
Robust Vertex Enumeration for Convex Hulls in High Dimensions

Pranjal Awasthi Bahman Kalantari Yikai Zhang
Computer Science Department,

Rutgers University,
Piscataway, NJ 08854, USA

pranjal.awasthi@cs.rutgers.edu

Computer Science Department,
Rutgers University,

Piscataway, NJ 08854, USA
kalantar@cs.rutgers.edu

Computer Science Department,
Rutgers University

Piscataway, NJ 08854, USA
yz422@cs.rutgers.edu

Abstract

We design a fast and robust algorithm named
All Vertex Traingle Algorithm (AVTA) for de-
tecting the vertices of the convex hull of a
set of points in high dimensions. Our pro-
posed algorithm is very general and works for
arbitrary convex hulls. In addition to being
a fundamental problem in computational ge-
ometry and linear programming, vertex enu-
meration in high dimensions has numerous
applications in machine learning. In particu-
lar, we apply AVTA to design new practical
algorithms for topic models and non-negative
matrix factorization. For topic models, our
new algorithm leads to significantly better
reconstruction of the topic-word matrix than
state of the art approaches [2, 5]. Additionally,
we provide a robust analysis of AVTA and
empirically demonstrate that it can handle
larger amounts of noise than existing meth-
ods. For non-negative matrix factorization we
show that AVTA is competitive with existing
methods that are specialized for this task [3].

1 Introduction

In this paper we study the classic problem of computing
the vertices of the convex hull of a given set of points
in the Euclidean space. More formally, we are given as
input a set S of n points {v1, v2, . . . vn} in Rm. We are
interested in computing the subset S of all the vertices
of conv(S), the convex hull of S. Not only is this a fun-
damental problem in computational geometry, state of
the art algorithms for many machine learning problems
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rely on being able to solve this problem efficiently. Con-
sider for instance the problem of non-negative matrix
factorization (NMF) [16]. Here, given access to a data
matrix A, we want to compute non-negative, low rank
matrices U and V such that A = UV . Although in
general this problem is intractable, recent results show
that under a natural separability assumption [13] such
a factorization can be computed efficiently [3]. The key
insight in these works is that under the separability as-
sumption, the rows of the matrix V will appear among
the rows of A. Furthermore, the rows of V will be the
vertices of the convex hull of rows of A. Hence, a fast
algorithm for detecting the vertices will lead to a fast
factorization algorithm as well.

A problem related to NMF is known as topic mod-
eling [6]. Here one is given access to a large corpus
of documents, with each document represented as a
long vector consisting of frequency in the document
of every word in the vocabulary. This is known as
the bag-of-words representation. Each document is
assumed to represent a mixture of up to K hidden
topics. A popular generative model for such documents
is the following: For every document d, a K dimen-
sional vector θd is drawn from a distribution over the
simplex. Typically this distribution is the Dirichlet
distribution. Then, for each word in the document, a
topic is chosen according to θd. Finally, given a chosen
topic i, a word is output according to the topic distri-
bution vector βi. This is known as the Latent Dirichlet
Allocation (LDA) model [7]. The parameters of this
model consist of the topic-word matrix β so that βi
defines the distribution over words for topic i. Addi-
tionally, there are hyper parameters associated with
the Dirichlet distributions generating the topic distri-
bution vector θd. The topic modeling problem concerns
learning the topic-word matrix β and the parameters
of the topic generating distribution. Similar to NMF,
the problem is intractable in the worst case but can be
efficiently solved under separability [4]. In this context,
the separability assumption requires that for each topic
i, there exists an anchor word that has a non-zero prob-
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ability of occurring only under topic i. Separability
is an assumption that is known to hold for real world
documents [4]. The key component towards learning
the model parameters is a fast algorithm for finding the
anchor words. The algorithm of Arora et al. [4, 2] uses
the word-word covariance matrix and shows that under
separability, the vertices of the convex hull of the rows
of the matrix will correspond to the anchor words. Sim-
ilarly, the work of [12] shows that finding the vertices of
the convex hull of the document-word matrix will also
lead to detection of anchor words. Both approaches
rely on the vertex detection subroutine. Furthermore,
in the case of topic models, the documents are limited
in size and this translates to the fact that one is given
a perturbation of the set S. The goal is to use this
perturbed set to approximate the original vertices S.
Hence in this application it is crucial that the approach
to finding the vertices be robust to noise.

In both the approaches mentioned above, it is enough
to solve the convex hull problem in the simplex case,
i.e., when the underlying vertices are at the corners of
a simplex. However, in many applications involving
computational geometry and linear programming [20]
it is important to have fast algorithms that work for
arbitrary convex hulls. Furthermore, our improved al-
gorithm for topic modeling will rely on the fact that we
can solve the convex hull problem beyond the simplex
case.

