Appendix

A Proofs

A. 1 Derivation of the smooth relaxed dual

Recall that

$$
\begin{equation*}
\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b})=\min _{T \in \mathcal{U}(\boldsymbol{a}, \boldsymbol{b})} \sum_{j=1}^{n} \boldsymbol{t}_{j}^{\top} \boldsymbol{c}_{j}+\Omega\left(\boldsymbol{t}_{j}\right) \tag{16}
\end{equation*}
$$

We now add Lagrange multipliers for the two equality constraints but keep the constraint $T \geq 0$ explicitly:

$$
\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b})=\min _{T \geq 0} \max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}} \sum_{j=1}^{n} \boldsymbol{t}_{j}^{\top} \boldsymbol{c}_{j}+\Omega\left(\boldsymbol{t}_{j}\right)+\boldsymbol{\alpha}^{\top}\left(T \mathbf{1}_{n}-\boldsymbol{a}\right)+\boldsymbol{\beta}^{\top}\left(T^{\top} \mathbf{1}_{m}-\boldsymbol{b}\right)
$$

Since (16) is a convex optimization problem with only linear equality and inequality constraints, Slater's conditions reduce to feasibility Boyd and Vandenberghe, 2004, §5.2.3] and hence strong duality holds:

$$
\begin{aligned}
\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b}) & =\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}} \min _{T \geq 0} \sum_{j=1}^{n} \boldsymbol{t}_{j}^{\top} \boldsymbol{c}_{j}+\Omega\left(\boldsymbol{t}_{j}\right)+\boldsymbol{\alpha}^{\top}\left(T \mathbf{1}_{n}-\boldsymbol{a}\right)+\boldsymbol{\beta}^{\top}\left(T^{\top} \mathbf{1}_{m}-\boldsymbol{b}\right) \\
& =\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}} \sum_{j=1}^{n} \min _{\boldsymbol{t}_{j} \geq 0} \boldsymbol{t}_{j}^{\top}\left(\boldsymbol{c}_{j}+\boldsymbol{\alpha}+\beta_{j} \mathbf{1}_{m}\right)+\Omega\left(\boldsymbol{t}_{j}\right)-\boldsymbol{\alpha}^{\top} \boldsymbol{a}-\boldsymbol{\beta}^{\top} \boldsymbol{b} \\
& =\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}}-\sum_{j=1}^{n} \max _{\boldsymbol{t}_{j} \geq 0} \boldsymbol{t}_{j}^{\top}\left(-\boldsymbol{c}_{j}-\boldsymbol{\alpha}-\beta_{j} \mathbf{1}_{m}\right)-\Omega\left(\boldsymbol{t}_{j}\right)-\boldsymbol{\alpha}^{\top} \boldsymbol{a}-\boldsymbol{\beta}^{\top} \boldsymbol{b} \\
& =\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}} \boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b}-\sum_{j=1}^{n} \max _{\boldsymbol{t}_{j} \geq 0} \boldsymbol{t}_{j}^{\top}\left(\boldsymbol{\alpha}+\beta_{j} \mathbf{1}_{m}-\boldsymbol{c}_{j}\right)-\Omega\left(\boldsymbol{t}_{j}\right)
\end{aligned}
$$

Finally, plugging the expression of (6) gives the claimed result.

A. 2 Derivation of the convex conjugate

The convex conjugate of $\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b})$ w.r.t. the first argument is

$$
\mathrm{OT}_{\Omega}^{*}(\boldsymbol{g}, \boldsymbol{b})=\sup _{\boldsymbol{a} \in \triangle^{m}} \boldsymbol{g}^{\top} \boldsymbol{a}-\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b})
$$

Following a similar argument as Cuturi and Peyré, 2016. Theorem 2.4], we have

$$
\mathrm{OT}_{\Omega}^{*}(\boldsymbol{g}, \boldsymbol{b})=\max _{\substack{T \geq 0 \\ T^{\top} \mathbf{1}_{m}=\boldsymbol{b}}}\left\langle T, \boldsymbol{g} \mathbf{1}_{n}^{\top}-C\right\rangle-\sum_{j=1}^{n} \Omega\left(\boldsymbol{t}_{j}\right)
$$

