $\|A\| = \sup_{f:\|f\| \le 1} \|Af\|$, where A is an operator from E to F. We denote by A^* the adjoint of A.

If E is separable with an orthonormal basis $\{e_k\}_k$, then $\|.\|_1$ and $\|.\|_2$ are the trace norm and Hilbert-Schmidt norm on E and are given by:

$$\begin{split} \|A\|_1 &= \sum_k \langle (A^*A)^{\frac{1}{2}} e_k, e_k \rangle \\ \|A\|_2 &= \|A^*A\|_1. \end{split}$$

where A is an operator from E to E. $\lambda_{max}(A)$ is used to denote the algebraically largest eigenvalue of A. For f in E and g in F we denote by $g \otimes f$ the tensor product viewed as an application from E to F with $(g \otimes f)h = g\langle f, h \rangle_E$ for all h in E. $C^1(\Omega)$ denotes the space of continuously differentiable functions on Ω and $L^r(\Omega)$ the space of r-power Lebesgues-integrable function. Finally for any vector β in \mathbb{R}^{nd} , we use the notation $\beta_{(a,i)} = \beta_{(a-1)d+i}$ for $a \in [n]$ and $i \in [d]$.

A.2 Operator valued kernels and feature map derivatives

Let \mathcal{X} and \mathcal{Y} be two open subsets of \mathbb{R}^p and \mathbb{R}^d . $\mathcal{H}_{\mathcal{Y}}$ is a reproducing kernel Hilbert space of functions $f: \mathcal{Y} \to \mathbb{R}$ with kernel $k_{\mathcal{Y}}$. We denote by \mathcal{H} a vector-valued reproducing kernel Hilbert space of functions $T: x \mapsto T_x$ from \mathcal{X} to $\mathcal{H}_{\mathcal{Y}}$ and we introduce the feature operator $\Gamma: x \mapsto \Gamma_x$ from \mathcal{X} to $\mathcal{L}(\mathcal{H}_{\mathcal{Y}}, \mathcal{H})$ where $\mathcal{L}(\mathcal{H}_{\mathcal{Y}}, \mathcal{H})$ is the set of bounded operators from $\mathcal{H}_{\mathcal{Y}}$ to \mathcal{H} . For every $x \in \mathcal{X}$, Γ_x is an operator defined from $\mathcal{H}_{\mathcal{Y}}$ to \mathcal{H} .

The following reproducing properties will be used extensively:

• Reproducing property of the derivatives of a function in $\mathcal{H}_{\mathcal{Y}}$ (Steinwart et al., 2008, Lemma 4.34): provided that the kernel $k_{\mathcal{Y}}$ is differentiable *m*-times with respect to each coordinate, then all $f \in \mathcal{H}_{\mathcal{Y}}$ are differentiable for every multi-index $\alpha \in \mathbb{N}_0^d$ such that $\alpha \leq m$, and

$$\partial^{\alpha} f(y) = \langle f, \partial^{\alpha} k(y, .) \rangle_{\mathcal{H}_{\mathcal{Y}}} \qquad \forall y \in \mathcal{Y},$$

where $\partial^{\alpha} k_y(y, y') = \frac{\partial^{\alpha} k(y, y')}{\partial^{\alpha} y}$. In particular we will use the notation

$$\partial_{i}k(y,y^{'}) = \frac{\partial k(y,y^{'})}{\partial y_{i}}, \qquad \qquad \partial_{i+d}k(y,y^{'}) = \frac{\partial k(y,y^{'})}{\partial u_{i}'}.$$

• Reproducing property in the vector-valued space \mathcal{H} : For any $f \in \mathcal{H}_{\mathcal{Y}}$ and any $T \in \mathcal{H}$ we have the following:

$$\langle T_x, f \rangle_{\mathcal{H}_{\mathcal{V}}} = \langle T, \Gamma_x f \rangle_{\mathcal{H}}$$

In particular for every $y \in \mathcal{Y}$ we get:

$$\langle T_x, k(y, \cdot) \rangle_{\mathcal{H}_{\mathcal{Y}}} = \langle T, \Gamma_x k(y, \cdot) \rangle_{\mathcal{H}}$$

Using now the reproducing property in $\mathcal{H}_{\mathcal{Y}}$ we get:

$$T(x,y) := T_x(y) = \langle T, \Gamma_x k(y, \cdot) \rangle_{\mathcal{H}}$$

A.3 The conditional infinite dimensional exponential family

Let q_0 be a base density function of a probability distribution over \mathcal{Y} and π a probability distribution over \mathcal{X} . π and q_0 are fixed and are assumed to be supported in the whole spaces \mathcal{X} and \mathcal{Y} , respectively.

We introduce the following functions $Z : \mathcal{H}_{\mathcal{Y}} \to \mathbb{R}^*_+$, such that for every $f \in \mathcal{H}_{\mathcal{Y}}$ we have

$$Z(f) := \int_{\mathcal{Y}} \exp\left(\langle f, k(y, .) \rangle_{\mathcal{H}_{\mathcal{Y}}}\right) q_0(\mathrm{d}y).$$

We consider now the following family of operators

$$\mathcal{T} = \{ T \in \mathcal{H} : Z(T_x) < \infty, \forall x \in \mathcal{X} \}.$$

This allows to introduce the Kernel Conditional Exponential Family as the family of conditional distributions satisfying

$$\mathcal{P} = \left\{ p_T(x|y) = q_0(y) \frac{e^{\langle \langle T, \Gamma_x k(y, \cdot) \rangle_{\mathcal{H}} \rangle}}{Z(T_x)} \middle| T \in \mathcal{T} \right\}$$

Given samples $(X_i, Y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$ following a joint distribution p_0 the goal is to approximate the conditional density function $p_0(y|x)$ in the case where $p_0(y|x) \in \mathcal{P}$ (i.e. $\exists T_0 \in \mathcal{T}$ such that $p_0(y|x) = p_{T_0}(y|x)$). To this end, we introduce the expected conditional score function between two conditional distributions p(.|x) and q(.|x) under π ,

$$J(p||q) = \frac{1}{2} \int_x \int_y \sum_{i=1}^d \left[\partial_i \log p(y|x) - \partial_i \log q(y|x) \right]^2 p(\mathrm{d}y|x) \pi(\mathrm{d}x)$$

This function has the nice property that $J(p||q) \ge 0$ and that $J(p||q) = 0 \Leftrightarrow q = p$, which makes it a good candidate as a loss function.

The marginal distribution $p_0(x)$ doesn't have to match $\pi(x)$ in general as long as they have the same support. For purpose of simplicity we will assume that $p_0(x) = \pi(x)$.

A.4 Assumptions

We make the following assumptions:

- (A) (well specified) The true conditional density $p_0(y|x) = p_{T_0}(y|x) \in \mathcal{P}$ for some T_0 in \mathcal{T} .
- (B) \mathcal{Y} is a non-empty open subset of the form \mathbb{R}^d with a piecewise smooth boundary $\partial \mathcal{Y} := \overline{\mathcal{Y}} \setminus \mathcal{Y}$, where $\overline{\mathcal{Y}}$ denotes the closure of \mathcal{Y} .
- (C) $k_{\mathcal{Y}}$ is twice continuously differentiable on $\mathcal{Y} \times \mathcal{Y}$ and $\partial^{\alpha,\alpha}k_{\mathcal{Y}}$ is continuously extensible to $\overline{\mathcal{Y}} \times \overline{\mathcal{Y}}$ for all $|\alpha| \leq 2$.
- (**D**) For all $x \in \mathcal{X}$ and all $i \in [d]$, as y approaches $\partial \mathcal{Y} : \|\partial_i k(y, \cdot)\|_{\mathcal{Y}} p_0(y|x) = o(\|y\|^{1-d})$
- (E) The operator Γ is uniformly bounded for the operator norm $\|\Gamma_x\|_{Op} \leq \kappa$ for all $x \in \mathcal{X}$.
- (**F**) (Integrability) for some $\epsilon \ge 1$ and all $i \in [d]$:

$$\|\partial_i k(y,\cdot)\|_{\mathcal{Y}} \in L^{2\epsilon}(\mathcal{Y},p_0), \ \|\partial_i^2 k(y,\cdot)\|_{\mathcal{Y}} \in L^{\epsilon}(\mathcal{Y},p_0), \ \|\partial_i k(y,\cdot)\|_{\mathcal{Y}}\partial_i \log q_0(y) \in L^{\epsilon}(\mathcal{Y},p_0).$$

B Theorems

In this section, we prove the main theorems of the document, by extending the proofs of Sriperumbudur et al., 2017 to the case of the vector-valued RKHS. We provide complete steps for all the proofs, including those that carry over from the earlier work, to make the presentation self-contained; the reader may compare with (Sriperumbudur et al., 2017, Section 8) to see the changes needed in the conditional setting.