Our Results:

(a) We design an algorithm named All Vertex Triangle
Algorithm (AVTA) for the general problem of comput-
ing the K vertices of the convex hull of a set S of points
in Rm. In the special case when conv(S) is a K-simplex,
our algorithm has a the same run time as the state
of the art fast anchor words (FAW) algorithm of [2]In
addition, our algorithm is output-sensitive namely its
computational complexity scales with the number of
vertices. This is a desirable property for applications
in machine learning and computational geometry.

(b) We design a variant of AVTA that is robust to noise
in the data. We theoretically demonstrate the noise ro-
bustness of our algorithm under a natural assumption
on S called weak robustness, a concept that is comple-
mentary to the notion of robustness used in [2] (See
Section 3). To the best of our knowledge, this work
provides the first robustness based guarantees for the
general convex hull problem.

(c) We use AVTA to design a new algorithm for topic
modeling that leads to significantly better reconstruc-
tion of the topic-word matrix as compared to the state
of the art algorithms [2, 5]. We also empirically demon-
strate that our new algorithm is more tolerant to noise
in the data.

1.1 Related Work

The problem of enumerating the vertices of a convex
hull has a long history and has been studied extensively
in computational geometry [20]. There are various
efficient algorithms that exist in low dimensions [21,
14, 8]. In high dimensions, a natural approach to solve
the enumeration problem is via linear programming:
for each point solve a linear program to find out if it
lies in the convex hull of the remaining points. This
approach does not scale well as the number of linear
programs needed to solve the problem increase with
the data size. Similarly, other existing algorithms for
the enumeration problem have worst case complexity
that depends exponentially or double exponentially in
m, the dimensionality of the data [11, 17, 9, 10]. In
this work we focus on the complexity of this problem
on practical instances. We show that the runtime
of our proposed algorithm, AVTA, is polynomial in
any dimension and scales with the robustness of the
convex hull of the points. Robustness is a property
that has been studied for the enumeration problem in
the context of topic modeling [2]. See Section 2 for a
formal definition.

There has been a long line of work on designing al-
gorithms for topic modeling with provable guaran-
tees [18, 4, 1, 2, 5]. The work of [18] shows how
to provably learn the topic word matrix provided each
document is pure, i.e., contains only one topic. The
work of Arora et al. [4] proposed a provable algorithm
for learning general topic models under the separability
assumption. Separability refers to the assumption that
for each topic i, there exists an anchor word wi that
has a non-zero probability of appearing only in topic i.
Later, the work of [2] proposed a fast and practical al-
gorithm for learning separable topic models. The work
of [5] relaxed the separability assumption and shows
how to learn topic models under the presence of catch
words and a few documents with pure topics. Catch
words for topic i is a set of words Si that appear in
topic i with significantly higher frequency than in other
topics. Their new algorithm called TSV D leads to a
much better recovery of topics in terms of the `1 error.
For the problem of non-negative matrix factorization
the work of [3] designed a provable algorithm under
the separability assumption. The method of choice in
practice is alternate minimization [16].

2 The Algorithm

Our algorithms uses, as a subroutine, the Triangle
Algorithm described in [15]. The triangle algorithm is
a simple iterative algorithm for solving the convex hull
membership problem, a fundamental problem in linear
programming and computational geometry. Given a
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set of point S = {v1, . . . , vn} ⊂ Rm with diameter R
and a distinguished point p ∈ Rm, typically with n
much larger than m, the Triangle Algorithm tests if
p ∈ conv(S). It either computes a point in conv(S) as
close as desired to p, or a hyperplane that separates
p from conv(S). Given u, v ∈ Rm we interchangeably
use d(u, v) = ‖u − v‖. If p /∈ conv(S), the separating
hyperplane is encoded in terms of a point known as
the witness.

Definition 1. A point p′ ∈ conv(S) is a p-witness if
d(p′, vi) < d(p, vi), ∀i = 1, . . . , n.

Noticing that d(·, ·) is the Euclidean distance, we get
that for every point vi ∈ S, 2(p′−p) ·vi > ‖p′‖2−‖p‖2.
It is also easy to see that 2(p′ − p) · p ≤ ‖p′‖2 − ‖p‖2.
Hence, a witness provides a separating hyperplane.

The triangle algorithm either outputs a p-witness or
a point p′ ∈ conv(S) that is as close to p as desired.
Such a point is known as an ε-approximate solution.

Definition 2. Given ε ∈ (0, 1), p′ ∈ conv(S) is an ε-
approximate solution if for some v ∈ S, d(p′, p) ≤ εR.
Theorem 1 ([15]). Suppose p ∈ conv(S). Given
ε ∈ (0, 1), the number of iterations to compute an
ε-approximate solution pε ∈ conv(S) is O

(
1/ε2

)
. Sup-

pose p 6∈ conv(S). Let ∆ = min{d(x, p) : x ∈ conv(S)}.
The number of iterations to compute a p-witness p∆ ∈
conv(S) is O

(
R2/∆2

)
.

