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Appendix A: Elements of group theory

Sets equipped with a group structure have attracted interest from the machine learning community because
they can model the data structure of complex domains (Fukumizu et al., 2009). We will introduce concisely
the concepts and results of group theory necessary to this paper. The authors can refer for example to
(Tung, 1985; Wijsman, 1990; Eaton, 1989) for more details.

Definition 4 (Group) A set G is said to form a group if there is an operation ‘*’, called group multiplica-
tion, such that:

1. For any a, b ∈ G, a ∗ b ∈ G.

2. The operation is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ G,

3. There is one identity element e ∈ G such that, g ∗ e = e for all g ∈ G,

4. Each g ∈ G has an inverse g−1 ∈ G such that, g ∗ g−1 = e.

A subset of G is called a subgroup if it is a group under the same multiplication operation.

The following elementary properties are a direct consequence of the above definition: e−1 = e, g−1 ∗ g = e,
e ∗ g = g, for all g ∈ G.

Among others, classical groups of interest in this paper are the permutations group S(n) and the general
linear group GL(n) of all real nonsingular n× n matrices equipped with matrix multiplication. The matrix
representations of the real orthogonal group O(n) of isometries and of the real special orthogonal group
SO(n) of rotations are subgroups of GL(n). As in these two examples, many groups can be considered as
functions acting on an input space:

Definition 5 (Action) Let G be a group and X a space. An action of G on X to the left is a function
a : G × X → X , (g, x) 7→ g.x such that:

1. e.x = x, for all x ∈ X

2. g2.(g1.x) = (g2 ∗ g1).x, for all g1, g2 ∈ G, x ∈ X

If g∗x = x, x is called a fixed point of g. We will call the subgroup of elements fixing x, Gx = {g ∈ G, g∗x = x},
the isotropy subgroup or stabilizer of x in G. G is said to act freely if gx 6= x, for all g ∈ G \ {e} and x ∈ X .

Due to the properties of group actions, associativity rules can be applied to all group actions and group
multiplications of a given expression, such that we can do not need to put any symbol for binary operations
between group/space elements. For example, we will thus simply denote g1.((g2 ∗ g3).x) by g1g2g3x.

We will always consider group actions to the left in this paper, such that we will simply call them group
action. It is easy to show that S(n) and its subgroups act on the set {1, .., n} by permuting its elements, as
well as on n-tuples from arbitrary sets. GL(n) and its subgroups act as linear functions on the vector space
Rn.

Definition 6 (Topological group) A locally compact Hausdorff topological group is a group equipped with
a locally compact Hausdorff topology such that:

• G → G : x 7→ x−1 is continuous,

• G × G → G : (x, y) 7→ x.y is continuous (using the product topology).
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The σ-algebra generated by all open sets of G is called the Borel algebra of G.

Definition 7 (Invariant measure) Let G be a topological group according to definition 6. Let K(G) be
the set of continuous real valued functions with compact support on G. A radon measure µ defined on Borel
subsets is left invariant if for all f ∈ K(G) and g ∈ G∫

G

f(g−1x)dµ(x) =

∫
G

f(x)dµ(x)

Such a measure is called a Haar measure.

A key result regarding topological groups is the existence and uniqueness up to a positive constant of the
Haar measure (Eaton, 1989). Whenever G is compact, the Haar measures are finite and we will denote µG
the unique Haar measure such that µG(G) = 1, defining an invariant probability measure on the group.