B.1 Score Matching

Theorem 3 (Score Matching). Under Assumptions (A) to (F), the following holds:

- 1. $J(p_{T_0}||p_T) < +\infty$ for all $T \in \mathcal{T}$
- 2. For all $T \in \mathcal{H}$ define

$$J(T) = \frac{1}{2} \langle T - T_0, C(T - T_0) \rangle_{\mathcal{H}},$$
(6)

where

$$C := \int_{\mathcal{X} \times \mathcal{Y}} \underbrace{\sum_{i=1}^{d} \left[\Gamma_x \partial_i k(y, \cdot) \otimes \Gamma_x \partial_i k(y, \cdot) \right]}_{C_{x,y}} p_0(dx, dy) = \mathbb{E}_{p_0}[C_{X,Y}]. \tag{7}$$

then C a trace-class positive operator on \mathcal{H} and for all $T \in \mathcal{T}$ $J(T) = J(p_{T_0}||P_T)$.

3. Alternatively,

$$J(T) = \frac{1}{2} \langle T, CT \rangle_{\mathcal{H}} + \langle T, \xi \rangle_{\mathcal{H}} + J(p_{T_0} || q_0)$$

where

$$\mathcal{H} \ni \xi := \int_{\mathcal{X} \times \mathcal{Y}} \underbrace{\sum_{i=1}^{d} \Gamma_x \left[\partial_i \log q_0(y) \partial_i k(y, \cdot) + \partial_i^2 k(y, \cdot) \right]}_{\xi_{x,y}} p_0(dx, dy) = \mathbb{E}_{p_0}[\xi_{X,Y}]$$

Moreover, T_0 satisfies $CT_0 = -\xi$

4. For any $\lambda > 0$, a unique minimizer T_{λ} of $J_{\lambda}(T) := J(T) + \frac{\lambda}{2} ||T||_{\mathcal{H}}^2$ over \mathcal{H} exists and is given by:

$$T_{\lambda} = -(C + \lambda I)^{-1} \xi = (C + \lambda I)^{-1} C T_0.$$

Proof. We prove the results in the same order as stated in the theorem:

1. By the reproducing property of the real valued space $\mathcal{H}_{\mathcal{Y}}$ we have: $T(x, y) = \langle T_x, k(y, \cdot) \rangle_{\mathcal{H}_{\mathcal{Y}}}$. Using the reproducing property for the derivatives of real valued functions in an RKHS in Lemma 3, we get

$$\partial_i T(x,y) = \partial_i \langle T_x, k(y,\cdot) \rangle_{\mathcal{H}_{\mathcal{Y}}} = \langle T_x, \partial_i k(y,\cdot) \rangle_{\mathcal{H}_{\mathcal{Y}}} \qquad \forall i \in [d].$$

Finally, using the reproducing property in the vector-valued space \mathcal{H} ,

$$\partial_i T(x,y) = \langle T, \Gamma_x \partial_i k(y,\cdot) \rangle_{\mathcal{H}}, \qquad \forall i \in [d].$$

it is easy to see that

$$J(p_{T_0}||p_T) = \frac{1}{2} \int_{\mathcal{X} \times \mathcal{Y}} \sum_{i=1}^d \langle T_0 - T, \Gamma_x \partial_i k(y, .) \rangle_{\mathcal{H}}^2 p_0(\mathrm{d}x, \mathrm{d}y).$$
(8)

By Assumptions (\mathbf{E}) and (\mathbf{F}) ,

$$\|\Gamma_x \partial_i k(y, \cdot)\|_{\mathcal{H}} \le \|\Gamma_x\|_{Op} \|\partial_i k(y, \cdot)\|_{\mathcal{H}_{\mathcal{Y}}} \le \kappa \sqrt{\partial_i \partial_{i+d} k(y, y)} \in L^2(p_0),$$

and therefore by Cauchy-Schwarz inequality,

$$J(T) = J(p_{T_0} || p_T) \le \frac{1}{2} || T_0 - T ||_{\mathcal{H}}^2 \int_{\mathcal{X} \times \mathcal{Y}} \sum_{i=1}^d || \Gamma_x \partial_i k(y, \cdot) ||_{\mathcal{H}}^2 p_0(\mathrm{d}x, \mathrm{d}y) < +\infty.$$

which means that $J(T) < \infty$ for all $T \in \mathcal{T}$.

2. Starting from (8), it is easy to see that:

$$J(T) = \frac{1}{2} \int_{\mathcal{X} \times \mathcal{Y}} \sum_{i=1}^{d} \langle T_0 - T, \Gamma_x \partial_i k(y, \cdot) \otimes \Gamma_x \partial_i k(y, \cdot) (T_0 - T) \rangle_{\mathcal{H}} p_0(\mathrm{d}x, \mathrm{d}y)$$
$$= \frac{1}{2} \int_{\mathcal{X} \times \mathcal{Y}} \langle T_0 - T, C_{x,y}(T_0 - T) \rangle_{\mathcal{H}} p_0(\mathrm{d}x, \mathrm{d}y)$$

In the first line, we used the fact that $\langle a, b \rangle_{\mathcal{H}}^2 = \langle a, b \rangle_{\mathcal{H}} \langle a, b \rangle_{\mathcal{H}} = \langle a, b \otimes ba \rangle_{\mathcal{H}}$ for any a and b in a Hilbert space \mathcal{H} . By further observing that $C_{x,y}$ and $(T_0 - T) \otimes (T_0 - T)$ are Hilbert-Schmidt operators as $\|C_{x,y}\|_{HS} \leq \kappa^2 \sum_{i=1}^d \|\partial_i k(y, \cdot)\| < \infty$ by Lemma 1 and $\|(T_0 - T) \otimes (T_0 - T)\|_{HS} = \|(T_0 - T)\|_{\mathcal{H}}^2 < \infty$ we get that:

$$J(T) = \frac{1}{2} \int_{\mathcal{X} \times \mathcal{Y}} \langle (T_0 - T) \otimes (T_0 - T), C_{x,y} \rangle_{HS} p_0(\mathrm{d}x, \mathrm{d}y)$$

Using Assumption (F) we have by Lemma 2 that $C_{x,y}$ is p_0 -integrable in the Bochner sense (see Retherford, 1978) Definition 1) and that the inner product and integration may be interchanged:

$$J(T) = \frac{1}{2} \left\langle (T_0 - T) \otimes (T_0 - T), \int_{\mathcal{X}} \int_{\mathcal{Y}} C_{x,y} p_0(\mathrm{d}x, \mathrm{d}y) \right\rangle_{HS} = \frac{1}{2} \langle T_0 - T, C(T_0 - T) \rangle_{\mathcal{H}}$$

3. From (6) we have $J(T) = \frac{1}{2} \langle T, CT \rangle_{\mathcal{H}} - \langle T, CT_0 \rangle_{\mathcal{H}} + \frac{1}{2} \langle T_0, CT_0 \rangle_{\mathcal{H}}$. Recalling that: $\partial_i T(x, y) = \langle T, \Gamma_x \partial_i k(y, \cdot) \rangle_{\mathcal{H}}$ for all $i \in [d]$, and using $\partial_i T_0(x, y) = \partial_i \log p_0(y|x) - \partial_i \log q_0(y|x)$ one gets:

$$\langle T, CT_0 \rangle_{\mathcal{H}} = \int_{\mathcal{X} \times \mathcal{Y}} \Big[\sum_{i=1}^a \partial_i T(x, y) \partial_i T_0(x, y) \Big] p_0(\mathrm{d}x, \mathrm{d}y)$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \Big[\sum_{i=1}^d \partial_i T(x, y) \partial_i \log p_0(y|x) \Big] p_0(\mathrm{d}x) \mathrm{d}y - \int_{\mathcal{X} \times \mathcal{Y}} \Big[\sum_{i=1}^d \partial_i T(x, y) \partial_i \log q_0(y|x) \Big] p_0(\mathrm{d}x, \mathrm{d}y)$$

$$\stackrel{(a)}{=} \int_{\mathcal{X}} p_0(\mathrm{d}x) \int_{\partial \mathcal{Y}} p_0(y|x) \nabla_y T(x, y) . d\vec{S} - \int_{\mathcal{X} \times \mathcal{Y}} \Big[\sum_{i=1}^d \partial_i^2 T(x, y) + \partial_i T(x, y) \partial_i \log q_0(y|x) \Big] p_0(\mathrm{d}x, \mathrm{d}y).$$