Furthermore, each iteration of the triangle algorithm
can be implemented in O(n+m) time.

2.1 All Vertex Triangle Algorithm (AVTA)

Denote the set of vertices of conv(S) by S =
{v1, . . . , vK} and let R be the diameter of S. A straight-
forward way to compute S is to test for each vi if it lies
in conv(S \ {vi}), to within an ε precision. Thus over-
all this would take n times the complexity of Triangle
Algorithm. Although in the worst case this cannot be
improved upon, we next show that for realistic inputs
one can do much better. In that vein, we study convex
hulls that are robust. A robust convex hull has the
property that each vertex is far from the convex hull
of the remaining vertices.

Definition 3. We say conv(S) is Γ∗-robust if Γ∗ =
min{d(vi, conv(S \ {vi})) : i = 1, . . . ,K}.

Γ∗ robustness was studied in the context of topic mod-
eling in the work of [2]. The following is immediate
from Definition 3. We now describe AVTA. Assume
conv(S) is Γ∗-robust and we are given γ ≤ Γ∗/R. The
following proposition that easily follows from the defi-
nition of robustness will play an important role in the
way AVTA works.

Proposition 1. Let Ŝ = {v̂1, . . . , v̂N} be a subset
of the vertices of conv(S). Suppose conv(S) is Γ∗-

robust. Given v ∈ S \ Ŝ, if for some γ ≤ Γ∗/R we have

d(v, conv(Ŝ)) < γR, then v 6∈ S.

Given a working subset Ŝ of S, initially of cardinality
N = 1, i.e., a single vertex of S, AVTA randomly selects
v ∈ S \ Ŝ. It then tests via the Triangle Algorithm

if d(v, conv(Ŝ)) ≤ γR/2. If so, it discards v since by
definition of γ it cannot belong to S (Proposition 1).

Otherwise, it computes a v-witness p′ ∈ conv(Ŝ). It
then sets c′ = v−p′ and maximizes c′Tx where x ranges
in conv(S \ Ŝ). The maximum value coincides with the

maximum of c′T vi where vi ranges in S \ Ŝ. If S′ is

the set of optimal solution in S \ Ŝ, it can be shown
that conv(S′) is a face of conv(S). Thus a vertex v′

of conv(S′) is a point in S′ and is necessarily a vertex
of conv(S). Such a vertex can be computed efficiently.
Having computed a new vertex v′ of conv(S), AVTA

replaces Ŝ with Ŝ ∪ {v′} and the process is repeated.
However, if v coincides with v′, AVTA selects a new
point in S \ Ŝ. Otherwise, AVTA continues to test if
the same v (for which a witness was found) is within a
distance of γR/2 of the convex hull of the augmented

set Ŝ. Also, as an iterate AVTA uses the same witness
p′. In doing so, each selected v ∈ S is either determined
to be a vertex itself, or it will continue to be tested if
it lies to within a distance of γR/2 of the growing set

Ŝ. If within γR/2 distance, it will be discarded before
AVTA tests another point. The detailed algorithm is
presented below.

AVTA (S, γ ∈ (0, 1))

• Step 0. Set Ŝ = {Farthest(v, S)} for some v ∈ S.

• Step 1. Randomly select v ∈ S \ Ŝ.

• Step 2. Call Triangle Algorithm (Ŝ, v, γ/2).

• Step 3. If the output p′ of Step 1 is a v-
witness then Goto Step 4. Otherwise, p′ is a γ/2-
approximate solution to v. Set S ← S \ {v}.
If S = ∅, stop. Otherwise, Goto Step 1.

• Step 4. Let c′ = v − p′.
Compute S′, the set of optimal solutions of

max{c′Tx : x ∈ S \ Ŝ}. Randomly select v′ ∈ S′.

v′ ← Farthest(v′, S′), Ŝ ← Ŝ ∪ {v′}.

• Step 5. If v = v′, Goto Step 1. Otherwise, Goto
Step 2.

We now present our main theorem regarding AVTA.
Due to space constraints, all the proof are deferred to
the supplementary material.

Theorem 2. Suppose that conv(S) is Γ∗-robust.
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(i) Given any 0 < γ ≤ Γ∗/R, the number of arithmetic
operations of AVTA to compute S is O

(
nK(m+γ−2)

)
.

(ii) If K is known but no lower bound on Γ∗/R is
known, the complexity of computing S via AVTA is
O
((
nK(m+ (R2/Γ2

∗)
)

log (R/Γ∗)
)
.