Appendix B: proofs of main text results

Proposition 2

We will use EU to denote the expectation when U is drawn from the distribution on SO(n) (or sometimes
just E when it does not lead to confusion). Since A is symmetric then we can decompose it as A = V TDV ,
with D diagonal and V ∈ SO(n). Then

EU tr
(
UTAUB

)
= EV U tr

(
(V U)TDV UB

)
= EU tr

(
UTDUB

)
,

where we substituted V U for U in the expectation and used the translation invariance of the Haar measure.
As a consequence,

E tr
(
UTAUB

)
= E tr

(
DUBUT

)
=
∑

dkkE
(
UBUT

)
kk

by cyclic invariance and linearity of the trace. We claim that the values of the diagonal elements of E
(
UBUT

)
are all equal. Indeed, let Pi,k ∈ SO(n) be the matrix permuting coordinates i and k. Then

E
(
UBUT

)
kk

=
(
Pi,k

(
E
(
UBUT

))
PTi,k

)
ii

= E
(
Pi,kUB (Pi,kU)

T
)
ii

= E
(
UBUT

)
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again by substitution the translation invariance of the Haar measure. Therefore, for all k,

E
(
UBUT

)
kk

= 1
nE tr

(
UBUT

)
= 1

nE tr
(
UTUB

)
= 1

n tr(B)

since U is orthogonal. Finally we get

EU tr
(
UTAUB

)
= 1

n tr(B)
∑
dkk = 1

n tr(B) tr(A).

Equation 3

We first observe that for all x in A, and all g ∈ G

〈C〉m,gx = Eh∼µGC(mhgx) = Eh′∼µGC(mh′x) = 〈C〉m,x

due to the invariance of the Haar measure µG (see appendix A). Which means that the EGC is constant on
orbits of the form Gx, for all x. Thus

Ex
[
C(mx)

〈C〉m,x

]
=Ex̃Eg

[
C(mgx̃)

〈C〉m,gx̃

]
=Ex̃

EgC(mgx̃)

〈C〉m,x̃
= 1 . (16)
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Indentifiability of LiNGAM using thrid order cumulants

Assume the cause X is a real random variable with zero mean such that EX3 6= 0, and Y is generated from
X through

X 7→ Y := αX + ε , (17)

where α ∈ R∗ and ε is a zero mean i.i.d noise random variable independent of X.

Asymptotically, we clearly have (13) satisfied and all required parameters can be estimated consistently by
least squares. Let σ2

X = E[X2] and σ2
ε = E[ε2]. In the backward direction, the least square solution is

X = βY + η

with

β =
ασ2

X

α2σ2
X + σ2

ε

.

We get for the backward additive noise the expression

η = (1− αβ)X − βε =
σ2
ε

α2σ2
X + σ2

ε

X − ασ2
X

α2σ2
X + σ2

ε

ε.

By contradiction, assume the model is not identifiable, then (13) must also be satisfied for the backward
model. The asymptotic expression is

κ3(βY + η) = κ3(βY ) + κ3(η).

where κ3 denotes the population third order centered cumulant. Which implies

α2σ4
εσ

2
X

(α2σ2
X + σ2

ε )
3EX

3 = − α4σ2
εσ

4
X

(α2σ2
X + σ2

ε )
3EX

3

whenever α 6= 0 and σ2
ε 6= 0 this is impossible, so the true causal direction can be identified.

Proposition 3

Proof. Decomposing XX>XX> using X = M + V

XX>XX> =
(
V V > + VM> +MV > +MM>

)2
= V V >V V > + VM>VM> +MV >MV > +MM>MM>

+ V V >VM> + V V >MV > + V V >MM>

+ VM>V V > + VM>MV > + VM>MM>

+MV >V V > +MV >VM> +MV >MM>

+MM>V V > +MM>VM> +MM>MV >

Taking the expectation and the trace and using tr
[
AB>CD>

]
= tr

[
BA>DC>

]
tr =

[
CD>AB>

]
=

tr
[
DC>BA>

]
, we get for the contrast

E tr
(
XX>XX>

)
= EzEX|z tr

(
XX>XX>

)
=
∑

πk

(
‖µk‖4 + EV |z tr

[
V V >V V >

]
+ 4µ>k Σkµk + 2‖µk‖2 tr [Σk]

)
We can notice that all terms but one are influenced by introducing a generic transformation M 7→ UM with
U ∈ SO(p), and the final result is obtained using proposition 2.
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Figure 7: Normalized histograms of the generic ratio for the MNIST dataset.