(a) is obtained using the first Green's identity, where $\partial \mathcal{Y}$ is the boundary of \mathcal{Y} and dS is the oriented surface element. The first term $\int_{\mathcal{X}} \pi(\mathrm{d}x) \int_{\partial \mathcal{Y}} p_0(y|x) \nabla_y T(x,y) dS$ vanishes by Lemma 4, which relies on Assumption (**D**). The second term can be written as: $\int_{\mathcal{X} \times \mathcal{Y}} \langle T, \xi_{x,y} \rangle_{\mathcal{H}} p_0(\mathrm{d}x, \mathrm{d}y)$. By Assumptions (**E**) and (**F**) $\xi_{x,y}$ is Bochner p_0 -integrable, therefore:

$$\int_{\mathcal{X}\times\mathcal{Y}} \langle T,\xi_{x,y}\rangle_{\mathcal{H}} p_0(\mathrm{d} x,\mathrm{d} y) = \left\langle T,\int_{\mathcal{X}\times\mathcal{Y}} \xi_{x,y} p_0(\mathrm{d} x,\mathrm{d} y)\right\rangle_{\mathcal{H}} = \langle T,\xi\rangle_{\mathcal{H}}.$$

Hence $\langle T, CT_0 \rangle_{\mathcal{H}} = -\langle T, \xi \rangle_{\mathcal{H}}$ and $\xi = -CT_0$. Moreover, one can clearly see that:

$$\langle T_0, CT_0 \rangle_{\mathcal{H}} = \int_{\mathcal{X} \times \mathcal{Y}} \sum_{i=1}^d (\partial_i T_0(x, y))^2 p_0(\mathrm{d}x, \mathrm{d}y) = J(p_{T_0} || q_0).$$

And the result follows.

4. For $\lambda > 0$, $(C + \lambda I)$ is invertible as C is a symmetric trace-class operator. Moreover, $(C + \lambda I)^{\frac{1}{2}}$ is well defined and one can easily see that:

$$J_{\lambda}(T) = \frac{1}{2} \| (C + \lambda I)^{\frac{1}{2}} T + (C + \lambda I)^{-\frac{1}{2}} \xi \|_{\mathcal{H}}^{2} - \frac{1}{2} \langle \xi, (C + \lambda I)^{-1} \xi \rangle_{\mathcal{H}} + c_{0}$$

with $c_0 = J(p_{T_0}||q_0)$. $J_{\lambda}(T)$ is minimized if and only if $(C + \lambda I)^{\frac{1}{2}}T = (C + \lambda I)^{-\frac{1}{2}}\xi$ and therefore $T = (C + \lambda I)^{-1}\xi$ is the unique minimizer of $J_{\lambda}(T)$.

B.2 Estimator of T_0

Given samples $(X_a, Y_a)_{a=1}^n$ drawn i.i.d. from p_0 and $\lambda > 0$, we define the empirical score function as

$$\hat{J}(T) := \frac{1}{2} \langle T, \hat{C}T \rangle_{\mathcal{H}} + \langle T, \hat{\xi} \rangle_{\mathcal{H}} + J(p_{T_0} || q_0).$$

where:

$$\hat{C} := \frac{1}{n} \sum_{a=1}^{n} \sum_{i=1}^{d} \Gamma_{X_a} \partial_i k(Y_a, \cdot) \otimes \Gamma_{X_a} \partial_i k(Y_a, \cdot)$$
$$\hat{\xi} := \frac{1}{n} \sum_{a=1}^{n} \sum_{i=1}^{d} \Gamma_{X_a} \left[\partial_i \log q_0(Y_a) \partial_i k(Y_a, \cdot), + \partial_i^2 k(Y_a, \cdot) \right].$$

are the empirical estimators of C and ξ respectively.

Theorem 4 (Estimator of T_0). For and any $\lambda > 0$, we have the following:

1. The unique minimizer $T_{\lambda,n}$ of $\hat{J}_{\lambda}(T) := \hat{J}(T) + \frac{\lambda}{2} \|T\|_{\mathcal{H}}^2$ over \mathcal{H} exists and is given by

$$T_{\lambda,n} = -(\hat{C} + \lambda I)^{-1}\hat{\xi}.$$

2. Moreover, $T_{\lambda,n}$ is of the form

$$T_{\lambda,n} = -\frac{1}{\lambda}\hat{\xi} + \sum_{b=1}^{n} \sum_{i=1}^{d} \beta_{(b-1)d+i} \Gamma_{X_b} \partial_i k(Y_b, \cdot),$$

where (β_b) are obtained by solving the following linear system:

$$(G+n\lambda I)\beta = \frac{h}{\lambda}$$

with:

$$(G)_{(a-1)d+i,(b-1)d+j} = \langle \Gamma_{X_a} \partial_i k(Y_a,.), \Gamma_{X_b} \partial_j k(Y_b,.) \rangle_{\mathcal{H}}.$$

and:

$$(h)_{(a-1)d+i} = \langle \hat{\xi}, \Gamma_{X_a} \partial_i k(Y_a, .) \rangle_{\mathcal{H}}.$$

Proof. 1. The same proof as in Theorem 3 holds with C and ξ replaced by \hat{C} and $\hat{\xi}$.

2. We will use the general representer theorem stated in Lemma 6. We have that:

$$T_{\lambda,n} = \underset{T \in \mathcal{H}}{\operatorname{arginf}} \frac{1}{2} \langle T\hat{C}T \rangle_{\mathcal{H}} + \langle T, \hat{\xi} \rangle_{\mathcal{H}} + \frac{\lambda}{2} \|T\|_{\mathcal{H}}^{2}$$
$$= \underset{T \in \mathcal{H}}{\operatorname{arginf}} \frac{1}{2} \sum_{a=1}^{n} \sum_{i=1}^{d} \langle T, \Gamma_{X_{a}} \partial_{i} k(Y_{a}, .) \rangle_{\mathcal{H}}^{2} + \langle T, \hat{\xi} \rangle_{\mathcal{H}} + \frac{\lambda}{2} \|T\|_{\mathcal{H}}^{2}$$
$$= \underset{T \in \mathcal{H}}{\operatorname{arginf}} V(\langle T, \phi_{1} \rangle_{\mathcal{H}}, ..., \langle T, \phi_{nd+1} \rangle_{\mathcal{H}}) + \frac{\lambda}{2} \|T\|_{\mathcal{H}}^{2}.$$

Where $V(\theta_1, ..., \theta_{nd+1}) := \frac{1}{2n} \sum_{a=1}^n \sum_{i=1}^d \theta_{(a-1)d+i}^2 + \theta_{nd+1}$ is a convex differentiable function and $\phi_{(a-1)d+i} := \Gamma_{X_a} \partial_i k(Y_a, .)$ where $a \in [n], i \in [d]$ and $\phi_{nd+1} = \hat{\xi}$. Therefore, it follows from Lemma 6 that:

$$T_{\lambda,n} = \delta\hat{\xi} + \sum_{a=1}^{n} \sum_{i=1}^{d} \beta_{(a-1)d+i} \phi_{(a-1)d+i}.$$

where δ and β satisfy:

$$\lambda(\beta,\delta) + \nabla V(K(\beta,\delta)) = 0$$

with
$$K = \begin{pmatrix} G & h \\ h^T & \|\hat{\xi}\|_{\mathcal{H}}^2 \end{pmatrix}$$
.

The gradient ∇V of V is given by $\nabla V(z,t) = (\frac{1}{n}z,1)$. The above equation reduces then to $\lambda \delta + 1 = 0$ and $\lambda \beta + \frac{1}{n}G\beta + \frac{\delta}{n}h = 0$ which yields $\delta = -\frac{1}{\lambda}$ and $(\frac{1}{n}G + \lambda I)\beta = \frac{1}{n\lambda}h$.