(iii) More generally, given any t ∈ (0, 1) in
O
(
nK(t)(m+ t−2)

)
operations AVTA computes a sub-

set Ŝ of S of size K(t) so that the distance from each
point in conv(S) to conv(Ŝ) is at most tR.

See Theorem 9 in the supplementary material for the
proof.

3 Robustness of AVTA

In machine learning applications such as topic model-
ing one is often not given the actual set of points S
but rather a perturbed set Sε. This is because the doc-
uments in the corpus are limited in size and hence are
only stochastic samples from an underlying distribution.
Given such a perturbed set, the goal still is to recover
good approximations to the original set of vertices S.
In this section we will show how to modify the AVTA
algorithm to get a provably robust variant. For a given
ε ∈ (0, 1) let Sε = {vε1, . . . , vεn}, and Sε = {vε1, . . . , vεK}
be ε-perturbations of S and S, respectively, where for
each i = 1, . . . , n, ‖vi − vεi ‖ ≤ εR. Recall that R is the
diameter of S. We will assume that we are given as
input Sε instead of S. The first question that arises is:
What is the relationship between the vertices of S and
those of Sε? Without any assumptions, the vertices of
conv(Sε) could change drastically even under small per-
turbations. For instance, consider a triangle with three
additional interior points, very close to the vertices. It
is very likely that even under small perturbations all
six points become vertices, or that the interior points
become the new vertices while the vertices become the
new interior points. Thus there is a need to make some
assumptions before we can say anything about the na-
ture of perturbed points. Let V ε be the set of vertices
of Sε. We would hope that for small ε, Sε would be a
subset of V ε. In this vein, we introduce the following
definition.

Definition 4. We say conv(S) is Σ∗-weakly robust if
the Euclidean distance from each vertex to the convex
hull of the remaining points in S is at least Σ∗. More
precisely, Σ∗ = min{d(v, conv(S \ {v})) : v ∈ S}.

Although Σ∗ and Γ∗ corresponding to the set S may
seem unrelated, in the following theorem we establish
a relationship between the two that is useful in the
analysis of our algorithm.

Theorem 3. Let S and S be as before, with R being
the diameter of S. Suppose conv(S) is Γ∗-robust. Let

ρ∗ = min{d(vi, vj) : vi, vj ∈ S, i 6= j}. Then conv(S) is
Σ∗-weakly robust where Σ∗ ≥ 1

Rρ∗Γ∗.

See Theorem 11 in the supplementary material for the
proof.

The following theorem describes a simple condition
under which the set of vertices of conv(S) under per-
turbation remain to be vertices of the perturbed convex
hull.

Lemma 1. Suppose conv(S) is Σ∗-weakly robust. Sup-
pose Sε is an ε-perturbation of S and ε is such that
ε < Σ∗

2R . If v ∈ S is a vertex conv(S) and vε ∈ Sε
its corresponding ε-perturbation, then vε is a vertex of
conv(Sε).

See Theorem 12 in the supplementary material for the
proof.

Let Ŝε be the output of AVTA when run on Sε with
γ = Σ∗

2R . From Lemma 1 we know that this set will
contain the perturbed vertices of conv(S). We next
show that running AVTA followed by a pruning stage
will recover only the perturbed vertices of conv(S).

Pruning (Ŝε, σ ∈ R)

• Step 0. Set V = ∅.

• Step 1. For each vi ∈ Ŝε, use Triangle Algo-

rithm [15] to check if d(vi, conv(Ŝε \ vi)) > σ. If
yes, then V = V ∪ {vi}.

• Step 2. Output V .

Our next lemma proves that the pruning stage will
indeed recover the perturbed vertices of conv(S) and
nothing else.

Lemma 2. Suppose conv(S) is Σ∗-weakly robust.
Suppose ε < Σ∗/(4R). Let Ŝε be the output of
AV TA(Sε,

Σ∗
4R ). Then the output of the pruning stage

with inputs Ŝε and σ = Σ∗/(8R) is exactly Sε.

See Lemma 2 in the supplementary material for the
proof. We now state the main result for this section.

Theorem 4. Let S = {v1, . . . , vn} ⊂ Rm. Assume
conv(S) is Σ∗-weakly robust. Suppose ε ≤ Σ∗/(4R).

(i) AVTA can be modified to compute a subset Ŝε of the
set of vertices of Sε containing Sε, then compute from
this subset Sε itself. If Kε is the cardinality of Ŝε the

total number of operations satisfies, O

(
nKε(m+ R2

Σ2
∗
)

)
.

(ii) Given only K, AVTA can be modified to compute Sε
with total number of operations bounded by O(nKε(m+
( RΣ∗

)2)) log(R/Σ∗).