B.3 Consistency and convergence

Theorem 5 (Consistency and convergence rates for $T_{\lambda,n}$). Let $\gamma > 0$ be a positive number and define $\alpha = \max(\frac{1}{2(\gamma+1)}, \frac{1}{4}) \in (\frac{1}{4}, \frac{1}{2})$, under Assumptions (A) to (F):

- 1. if $T_0 \in \overline{\mathcal{R}(C)}$ then $||T_{n,\lambda} T_0|| \to 0$ when $\lambda \sqrt{n} \to \infty$, $\lambda \to 0$ and $n \to \infty$.
- 2. if $T_0 \in \mathcal{R}(C^{\gamma})$ for some $\gamma > 0$ then $||T_{n,\lambda} T_0|| = \mathcal{O}_{p_0}(n^{-\frac{1}{2}+\alpha})$ for $\lambda = n^{-\alpha}$

Proof. Recalling that $T_{\lambda,n} = -(\hat{C} + \lambda I)^{-1} \hat{\xi}$ We consider the following decomposition:

$$T_{\lambda,n} - T_{\lambda} = -(\hat{C} + \lambda I)^{-1} (\hat{\xi} + (\hat{C} + \lambda I) T_{\lambda}) \stackrel{(*)}{=} -(\hat{C} + \lambda I)^{-1} (\hat{\xi} + \hat{C} T_{\lambda} + C(T_0 - T_{\lambda}))$$

= $(\hat{C} + \lambda I)^{-1} (C - \hat{C}) (T_{\lambda} - T_0) - (\hat{C} + \lambda I)^{-1} (\hat{\xi} + \hat{C} T_0)$
= $(\hat{C} + \lambda I)^{-1} (C - \hat{C}) (T_{\lambda} - T_0) - (\hat{C} + \lambda I)^{-1} (\hat{\xi} - \xi) + (\hat{C} + \lambda)^{-1} (C - \hat{C}) T_0.$

We used the fact that $\lambda T_{\lambda} = C(T_0 - T_{\lambda})$ in (*). Define now

$$S_{1} := \|(\hat{C} + \lambda I)^{-1} (C - \hat{C}) (T_{\lambda} - T_{0})\|_{\mathcal{H}}$$

$$S_{2} := \|(\hat{C} + \lambda I)^{-1} (\hat{\xi} - \xi)\|_{\mathcal{H}}$$

$$S_{3} := \|(\hat{C} + \lambda I)^{-1} (C - \hat{C}) T_{0}\|_{\mathcal{H}}$$

$$\mathcal{A}_{0}(\lambda) := \|T_{\lambda,n} - T_{0}\|_{\mathcal{H}}.$$

it comes then:

$$\begin{aligned} \|T_{\lambda} - T_0\|_{\mathcal{H}} &\leq \|T_{\lambda,n} - T_{\lambda}\|_{\mathcal{H}} + \|T_{\lambda} - T_0\|_{\mathcal{H}} \\ &\leq S_1 + S_2 + S_2 + \mathcal{A}_0(\lambda), \end{aligned}$$

Using Lemma 10 we can bound S_1 , S_2 and S_3 . Note that $C_{x,y}$ as defined in (7) is a positive, self-adjoint trace-class operator by Lemma 1, we therefore have:

$$\begin{aligned} \|C_{x,y}\|_{HS}^2 &= \sum_{i,j=1}^d \langle \Gamma_x \partial_i k(y,\cdot), \Gamma_x \partial_j k(y,\cdot) \rangle_{\mathcal{H}}^2 \leq \sum_{i,j=1}^d \|\Gamma_x \partial_i k(y,\cdot)\|_{\mathcal{H}}^2 \|\Gamma_x \partial_j k(y,\cdot)\|_{\mathcal{H}}^2 \\ &\leq (\sum_{i=1}^d \|\Gamma_x \partial_i k(y,\cdot)\|_{\mathcal{H}}^2)^2 \leq d \sum_{i=1}^d \|\Gamma_x \partial_i k(y,\cdot)\|_{\mathcal{H}}^4 \leq d\kappa^4 \sum_{i=1}^d \|\partial_i k(y,\cdot)\|_{\mathcal{H}_{\mathcal{Y}}}^4. \end{aligned}$$

The last inequality is obtained using Assumption (E). Using now Assumption (F) for $\epsilon = 2$ one can get:

$$\int_{\mathcal{X}\times\mathcal{Y}} \|C_{x,y}\|_{HS}^2 p_0(\mathrm{d}x,\mathrm{d}y) \le d\kappa^4 \sum_{i=1}^d \int_{\mathcal{X}\times\mathcal{Y}} \|\partial_i k(y,\cdot)\|_{\mathcal{H}_{\mathcal{Y}}}^4 p_0(\mathrm{d}x,\mathrm{d}y) < +\infty$$

Lemma 10 can then be applied to get the following inequalities:

$$S_{1} \leq \|(\hat{C} + \lambda I)^{-1}\| \|(C - \hat{C})(T_{\lambda} - T_{0})\|_{\mathcal{H}} = \mathcal{O}_{p_{0}}(\frac{\mathcal{A}(\lambda)}{\lambda\sqrt{n}})$$
$$S_{3} \leq \|(\hat{C} + \lambda I)^{-1}\| \|(C - \hat{C})T_{0}\| = \mathcal{O}_{p_{0}}(\frac{1}{\lambda\sqrt{n}})\|_{\mathcal{H}}$$
$$\|(C + \lambda I)^{-1}\| \leq \frac{1}{\lambda}$$

To bound S_2 we need to show that $\|\hat{\xi} - \xi\|_{\mathcal{H}} = \mathcal{O}_{p_0}(n^{-\frac{1}{2}})$. The same argument as in Sriperumbudur et al., 2017 holds:

$$\mathbb{E}_{p_0} \|\hat{\xi} - \xi\|_{\mathcal{H}}^2 = \frac{1}{n} \left(\int_{\mathcal{X} \times \mathcal{Y}} \|\xi_{x,y}\|_{\mathcal{H}}^2 p_0(\mathrm{d}x, \mathrm{d}y) - \|\xi\|^2 \right)$$
$$\leq \frac{1}{n} \int_{\mathcal{X} \times \mathcal{Y}} \|\xi_{x,y}\|_{\mathcal{H}}^2 p_0(\mathrm{d}x, \mathrm{d}y)$$

By Assumption (F) for $\epsilon = 2$ we have that $\int_{\mathcal{X}\times\mathcal{Y}} \|\xi_{x,y}\|_{\mathcal{H}}^2 p_0(\mathrm{d}x,\mathrm{d}y) < \infty$. One can therefore apply Chebychev inequality to get the results. It comes that:

$$S_2 \le \|(\hat{C} + \lambda I)^{-1}\|\|\hat{\xi} - \xi\|_{\mathcal{H}} = \mathcal{O}_{p_0}(\frac{1}{\lambda\sqrt{n}})$$

Using the bounds on S_1 , S_2 and S_3 we get:

$$\|T_{\lambda,n} - T_0\|_{\mathcal{H}} = \mathcal{O}_{p_0}(\frac{1}{\lambda\sqrt{n}} + \frac{\mathcal{A}_0(\lambda)}{\lambda\sqrt{n}}) + \mathcal{A}_0(\lambda)$$
(9)

- 1. By Lemma 9 we have $\mathcal{A}_0(\lambda) \to 0$ as $\lambda \to 0$ if $T_0 \in \overline{\mathcal{R}(C)}$. Therefore it follows from (9) that $||T_{\lambda,n} T_0|| \to 0$ as $\lambda \to 0$, $\lambda \sqrt{n} \to \infty$ and $n \to \infty$.
- 2. We have by Lemma 9 that if $T_0 \in \mathcal{R}(C^{\gamma})$ for $\gamma > 0$ then:

$$\mathcal{A}_{0}(\lambda) \leq \max\{1, \|C\|^{\gamma-1}\} \|C^{-\gamma}T_{0}\|_{\mathcal{H}} \lambda^{\min\{1,\gamma\}}.$$

The result follows by choosing $\lambda = n^{-\max\{\frac{1}{4}, \frac{1}{2(\gamma+1)}\}} = n^{-\alpha}$.

We denote by $KL(p_{T_0}||p_T)$ the expected KL divergence between p_{T_0} and p_T under the marginal $p_0(x)$. **Theorem 6 (Consistency and convergence rates for** $p_{T_{\lambda,n}}$). Assuming Assumptions (A) to (F), and $||k||_{\infty} := \sup_{y \in \mathcal{Y}} k(y, y) < \infty$ and that $p_{T_0}(y|x)$ is supported on \mathcal{Y} for all $x \in \mathcal{X}$ then the following holds:

- 1. $KL(p_{T_0}||p_{T_{\lambda,n}}) \to 0$ as $\lambda\sqrt{n} \to \infty$, $\lambda \to 0$ and $n \to \infty$.
- 2. If $T_0 \in \mathcal{R}(C^{\gamma})$ for some $\gamma > 0$ then by defining $\alpha = \max(\frac{1}{2(\gamma+1)}, \frac{1}{4}) \in (\frac{1}{4}, \frac{1}{2})$, and choosing $\lambda = n^{-\alpha}$ we have that $KL(p_0||p_{T_{n,\lambda}}) = \mathcal{O}_{p_0}(n^{-1+2\alpha})$

Proof. By Lemma 8, we have that $\mathcal{T} = \mathcal{H}$ and we can assume without loss of generality that $T_0 \in \overline{\mathcal{R}(C)}$. Using Lemma 7 (also see van der Vaart et al., 2008 Lemma 3.1), one can see that for a given x:

$$KL(p_{T_0}(Y|x)||p_{T_{\lambda,n}}(Y|x)) \le ||T_0(x) - T_{\lambda,n}(x)||_{\infty}^2 \exp ||T_0(x) - T_{\lambda,n}(x)||_{\infty} (1 + ||T_0(x) - T_{\lambda,n}(x)||_{\infty})$$
(10)

Moreover, using Assumption (E) and the fact that $||k||_{\infty} < \infty$ one can see that

$$\begin{aligned} |T_0(x,y) - T_{\lambda,n}(x,y)|_{\mathcal{H}_{\mathcal{Y}}} &= \langle T_0 - T_{\lambda,n}, \Gamma_x k(y,\cdot) \rangle_{\mathcal{H}} \\ &\leq \|T_0 - T_{\lambda,n}\|_{\mathcal{H}} \|\Gamma_x k(y,\cdot)\|_{\mathcal{H}} \end{aligned}$$

which gives after taking the supremum:

$$||T_0(x) - T_{\lambda,n}(x)||_{\infty} \le \kappa ||k||_{\infty} ||T_0 - T_{\lambda,n}||_{\mathcal{H}}$$
(11)

for all $x \in \mathcal{X}$. Using (11) in (10) and taking the expectation with respect to x, one can conclude using Theorem 5.

C Auxiliary results

Lemma 1. Under Assumptions (C), (E) and (F) we have that:

- 1. $C_{x,y}$ is a trace-class positive and symmetric operator for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- 2. $C_{x,y}$ is Bochner-integrable for all $(x,y) \in \mathcal{X} \times \mathcal{Y}$
- 3. C is a trace-class positive and symmetric operator

Proof. Recall that $C = \int_{\mathcal{X} \times \mathcal{Y}} C_{x,y} p_0(\mathrm{d}x, \mathrm{d}y)$ where $C_{x,y} = \sum_{i=1}^d \Gamma_x \partial_i k(y, \cdot) \otimes \Gamma_x \partial_i k(y, \cdot)$ is a positive self-adjoint operator. The trace norm of $C_{x,y}$ satisfies:

$$\begin{aligned} \|C_{x,y}\|_{1} &\leq \sum_{i=1}^{a} \|\Gamma_{x}\partial_{i}k(y,\cdot)\otimes\Gamma_{x}\partial_{i}k(y,\cdot)\|_{1} \\ &= \sum_{i=1}^{d} \|\Gamma_{x}\partial_{i}k(y,\cdot)\|_{\mathcal{H}}^{2} \leq \sum_{i=1}^{d} \|\Gamma_{x}\|_{Op}^{2} \|\partial_{i}k(y,\cdot)\|_{\mathcal{H}_{\mathcal{Y}}}^{2} \\ &\stackrel{(a)}{\leq} \kappa^{2} \sum_{i=1}^{d} \|\partial_{i}k(y,\cdot)\|_{\mathcal{H}_{\mathcal{Y}}}^{2} < \infty. \end{aligned}$$

(a) comes from Assumption (**E**). This implies that $C_{x,y}$ is trace-class. Moreover, by Assumption (**F**) for $\epsilon = 1$: $\|\partial_i k(y,\cdot)\|_{\mathcal{H}_{\mathcal{Y}}} \in L^{2\epsilon}(\mathcal{Y}, p_0)$ which leads to:

$$\int_{\mathcal{X}\times\mathcal{Y}} \|C_{x,y}\|_1 p_0(\mathrm{d} x,\mathrm{d} y) < \infty.$$

This means that $C_{x,y}$ is p_0 -integrable in the Bochner sense (Retherford, 1978, Definition 1 and Theorem 2) and its integral C is trace-class with:

$$\|C\|_{1} = \left\| \int_{\mathcal{X} \times \mathcal{Y}} C_{x,y} p_{0}(\mathrm{d}x, \mathrm{d}y) \right\|_{1} \leq \int_{\mathcal{X} \times \mathcal{Y}} \|C_{x,y}\|_{1} p_{0}(\mathrm{d}x, \mathrm{d}y) < \infty.$$

Lemma 2. Let \mathcal{X} be a topological space endowed with a probability distribution \mathbb{P} . Let B be a separable Banach space. Define R to be an B-valued measurable function on \mathcal{X} in the Bochner sense (Retherford, 1978 Definition 1), satisfying $\int_{\mathcal{X}} ||R(x)||_B d\mathbb{P}(x) < \infty$, then R is \mathbb{P} -integrable in the Bochner sense (Retherford, 1978 Definition 1, Theorem 6) and for any continuous linear operator T from B to another Banach space A, then TR is also \mathbb{P} -integrable in the Bochner sense and:

$$\int_{\mathcal{X}} TR(x) d\mathbb{P}(x) = T \int_{\mathcal{X}} R(x) d\mathbb{P}(x)$$

For a proof of this result see Retherford, 1978, Definition 1, Theorem 6 and 7.

Lemma 3 (**RKHS of differentiable kernels (Steinwart et al., 2008 Chap 4.4, Corollary 4.36)**). Let $\mathcal{X} \in \mathbb{R}^d$ be an open subset, $m \ge 0$, and k be an m-times continuously differentiable kernel on \mathcal{X} with RKHS \mathcal{H} . Then every function $f \in \mathcal{H}$ is m-times continuously differentiable, and for $\alpha \in \mathbb{N}_0^d$ with $|\alpha| \le m$ we have:

$$\begin{aligned} |\partial^{\alpha} f(x)| &\leq \|f\|_{\mathcal{H}}^{2} (\partial^{\alpha,\alpha} k(x,x))^{\frac{1}{2}} \\ \partial^{\alpha} f(x) &= \langle f, \partial^{\alpha} k(x,\cdot) \rangle_{\mathcal{H}} \end{aligned}$$

A proof of this result can be found in Steinwart et al., 2008 (Chap 4.4, Corollary 4.36)

Lemma 4. Under Assumptions (B) to (D) we have the following:

$$\int_{\mathcal{X}} \pi(\mathrm{d}x) \int_{\partial \mathcal{Y}} p_0(y|x) \nabla_y T(x,y) \cdot \vec{dS} = 0 \qquad \qquad \forall T \in \mathcal{T}$$

where $\partial \mathcal{Y}$ is the boundary of \mathcal{Y} and dS is an oriented surface element of $\partial \mathcal{Y}$.

Proof. First let's prove that $\|\nabla_y T(x,y)\| p_0(y|x) = o(\|y\|^{1-d})$ for all $x \in \mathcal{X}$. Where the norm used is the euclidian norm in \mathbb{R}^d . Using the reproducing property and Cauchy-Schwarz inequality one can see that:

$$\|\nabla_{y}T(x,y)\|^{2} = \sum_{i=1}^{d} (\partial_{i}T(x,y))^{2} = \sum_{i=1}^{d} \langle T_{x}, \partial_{i}k(y,.)\rangle^{2}$$
$$\leq \|T_{x}\|^{2} \Big(\sum_{i=1}^{d} \|\partial_{i}k(y,.)\|^{2}\Big)$$

By Assumption (**D**), one can see that $\sqrt{\sum_{i=1}^{d} \|\partial_i k(y,.)\|^2} p_0(y|x) = o(\|x\|^{1-d})$, therefore it comes that $\|\nabla_y T(x,y)\| p_0(y|x) = o(\|y\|^{1-d})$. Using Lemma 5 one gets that $\int_{\partial \mathcal{Y}} p_0(y|x) \nabla_y T(x,y) d\vec{S} = 0$ for all $x \in \mathcal{X}$ which leads to the result.

Lemma 5. Let Ω be an open set in \mathbb{R}^d with piece-wise smooth boundary $\partial\Omega$. Let u be a real valued function defined over Ω and $v : \mathbb{R}^d \to \mathbb{R}^d$ a vector valued function. We assume that u and v are measurable and that $||v(x)|||u(x)| = o(||x||^{1-d})$. Then the following surface integral is null:

$$\int_{\partial\Omega} u(x)v(x).\vec{\mathrm{d}S} = 0$$

where $d\vec{S}$ is an element of the surface $\partial\Omega$.