(iii) More generally, given any t ∈ (0, 1), AVTA can be

modified to compute a subset S
t

ε of the set of vertices of
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conv(S
t

ε) of cardinality K
(t)
ε so that the distance from

each point in conv(Sε) to conv(S
t

ε) is at most t. In
particular, the distance from each point in conv(S) to
conv(Stε) is at most (t + ε)R. The complexity of the

computation is O

(
nmK

(t)
ε +

nK(t)
ε

t2

)
.

See Theorem 13 in the supplementary material for the
proof.

A practical implementation: While the modified
AVTA algorithm comes with theoretical guarantees, in
certain cases the algorithm might output many more
vertices, Kε, than desired. Here we present a practical
implementation that always outputs exactly K vertices,
provided K is known. When K is unknown, our experi-
ments in the next section reveal that the algorithm can
automatically detect a slightly larger set that contains
a good approximation to the K vertices of interest.
Notice that we want a fast way to detect good approxi-
mations to the original vertices of the set S and prune
out spurious points, i.e., additional vertices of the set
Sε. The key insight on top of the AVTA algorithm is
the following: If the perturbed set is randomly projected
onto a lower dimensional space, it is more likely for an
original vertex to still be a vertex than for a spurious
vertex. Using this insight the algorithm outlined below
runs the modified AVTA algorithm over several random
projections and outputs the set of points that appear
as vertices in many random projections.

AVTA with multiple random
projections (S = {v1, . . . , vn}, K, γ, M)

• Step 0. Set Freq ← 0|S|.

• Step 1. For i = 1 to M :

– S′ ← S: Project data on to randomly chosen
4log(n)

ε2
dimensions.

– Ŝ ← AVTA(S′, γ)

– For each dj ∈ Ŝ, Freq[j] = Freq[j] + 1.

• Step 2. Output top K frequent vertices.

4 Applications

We now show how AVTA can be used to solve the topic
modeling in a variety of ways. We first look at how to
solve the problem under the separability assumption.

AVTA in the presence of anchor words: Arora et
al. [2] provide a practical algorithm for topic modeling
with provable guarantees. Their algorithm works under
the assumptions that the topic-word matrix is separable.
In particular, they assume that corresponding to each
topic i, there exists an anchor word wi that has a non
zero probability of appearing only under topic i. Under

this assumption, the algorithm of [2] consists of two
stages: a) find the anchor words, and b) use the anchor
words to learn the topic word matrix. The problem
of finding anchor words corresponds to finding the
vertices of the convex hull of the word-word covariance
matrix. They propose an algorithm named fast anchor
words in order to find the vertices. Since AVTA works
in general setting, we can instead use AVTA to find
the anchor words. Additionally, the fast anchor words
algorithm needs to know the value of the number of
anchor words, as an input. On the other hand, from
the statements of Theorems 2 and4 it is easy to see
that AVTA can work in a variety of settings when
other properties of the data are known such as the
robustness. We argue that robustness is a parameter
that can be tuned in a better manner than trying
different values of the number of anchor words. In fact,
one can artificially add random noise to the data and
make it robust up to certain value. One can then run
AVTA with the lower bound on robustness as input and
let the algorithm automatically discover the number of
anchor words. This is much more desirable in practical
settings. Our first implementation of AVTA is named
AVTA+RecoverL2 that uses AVTA to detect anchor
words and then uses the anchor words to learn the
topic word matrix using the approach from [2]. AVTA
is also theoretically superior than fast anchor words
and achieves slightly better run times in the regime
when the number of topics is o(log n), where n is the
number of words in the vocabulary. This is usually the
case in most practical scenarios.

AVTA in the absence of anchor words: The pres-
ence of anchor words is a strong assumption that often
does not hold in practice. Recently, the work of Bansal
et al. [5] designed a new practical algorithm for topic
models under the presence of catch words. Catch words
for topic i correspond to set Si such that it’s total prob-
ability of appearing uunder topic i is significantly higher
than in any other topic. Their algorithm called TSVD
recovers much better reconstruction of the topic-word
matrix in terms of the `1 error. They also assume that
for each topic i, there are a few dominant documents
that mostly contain words from topic i. The TSVD
algorithm works in two stages. In stage 1, the (thresh-
olded) word-document data matrix is projected onto a
K-SVD space to compute a different embedding of the
documents. Then, the documents are clustered into K
clusters. Under the assumptions mentioned above, one
can show that the dominant documents for each topic
will be clustered correctly. In stage 2, a simple post
processing algorithm can approximate the topic-word
matrix from the clustering.

We improve on TSVD by asking the following question:
is K-SVD the right representation of the data?. Our
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key insight is that if dominant documents are present in
the topic, it is easy to show that most other documents
will be approximated by a convex combination of the
dominant topics. Furthermore, the coefficients in the
convex combinations will provide a much more faithful
low dimensional embedding of the data. Using this in-
sight, we propose a new algorithm that runs AVTA on
the data matrix to detect vertices and to approximate
each point using a convex combination of the vertices.
We then use the coefficient matrix as the new repre-
sentation of the data that needs to be clustered. Once
the clustering is obtained, the same post processing
step from [5] can be used to recover the topic-word ma-
trix. Our results show that the embedding produced by
AVTA leads to much better reconstruction error than
of that produced by TSVD. Furthermore, K-SVD is an
expensive procedure and very sensitive to the presence
of outliers in the data. In contrast, our new algorithm
called AVTA+CatchWord is much more stable to noise
in the data.

AVTA+CatchWord (S = {v1, . . . , vn}, γ, K, ε)

• Step 0. Randomly project S onto 2K dimensions
to get S̃.

• Step 1. Compute a a super set of vertices Ṽ by
AV TA(S̃, γ).

• Step 2. Prune Ṽ into V̂ (of size K) by iteratively

picking ṽ ∈ {Ṽ }/{V̂ } which has the maximum dis-

tance to conv(V̂ ).

• Step 3. For each projected point v̂i ∈ S̃ \ V̂ , com-

pute a vector αi such that ‖V̂ αi − v̂i‖ ≤ ε.

• Step 4. Initialize cluster assignment for each point
by majority weight: argmax

j∈[K]

αj .

• Step 5. Clustering using Lloyds algorithm on the
embedding provided by the α vectors.

• Step 6. Use the post processing as described in [5]
to recover the topic-word matrix from the clustering.

AVTA for NMF: The work of [3] showed that convex
hull detection can be used to solve the non-negative
matrix factorization problem under the separability
assumption. We show that by using the more general
AVTA algorithm for solving the convex hull problem
results in comparable performance guarantee.

5 Experiments 1

We compare our algorithms with the Fast Anchor +
Recoverl2 algorithm of [2] and the TSVD algorithm
of [5] on two types of data sets: semi-synthetic data

1Resources: https://github.com/yikaizhang/AVTA

and real world data. We next describe our methodology
and empirical results in detail.

Semi-Synthetic Data: For Semi-Synthetic data set,
we use similar methodology as in [2]. We first train
the model on real data set using Gibbs sampling with
1000 iterations. We choose 50 as the number of topics.
Given the parameters learned from dataset, we gen-
erate documents with α set to be 0.01. The average
document length is 1000. Then the reconstruction error
is measured by the l1 distance of bipartite matched
pairs between the true word-topic distribution and the
word-topic distribution [2]. We then average the errors
to compute the final mean error.

Real Data: We use the NIPS data set with 1500
documents , and a pruned vocabulary of 2K words,
and the NYTimes Corpus with sub sampled 30000
documents, and a pruned vocabulary of 5k words. 2.
For our experiments on NMF we use the Swimmer
data set [13] that consists of 256 swimmer figures with
each a 32× 32 binary pixel image. One can interpret
each image as a document and pixels as a word in
the document [12]. All swimmers consist of 4 limbs
with each limb having 4 different possible poses. One
can then consider the different poses of limbs as the
true underlying topics [13]. We compare the algorithm
proposed in [3] with AVTA+Recoverl2 on the swimmer
data set. Since the true underlying topics are known,
we will plot the output of the algorithms and compare
it with the underlying truth.

Implementation Details: We compare 4 algorithms,
AVTA+CatchWord, TSVD, the Fast Anchor + Re-
coverl2 and the AVTA+Recoverl2. We implement our
own version of Fast Anchor + Recoverl2 as described
in [2]. TSVD is implemented using the code provided
by the authors in [5]. AVTA+Recoverl2 corresponds
to using AVTA to detect anchor words from the word-
word covariance matrix and then using the Recoverl2
procedure from [2] to get the topic-word matrix. AVTA
+ CatchWord corresponds to finding the low dimen-
sional embedding of each document in terms of the
coefficient vector of its representation in the convex
hull of the vertices. The next step is to cluster these
points. In practice, one could use the Lloyd’s algorithm
for this step which could be sensitive to initialization.
To remedy this, we use similar heuristic as [5] of the
initialization step. We repeat AVTA for 3 times and
pick the set of vertices with maximum sum of distance
between each vertex and convex hull of remaining ver-
tices. We set the number of output vertices K = 50
which is the same as the number of topics, i.e. each
vertex corresponds to a topic. The precision parameter
ε is set to 0.01. We found that initializing by simply as-

2https://archive.ics.uci.edu/ml/datasets/bag+
of+words

https://github.com/yikaizhang/AVTA
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://archive.ics.uci.edu/ml/datasets/bag+of+words
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signing clusters using neighborhoods of highest degree
vertices works effectively. As a final step, we use the
post processing step from [5] to recover the topic-word
matrix from the clustering.