More details on this result can be found in Pietzsch, 1994

Lemma 6 (Generalized representer theorem). Let \mathcal{H} be a vector-valued Hilbert space and let $(\phi_i)_{i=1}^m \in \mathcal{H}^m$. Suppose $J : \mathcal{H} \to \mathbb{R}$ is such that $J(T) = V(\langle T, \phi_1 \rangle_{\mathcal{H}}, ..., \langle T, \phi_m \rangle_{\mathcal{H}})$ for $T \in \mathcal{H}$, where $V : \mathbb{R}^m \to \mathbb{R}$ is a convex and gâteaux-differentiable function. Define:

$$T_{\lambda} = \operatorname*{arginf}_{T \in \mathcal{H}} J(T) + \frac{\lambda}{2} \|T\|_{\mathcal{H}}^2$$

where $\lambda > 0$. Then there exists $(\alpha_i)_{i=1}^m \in \mathbb{R}^m$ such that $T_{\lambda} = \sum_{i=1}^m \alpha_i \phi_i$ where $\alpha := (\alpha_1, ..., \alpha_m)$ satisfies the following equation:

 $(\lambda I + (\nabla V) \circ K)\alpha = 0,$

with $(K)_{i,j} = \langle \phi_i, \phi_j \rangle_{\mathcal{H}}, \mathfrak{g} \in [m], j \in [m]$

Proof. Define $A : \mathcal{H} \to \mathbb{R}^m$, $T \mapsto (\langle T, \phi_i \rangle_{\mathcal{H}})_{i=1}^m$. Then $T_{\lambda} = \operatorname{arginf}_{T \in \mathcal{H}} V(AT) + \frac{\lambda}{2} ||T||_{\mathcal{H}}^2$. Taking the gâteaux-differential at T, the optimality condition yields:

$$0 = A^* \nabla V(AT_{\lambda}) + \lambda T_{\lambda} \Leftrightarrow A^* \left(-\frac{1}{\lambda} \nabla V(AT_{\lambda}) \right) = T_{\lambda}$$

$$\Leftrightarrow (\exists \alpha \in \mathbb{R}^m) T_{\lambda} = A^* \alpha, \alpha = -\frac{1}{\lambda} \nabla V(AT_{\lambda})$$

$$\Leftrightarrow (\exists \alpha \in \mathbb{R}^m) T_{\lambda} = A^* \alpha, \alpha = -\frac{1}{\lambda} \nabla V(AA^* \alpha)$$

where $A^* : \mathbb{R}^m \to \mathcal{H}$ is the adjoint of A which can be obtained as follows. Note that:

$$(\forall T \in \mathcal{H}) \ (\forall \alpha \in \mathbb{R}^m) \qquad \qquad \langle AT, \alpha \rangle = \sum_{i=1}^m \alpha_i \langle T, \phi \rangle_{\mathcal{H}} = \left\langle T, \sum_{i=1}^m \alpha_i \phi_i \right\rangle_{\mathcal{H}}$$

thus $A^* \alpha = \sum_{i=1}^m \alpha_i \phi_i$. Therefore $AA^* \alpha = \sum_{i=1}^m \alpha_j A\phi_j = \sum_{j=1}^m \alpha_j (\langle \phi_j, \phi_i \rangle_{\mathcal{H}})$ and hence $AA^* = K$.

Lemma 7 (Bound on KL divergence between p_f and p_g (van der Vaart et al., 2008 Lemma 3.1)). Assume that $||k||_{\infty} < \infty$ and let f and g in $\mathcal{H}_{\mathcal{Y}}$ such that Z(f) and Z(g) are finite, then: $KL(p_f||q_g) \leq ||f - g||_{\infty}^2 \exp ||f - g||_{\infty} (1 + ||f - g||_{\infty})$

Lemma 8 (see Lemma 14 in Sriperumbudur et al., 2017). Suppose $\sup_{y \in \mathcal{Y}} k(y, y) < \infty$ and $supp(q_0) = \mathcal{Y}$. Then $\mathcal{T} = \mathcal{H}$ and for any T_0 there exists $\widetilde{T}_O \in \overline{\mathcal{R}(C)}$ such that $p_{\widetilde{T}_0} = p_0$.

Proof. Since $||k||_{\infty} < \infty$ then $Z(T_x) \le \exp ||T_x|| ||k||_{\infty} < \infty$ for all $T \in \mathcal{H}$, therefore $\mathcal{T} = \mathcal{H}$. Moreover, since $\sup(p_{T_0})(y|x) = \mathcal{Y}$ for all x in \mathcal{X} , this implies that the null space of $C \mathcal{N}(C)$ can either be the set of functions T(x, y) = m(x) or $\{0\}$. Indeed, for $T \in \mathcal{N}(C)$ we have $\langle T, CT \rangle = 0$ which leads to $\int_{\mathcal{X} \times \mathcal{Y}} ||\nabla_y T||_2^2 p_0(dx, dy) = 0$ which means that p_0 -almost surely, $T_x(y) = m(x)$ a constant function of y if the set of constant functions belong to $\mathcal{H}_{\mathcal{Y}}$, or $T_x(y) = 0$ otherwise. Let $\widetilde{T_0}$ be the orthogonal projection of T_0 onto $\overline{\mathcal{R}(C)} = \mathcal{N}(C)^{\perp}$ then T_0 can be written in the form $T_0(x, y) = m(x) + \widetilde{T_0}(x, y)$. It comes that $\int_{\mathcal{Y}} \exp T_0(x, y) q_0(dy) = \exp m(x) \int_{\mathcal{Y}} \exp \widetilde{T_0}(x, y) q_0(dy)$ almost surely in x. And we finally get p_0 -almost surely:

$$p_{T_0}(y|x) = \frac{\exp T_0(x,y)}{Z(T_0(x))} = \frac{\exp T_0(x,y) + m(x)}{\exp m(x)Z(T_0(x))} = p_{T_0}(y|x)$$

Lemma 9 (Proposition A.3 in Sriperumbudur et al., 2017). Let C be a bounded, positive self-adjoint compact operator on a separable Hilbert space \mathcal{H} . For $\lambda > 0$ and $T \in \mathcal{H}$, define $T_{\lambda} := (C + \lambda I)^{-1}CT$ and $\mathcal{A}_{\theta}(\lambda) := \|C^{\theta}(T_{\lambda} - T)\|_{\mathcal{H}}$ for $\theta \geq 0$. Then the following hold.

- 1. For any $\theta > 0$, $\mathcal{A}_{\theta}(\lambda) \to 0$ as $\lambda \to 0$ and if $T \in \overline{\mathcal{R}(C)}$, then $\mathcal{A}_{0}(\lambda) \to 0$ as $\lambda \to 0$.
- 2. If $T \in \mathcal{R}(C^{\beta})$ for $\beta \geq 0$ and $\beta + \theta > 0$, then

$$\mathcal{A}_{\theta}(\lambda) \leq \max\{1, \|C\|^{\beta+\theta-1}\} \lambda^{\min\{1,\beta+\theta\}} \|C^{-\beta}T\|_{\mathcal{H}}$$

Proof. 1. Since C is bounded, compact and positive self-adjoint, Hilbert-Shmidt and \mathcal{H} is a separable Hilbert space then C admits an Eigen-decomposition of the form $C = \sum_{l} \alpha_l \phi_l \langle \phi_l \rangle_{\mathcal{H}}$ where $(\alpha_l)_{l \in \mathbb{N}}$ are positive eigenvalues and $(\phi_l)_{l \in \mathbb{N}}$ are the corresponding unit eigenvectors that form an ONB for $\mathcal{R}(C)$. Let $\theta = 0$. Since $T \in \overline{\mathcal{R}(C)}$,

$$\mathcal{A}_{0}^{2}(\lambda) = \|(C+\lambda I)^{-1}CT - T\|_{\mathcal{H}}^{2} = \left\|\sum_{i} \frac{\alpha_{i}}{\alpha_{i}+\lambda} \langle T, \phi_{i} \rangle_{\mathcal{H}} \phi_{i} - \sum_{i} \langle T, \phi_{i} \rangle_{\mathcal{H}} \phi_{i}\right\|_{\mathcal{H}}^{2}$$
$$= \left\|\sum_{i} \frac{\lambda}{\alpha_{i}+\lambda} \langle T, \phi_{i} \rangle_{\mathcal{H}} \phi_{i}\right\|_{\mathcal{H}}^{2} = \sum_{i} \left(\frac{\lambda}{\alpha_{i}+\lambda}\right)^{2} \langle T, \phi_{i} \rangle_{\mathcal{H}}^{2} \to 0 \text{ as } \lambda \to 0$$

by the dominated convergence theorem. For any $\theta > 0$, we have:

$$\mathcal{A}_{0}^{2}(\lambda) = \|C^{\theta}(C+\lambda I)^{-1}CT - C^{\theta}T\|_{\mathcal{H}}^{2} = \left\|\sum_{i} \frac{\alpha_{i}}{\alpha_{i}+\lambda} \langle T, \phi_{i} \rangle_{\mathcal{H}} \phi_{i} - \sum_{i} \langle T, \phi_{i} \rangle_{\mathcal{H}} \phi_{i}\right\|_{\mathcal{H}}^{2}$$

Let $T = T_R + T_N$ where $T_R \in \overline{\mathcal{R}(C^{\theta})}, T_N \in \overline{\mathcal{R}(C^{\theta})}^{\perp}$ if $0 < \theta \le 1$ and $T_N \in \overline{\mathcal{R}(C)}^{\perp}$ if $\theta \ge 1$. Then $\mathcal{A}_0^2(\lambda) = \|C^{\theta}(C + \lambda I)^{-1}CT - C^{\theta}T\|_{\mathcal{H}}^2 = \|C^{\theta}(C + \lambda I)^{-1}CT_R - C^{\theta}T_R\|_{\mathcal{H}}^2$ $= \left\|\sum_i \frac{\alpha_i^{1+\theta}}{\alpha_i + \lambda} \langle T_R, \phi_i \rangle_{\mathcal{H}} \phi_i - \sum_i \alpha_i^{\theta} \langle T_R, \phi_i \rangle_{\mathcal{H}} \phi_i \right\|_{\mathcal{H}}^2$ $= \left\|\sum_i \frac{\lambda \alpha_i^{\theta}}{\alpha_i + \lambda} \langle T_R, \phi_i \rangle_{\mathcal{H}} \phi_i \right\|_{\mathcal{H}}^2 = \sum_i \left(\frac{\lambda \alpha_i^{\theta}}{\alpha_i + \lambda}\right)^2 \langle T_R, \phi_i \rangle_{\mathcal{H}}^2 \to 0 \text{ as } \lambda \to 0$

2. If $T \in \mathcal{R}(C^{\beta})$, then there exists $g \in \mathcal{H}$ such that $T = C^{\beta}g$. This yields

$$\mathcal{A}_{0}^{2}(\lambda) = \|C^{\theta}(C+\lambda I)^{-1}CT - C^{\theta}T\|_{\mathcal{H}}^{2} = \|C^{\theta}(C+\lambda I)^{-1}C^{1+\beta}g - C^{\beta+\theta}g\|_{\mathcal{H}}^{2}$$
$$= \left\|\sum_{i} \frac{\lambda \alpha_{i}^{\beta+\theta}}{\alpha_{i}+\lambda} \langle g, \phi_{i} \rangle_{\mathcal{H}} \phi_{i}\right\|_{\mathcal{H}}^{2} = \sum_{i} \left(\frac{\lambda \alpha_{i}^{\beta+\theta}}{\alpha_{i}+\lambda}\right)^{2} \langle g, \phi_{i} \rangle_{\mathcal{H}}^{2}$$

Suppose $0 < \beta + \theta < 1$. Then

$$\frac{\lambda \alpha_i^{\beta+\theta}}{\alpha_i+\lambda} = \Big(\frac{\alpha_i}{\alpha_i+\lambda}\Big)^{\beta+\theta} \Big(\frac{\lambda}{\alpha_i+\lambda}\Big)^{1-\beta-\theta} \lambda^{\beta+\theta} \leq \lambda^{\beta+\theta}$$

On the other hand, for $\beta + \theta \ge 1$, we have:

$$\frac{\lambda \alpha_i^{\beta+\theta}}{\alpha_i+\lambda} = \left(\frac{\alpha_i}{\alpha_i+\lambda}\right) \alpha_i^{\beta+\theta-1} \lambda \le \|\|^{\beta+\theta-1} \lambda.$$

Using the above bounds yields the result.

Lemma 10 (Proposition A.4 in Sriperumbudur et al., 2017). Let \mathcal{X} be a topological space, \mathcal{H} be a separable Hilbert space and $\mathcal{L}_{2}^{+}(\mathcal{H})$ be the space of positive, self-adjoint Hilbert-Schmidt operators on \mathcal{H} . Define $R := \int_{\mathcal{X}} r(x)d\mathbb{P}(x)$ and $\hat{R} := \frac{1}{n}\sum_{a=1}^{m} r(X_{a})$ where $\mathbb{P} \in M_{+}^{1}(\mathcal{X})$ is a positive measure with finite mean, $(X_{a})_{a=1}^{m} \sim \mathbb{P}$ and r is an $\mathcal{L}_{2}^{+}(\mathcal{H})$ -valued measurable function on \mathcal{X} satisfying $\int_{\mathcal{X}} ||r(x)||_{HS}^{2}d\mathbb{P}(x) < \infty$. Define $g_{\lambda} := (R + \lambda I)^{-1}Rg$ for $g \in \mathcal{H}, \lambda > 0$ and $\mathcal{A}_{0}(\lambda) := ||g_{\lambda} - g||_{\mathcal{H}}$. Let $\alpha \geq 0$ and $\theta \geq 0$. Then the following hold:

- 1. $\|(\hat{R}-R)(g_{\lambda}-g)\|_{\mathcal{H}} = O_{\mathbb{P}}(\frac{\mathcal{A}_{0}(\lambda)}{\sqrt{m}})$
- 2. $||R^{\alpha}(R+\lambda I)^{-\theta}|| \leq \lambda^{\alpha-\theta}$.
- 3. $\|\hat{R}^{\alpha}(\hat{R}+\lambda I)^{-\theta}\| \leq \lambda^{\alpha-\theta}.$
- 4. $||(R + \lambda I)^{-\theta} (\hat{R} R)|| = O_{\mathbb{P}}(\frac{1}{\sqrt{m\lambda^{2\theta}}}).$

Proof. 1. Not that for any $f \in \mathcal{H}$,

$$\mathbb{E}_{\mathbb{P}} \| (\hat{R} - R) f \|_{\mathcal{H}}^2 = \mathbb{E}_{\mathbb{P}} \| \hat{R} f \|_{\mathcal{H}}^2 + \| R f \|_{\mathcal{H}}^2 - 2 \mathbb{E}_{\mathbb{P}} \langle \hat{R} f, R f \rangle_{\mathcal{H}}$$

where $\mathbb{E}_{\mathbb{P}}\langle \hat{R}f, Rf \rangle_{\mathcal{H}} = \frac{1}{n} \sum_{a=1}^{n} \mathbb{E}_{\mathbb{P}}\langle r(X_{a})f, Rf \rangle_{\mathcal{H}} = \frac{1}{n} \sum_{a=1}^{n} \mathbb{E}_{\mathbb{P}}\langle r(X_{a}), f \otimes Rf \rangle_{HS}$. Since $\int_{\mathcal{X}} ||r(x)||_{HS}^{2} d\mathbb{P}(x) < \infty, r(x)$ is \mathbb{P} -integrable in the Bochner sense (see Retherford, 1978), and therefore it follows $\mathbb{E}_{\mathbb{P}}\langle r(X_{a}), f \otimes Rf \rangle_{HS} = \langle \int_{\mathcal{X}} r(x) d\mathbb{P}(x), f \otimes Rf \rangle_{HS} = ||Rf||_{HS}^{2}$. Therefore,

$$\mathbb{E}_{\mathbb{P}} \| (\hat{R} - R) f \|_{\mathcal{H}}^2 = \mathbb{E}_{\mathbb{P}} \| \hat{R} f \|_{\mathcal{H}}^2 - \| R f \|_{\mathcal{H}}^2$$

where

$$\mathbb{E}_{\mathbb{P}} \| \frac{1}{m} \sum_{a=1}^{m} r(X_a) f \|_{\mathcal{H}}^2 = \frac{1}{m^2} \sum_{a,b=1}^{m} \mathbb{E}_{\mathbb{P}} \langle r(X_A) f, r(X_b) f \rangle_{\mathcal{H}}.$$

Splitting the sum into two parts (one with a = b and the other with $a \neq b$), it is easy to verify that $\mathbb{E}_{\mathbb{P}} \|\hat{R}f\|_{\mathcal{H}}^2 = \frac{1}{m} \int_{\mathcal{X}} \|r(x)f\|_{\mathcal{H}}^2 d\mathbb{P}(x) + \frac{m-1}{m} \|Rf\|_{\mathcal{H}}^2$, therefore yielding

$$\begin{split} \mathbb{E}_{\mathbb{P}} \| (\hat{R} - R) f \|_{\mathcal{H}}^2 &= \frac{1}{m} \Big(\int_{\mathcal{X}} \| r(x) f \|_{\mathcal{H}}^2 d\mathbb{P}(x) - \| R f \|_{\mathcal{H}}^2 \Big) \leq \frac{1}{m} \int_{\mathcal{X}} \| r(x) f \|_{\mathcal{H}}^2 d\mathbb{P}(x)) \\ &\leq \frac{\| f \|_{\mathcal{H}}^2}{m} \int_{\mathcal{X}} \| r(x) \|_{HS}^2 d\mathbb{P}(x) \end{split}$$

Using $f = g_{\lambda} - g$, an application of Chebyshev's inequality yields the result.