Robustness: We also generate perturbed version of
the semi-synthetic data. We generate a random matrix
with i.i.d. entries uniformly distributed with different
scales varying from 0.005− 0.05. We test all the algo-
rithms with the document-word matrix added with the
noise matrix.

Results on Semi-Synthetic Data: Figures 1 and
2 show the `1 reconstruction of all the four algo-
rithms under both clean and noisy versions of the
semi-synthetic data set. For topic i, let Ai be the
ground truth topic vector and Âi be the topic vec-
tor recovered by the algorithm. Then the `1 error is
defined as 1

K

∑K
i=1 ‖Ai − Âi‖1. The plots show that

AVTA+CatchWord is consistently better than both
TSVD and Fast Anchor + Recoverl2 and produces
significantly more accurate topic vectors. In order
to further test the robustness of out approach, we
plot in Figure 3 the range of the `1 error obtained
across multiple runs of the algorithms on the same
data set. The range is defined to be the difference be-
tween the maximum and the minimum error recovered
by the algorithm across different runs. We see that
AVTA+CatchWord produces solutions that are much
more stable to the effect of the noise as compared to
other algorithms.

Figure 1: `1 error in the semi-synthetic dataset (K =
50).

Results on Real Data: For the real world data set, as
in prior works [2, 5], we evaluate the coherence to mea-
sure topic quality [22]. Given a set of words W associ-
ated with a learned topic, the coherence is computed as:

Coherence(W) =
∑
w1,w2∈W log D(w1,w2)+const

D(w2) , where

D(w1) and D(w1, w2) are the number of documents
where w1 appears and (w1, w2) appear together respec-
tively [2], and small constant const is set to 0.01 to
avoid w1, w2 that never co-occur [19]. The total co-

Figure 2: `1 error in the perturbed semi-synthetic
dataset (K = 50).

Figure 3: Range of the `1 error over 10 runs on the
same data set.

herence is the sum of the coherence of each topic. In
the NIPS dataset, 1000 out of the 1500 documents
were selected as the training set to learn the word-topic
distributions. The rest of the documents were used as
the testing set. Tables 1 shows the topic coherence ob-
tained by the algorithms. One can see that in both the
approaches, either via anchor words or the clustering
approach, AVTA based algorithms perform comparably
to state of the art methods 3.

Table 1: Topic coherence on real data

FastAnchor+
RecoverL2

AV TA +
RecoverL2

TSVD AV TA +
CatchWord

NIPS -15.8 ±2.24 -16.04 ±2.09 -16.86 ±1.66 -18.65 ±1.78
NYTimes -32.15 ±2.7 -32.13 ±2.43 -29.39 ±1.43 -30.13 ±1.98

Running time of experiments:

Table 2 and Table 3 shows the running time for algo-
rithms to learn the model from semi-synthetic data

3The topic coherence results for TSVD do not match
the ones presented in [5] since in their experiments, the
authors look at top 10 most frequent words in each topic.
In our experiments we compute coherence for the top 5
most frequent words in each topic.
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and real data. As can be seen, when using AVTA to
learn topic models via the anchor words approach, our
algorithm has comparable run time to Fast Anchor
+ Recoverl2. Compared to clustering approach, the
AVTA+CathchWord has less running time in the real
data experiments. Per our observation, the convex hull
of word-document vectors in real data set has more
vertices than K, the number of topics. The AVTA
catches K vertices efficiently due to its small number
of iterations on line search for γ. In semi-synthetic data
set, the number of ’robust’ vertices is approximately
the same as number of topics K thus AVTA needs
to find almost all vertices. To catch enough vertices,
AVTA needs several iterations decreasing γ which is
computationally expensive.

Table 2: Running time on semi-synthetic data (secs)

# of documents FastAnchor+
RecoverL2

AV TA +
RecoverL2

TSVD AV TA +
CatchWord

5000 5.49 7.82 17.02 29.89
15000 6.00 7.68 43.27 120.04
30000 10.30 12.84 81.24 372.17
50000 13.60 16.40 112.80 864.30

Table 3: Running time on real data experiments (secs)

FastAnchor+
RecoverL2

AV TA +
RecoverL2

TSVD AV TA +
CatchWord

NIPS 3.22 4.41 56.58 22.78
NYTimes 26.05 27.79 237.6 101.07

Results on NMF: The swimmer data set [13] consists
of 256, 32×32 images and the task consists of inferring
the underlying “poses” in a given image. In our exper-
iments we use the original swimmer data set and also
construct a noisy version by adding spurious poses. Let
Ω(A) be a function that outputs a randomly chosen
32× 8 block of an image. We generate a ’spurious pose’
of size 32× 8 by Ω(Mi) where Mi is a randomly cho-
sen swimmer image. Then we take another randomly
chosen image Mj and compute the corrupted image
as M ′j = Mj + c · Ω(Mi) where we simply set c = 0.1.
An illustration of the noise data set is shown in Fig-
ure 4. We compare the performance of AVTA on these
data sets with the performance of the Separable NMF
algorithm proposed in [3]. Figures 5 and 6 show the
output of the Separable NMF algorithm and that of
our algorithm respectively on the noisy data set. Our
approach produces competitive results as compared to
the Separable NMF algorithm.