- 2. $\|R^{\alpha}(R+\lambda I)^{-\theta}\| = \sup_{i} \frac{\gamma_{i}^{\alpha}}{(\gamma_{i}+\lambda)^{\theta}} = \sup_{i} \left[\left(\frac{\gamma_{i}}{\gamma_{i}+\lambda}\right)^{\alpha} \frac{1}{(\gamma_{i}+\lambda)^{\theta-\alpha}} \right] \leq \sup_{i} \frac{1}{(\gamma_{i}+\lambda)^{\theta-\alpha}} \leq \lambda^{\alpha-\theta}$, where $(\gamma_{i})_{i\in n}$ are the eigenvalues of R.
- 3. Same as above, after replacing $(\gamma_i)_{i \in \mathbb{N}}$ by the eigenvalues of \hat{R}
- 4. Since $\|(R+\lambda I)^{-\theta}(\hat{R}-R)\| \leq \|(R+\lambda I)^{-\theta}(\hat{R}-R)\|_{HS}^2$, consider $\mathbb{E}_{\mathbb{P}}\|(R+\lambda I)^{-\theta}(\hat{R}-R)\|_{HS}^2$, which using the technique in the proof of (1), can be shown to be bounded as

$$\mathbb{E}_{\mathbb{P}}\|(R+\lambda I)^{-\theta}(\hat{R}-R)\|_{HS}^{2} \leq \frac{1}{m} \int_{\mathcal{X}} \|(R+\lambda I)^{-\theta}r(x)\|_{HS}^{2} d\mathbb{P}(x)$$
(12)

Note that

$$\|(R+\lambda I)^{-\theta}r(x)\|_{HS}^{2} = \langle R+\lambda I\rangle^{-\theta}r(x), R+\lambda I\rangle^{-\theta}r(x)\rangle_{HS}$$

= $\|(R+\lambda I)^{-2\theta}\|Tr(r(x)r(x)) = \|(R+\lambda I)^{-2\theta}\|\|r(x)\|_{HS}^{2}$
 $\leq \lambda^{-2\theta}\|r(x)\|_{HS}^{2}$ (13)

where the inequality follows from (3). Using (12) and (13), we obtain

$$\mathbb{E}_{\mathbb{P}} \| (R+\lambda I)^{-\theta} r(x) \|_{HS}^2 \le \frac{1}{m\lambda^{2\theta}} \int_{\mathcal{X}} \| (R+\lambda I)^{-\theta} r(x) \|_{HS}^2 d\mathbb{P}(x)$$

The result follows by an application of Chebyshev's inequality.

D Failure case for the score-matching approach

We first recall the expressions of the score and expected conditional score for convenience. If r and s are two densities that are differentiable and positive, then the score objective as introduced in Hyvärinen et al., 2005 is given by:

$$\mathcal{J}(r||s) := \frac{1}{2} \int_{\mathcal{X}} r(x) \|\nabla_x \log r(x) - \nabla_x \log s(x)\|^2 dx \tag{14}$$

If $p_0(y|x)$ and q(y|x) are two conditional densities, then the expected conditional score under some marginal distribution $\pi(x)$ is given by:

$$J(p_0|q) = \int_{\mathcal{X}} \mathcal{J}(p_0(.|x)q(.|x))\pi(x)dx$$
(15)

Figure 3: A Failure case for the expected conditional score-matching. Here a conditional density of the form $p_0(y|x) = p_A(y)H(x) + (1-H(x))p_B(y)$ is considered, where p_A and p_B are supported on two disjoint sets $A \subset \mathbb{R}^*_-$ and $B \subset \mathbb{R}^*_+$ and H denotes the Heaviside step function. The red curve and blue curve represent $p_0(y|x>0) = p_A$ and and $p_0(y|x <= 0) = p_B$ respectively, while the green curve represent the mixture $q(y) = \frac{1}{2}(p_A(y) + p_B(y))$. This is a case where the expected conditional score fails to separate the two conditional distributions $p_0(y|x)$ and q(y).

The positivity condition of the target density r is crucial to get a well-behaved divergence between r and s in (14). When this condition fails, the score becomes degenerate. For instance, if r is supported on two disjoint sets A and B of \mathcal{X} it can be written in the form:

$$r(x) = \alpha_A p_A(x) + \alpha_B p_B(x)$$

where α_A and α_B are non-negative and sum to 1, and p_A and p_B are two distributions supported on A and B respectively. In this case, any mixture $s(x) = \beta_A p_A(x) + \beta_B p_B(x)$ satisfies J(r||s) = 0.

Similarly, for the conditional expected score in (15) to be well behaved, the conditional density $p_0(y|x)$ needs to be positive on \mathcal{Y} for all x in \mathcal{X} . When this condition fails to hold, the same degeneracy happens. Indeed, as shown in Figure 3, consider p_0 of the form:

$$p_0(y|x) = p_A(y)H(x) + (1 - H(x))p_B(y)$$

where p_A and p_B are supported on two disjoint sets A and B respectively and H denotes the Heaviside step function. For this choice of p_0 any mixture $q(y) = \beta_A p_A(y) + \beta_B p_B(y)$ of p_A and p_B satisfies $J(p_0||q) = 0$. This is because their scores match exactly: $\nabla_y \log p_0(y|x) = \nabla_y \log q(y)$ whenever $p_0(y|x) > 0$. Note that in this case qdoesn't depend on x, which means that this approach might learn a model where x and y are independent while a simple investigation of the joint samples (X_i, Y_i) would suggest the opposite.

E Additional experimental results

Additional experimental results are shown in Figure 4 on the Red Wine and Parkinsons datasets.

Experimental results on the synthetic grid dataset are shown in Figure 5 in the case where an isotropic RBF kernel is used.

References

Hyvärinen, Aapo and Peter Dayan (2005). "Estimation of non-normalized statistical models by score matching." In: Journal of Machine Learning Research 6, pp. 695–709.

Pietzsch, W. (1994). "D. E. Bourne. P. C. Kendall. Vector analysis and cartesian tensors. Third edition Chapman and Hall. London-Glasgow-New York-Tokyo-Melbourne-Madras 1992, Seitenzahl: 304, Zahl der Abbildungen und Tabellen: 115. ISBN: 0-412-42750-8." In: Crystal Research and Technology 29.1, pp. 50–50. URL: http: //dx.doi.org/10.1002/crat.2170290115.

Figure 4: Scatter plot of 2-d slices of *red wine* and *parkinsons* data sets, the dimensions are (x_6, x_7) for *red wine* and (x_{15}, x_{16}) for *parkinsons*. The black points represent 1000 data points from the data sets. In red, 1000 samples from each of the three models KEF, KCEF and NADE.

Figure 5: Experimental comparison of proposed method KCEF and other methods (LSCDE and NADE) on synthetic grid dataset. log-likelihood per dimension vs dimension, N = 2000. The log-likelihood is evaluated on a separate test set of size 2000.

- Retherford, J. R. (1978). "Review: J. Diestel and J. J. Uhl, Jr., Vector measures." In: *Bull. Amer. Math. Soc.* 84.4, pp. 681–685. URL: http://projecteuclid.org/euclid.bams/1183540941.
- Sriperumbudur, Bharath, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, and Revant Kumar (2017). "Density Estimation in Infinite Dimensional Exponential Families." In: *Journal of Machine Learning Research* 18.57, pp. 1–59. URL: http://jmlr.org/papers/v18/16-011.html.
- Steinwart, Ingo and Andreas Christmann (2008). Support Vector Machines. 1st. Springer Publishing Company, Incorporated.
- van der Vaart, A. W. and J. H. van Zanten (2008). "Rates of contraction of posterior distributions based on Gaussian process priors." In: eprint: 0806.3024. URL: https://arxiv.org/abs/0806.3024.