6 Conclusion

In this work we have presented a fast and robust algo-
rithm for computing the vertices of the convex hull of
a set of points. Our algorithm efficiently computes the
vertices of convex hulls in high dimensions and even in
the special case of the simplex is competitive with the

Figure 4: An example of spurious actions in swimmer
images.

Figure 5: Output of NMF +RecoverL2

Figure 6: Output of AVTA +RecoverL2

state of the art approaches in terms of runing time [2].
Furthermore, our algorithm leads to an improved al-
gorithm for topic modeling that is more robust and
produces better approximations to the topic-word ma-
trix. It will be interesting to provide theoretical claims
supporting this observation in the context of specific
applications. Furthermore, we believe that our algo-
rithm will have more applications in machine learning
problems beyond the ones investigated here as well as
applications in computational geometry and in linear
programming.



Pranjal Awasthi, Bahman Kalantari, Yikai Zhang

Acknowledgement

We thank anonymous reviewers for helpful comments.

References

[1] Anima Anandkumar, Dean P Foster, Daniel J Hsu,
Sham M Kakade, and Yi-Kai Liu. A spectral algo-
rithm for latent dirichlet allocation. In Advances
in Neural Information Processing Systems, pages
917–925, 2012.

[2] Sanjeev Arora, Rong Ge, Yonatan Halpern, David
Mimno, Ankur Moitra, David Sontag, Yichen Wu,
and Michael Zhu. A practical algorithm for topic
modeling with provable guarantees. In Interna-
tional Conference on Machine Learning, pages
280–288, 2013.

[3] Sanjeev Arora, Rong Ge, Ravindran Kannan, and
Ankur Moitra. Computing a nonnegative matrix
factorization–provably. In Proceedings of the forty-
fourth annual ACM symposium on Theory of com-
puting, pages 145–162. ACM, 2012.

[4] Sanjeev Arora, Rong Ge, and Ankur Moitra.
Learning topic models–going beyond svd. In Foun-
dations of Computer Science (FOCS), 2012 IEEE
53rd Annual Symposium on, pages 1–10. IEEE,
2012.

[5] Trapit Bansal, Chiranjib Bhattacharyya, and
Ravindran Kannan. A provable svd-based algo-
rithm for learning topics in dominant admixture
corpus. In Advances in Neural Information Pro-
cessing Systems, pages 1997–2005, 2014.

[6] David M Blei. Probabilistic topic models. Com-
munications of the ACM, 55(4):77–84, 2012.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

[8] Timothy M Chan. Optimal output-sensitive con-
vex hull algorithms in two and three dimensions.
Discrete & Computational Geometry, 16(4):361–
368, 1996.

[9] Timothy M Chan. Output-sensitive results on
convex hulls, extreme points, and related problems.
Discrete & Computational Geometry, 16(4):369–
387, 1996.

[10] Bernard Chazelle. An optimal convex hull algo-
rithm in any fixed dimension. Discrete & Compu-
tational Geometry, 10(1):377–409, 1993.

[11] Kenneth L Clarkson. More output-sensitive geo-
metric algorithms. In Foundations of Computer
Science, 1994 Proceedings., 35th Annual Sympo-
sium on, pages 695–702. IEEE, 1994.

[12] Weicong Ding, Mohammad Hossein Rohban,
Prakash Ishwar, and Venkatesh Saligrama. Topic
discovery through data dependent and random
projections. In ICML (3), pages 1202–1210, 2013.

[13] David Donoho and Victoria Stodden. When does
non-negative matrix factorization give a correct
decomposition into parts? In Advances in Neural
Information Processing Systems, 2003.

[14] Ray A Jarvis. On the identification of the convex
hull of a finite set of points in the plane. Informa-
tion Processing Letters, 2(1):18–21, 1973.

[15] Bahman Kalantari. A characterization theorem
and an algorithm for a convex hull problem. An-
nals of Operations Research, 226(1):301–349, 2015.

[16] Daniel D Lee and H Sebastian Seung. Algorithms
for non-negative matrix factorization. In Advances
in neural information processing systems, pages
556–562, 2001.
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