Notice that this is an easier optimization problem than (5), since there are equality constraints only in one direction. Cuturi and Peyré 2016 showed that this optimization problem admits a closed form in the case of entropic regularization. Here, we show how to compute OT_{Ω}^{*} for any strongly-convex regularization.
The problem clearly decomposes over columns and we can rewrite it as

$$
\begin{aligned}
\mathrm{OT}_{\Omega}^{*}(\boldsymbol{g}, \boldsymbol{b}) & =\sum_{j=1}^{n} \max _{\substack{\boldsymbol{t}_{j} \geq 0 \\
\boldsymbol{t}_{j}^{\top} \mathbf{1}_{m}=b_{j}}} \boldsymbol{t}_{j}^{\top}\left(\boldsymbol{g}-\boldsymbol{c}_{j}\right)-\Omega\left(\boldsymbol{t}_{j}\right) \\
& =\sum_{j=1}^{n} b_{j} \max _{\boldsymbol{\tau}_{j} \in \Delta^{m}} \boldsymbol{\tau}_{j}^{\top}\left(\boldsymbol{g}-\boldsymbol{c}_{j}\right)-\frac{1}{b_{j}} \Omega\left(b_{j} \boldsymbol{\tau}_{j}\right) \\
& =\sum_{j=1}^{n} b_{j} \max _{\Omega_{j}}\left(\boldsymbol{g}-\boldsymbol{c}_{j}\right)
\end{aligned}
$$

where we defined $\Omega_{j}(\boldsymbol{y}):=\frac{1}{b_{j}} \Omega\left(b_{j} \boldsymbol{y}\right)$ and where $\max _{\Omega}$ is defined in (8).

A. 3 Expression of the strongly-convex duals

Using a similar derivation as before, we obtain the duals of (13) and (14).
Proposition 3 Duals of (13) and 14

$$
\begin{aligned}
\operatorname{ROT}_{\Phi}(\boldsymbol{a}, \boldsymbol{b}) & =\max _{\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)}-\frac{1}{2} \Phi^{*}(-2 \boldsymbol{\alpha}, \boldsymbol{a})-\frac{1}{2} \Phi^{*}(-2 \boldsymbol{\beta}, \boldsymbol{b}) \\
\widetilde{\operatorname{ROT}}_{\Phi}(\boldsymbol{a}, \boldsymbol{b}) & =\max _{\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)}-\Phi^{*}(-\boldsymbol{\alpha}, \boldsymbol{a})+\boldsymbol{\beta}^{\top} \boldsymbol{b} \\
& =\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}}-\Phi^{*}(-\boldsymbol{\alpha}, \boldsymbol{a})-\sum_{j=1}^{n} b_{j} \max _{i \in[m]}\left(\alpha_{i}-c_{i, j}\right),
\end{aligned}
$$

where Φ^{*} is the conjugate of Φ in the first argument.
The duals are strongly convex if Φ is smooth.
When $\Phi(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{2 \gamma}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}, \Phi^{*}(-\boldsymbol{\alpha}, \boldsymbol{a})=\frac{\gamma}{2}\|\boldsymbol{\alpha}\|^{2}-\boldsymbol{\alpha}^{\top} \boldsymbol{a}$. Plugging that expression in the above, we get

$$
\begin{equation*}
\operatorname{ROT}_{\Phi}(\boldsymbol{a}, \boldsymbol{b})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)} \boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b}-\gamma\left(\|\boldsymbol{\alpha}\|^{2}+\|\boldsymbol{\beta}\|^{2}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{aligned}
\widetilde{\operatorname{ROT}}_{\Phi}(\boldsymbol{a}, \boldsymbol{b}) & =\max _{\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)} \boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b}-\frac{\gamma}{2}\|\boldsymbol{\alpha}\|^{2} \\
& =\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}} \boldsymbol{\alpha}^{\top} \boldsymbol{a}-\sum_{j=1}^{n} b_{j} \max _{i \in[m]}\left(\alpha_{i}-c_{i, j}\right)-\frac{\gamma}{2}\|\boldsymbol{\alpha}\|^{2}
\end{aligned}
$$

This corresponds to the original dual and semi-dual with squared 2-norm regularization on the variables.

A. 4 Proof of Theorem 1

Before proving the theorem, we introduce the next two lemmas, which bound the regularization value achieved by any transportation plan.

Lemma 2 Bounding the entropy of a transportation plan
Let $H(\boldsymbol{a}):=-\sum_{i} a_{i} \log a_{i}$ and $H(T):=-\sum_{i, j} t_{i, j} \log t_{i, j}$ be the joint entropy.
Let $\boldsymbol{a} \in \triangle^{m}, \boldsymbol{b} \in \triangle^{n}$ and $T \in \mathcal{U}(\boldsymbol{a}, \boldsymbol{b})$. Then,

$$
\max \{H(\boldsymbol{a}), H(\boldsymbol{b})\} \leq H(T) \leq H(\boldsymbol{a})+H(\boldsymbol{b})
$$

Proof. See, for instance, Cover and Thomas, 2006.
Together with $0 \leq H(\boldsymbol{a}) \leq \log m$ and $0 \leq H(\boldsymbol{b}) \leq \log n$, this provides lower and upper bounds for the entropy of a transportation plan. As noted in Cuturi, 2013, the upper bound is tight since

$$
\max _{T \in \mathcal{U}(\boldsymbol{a}, \boldsymbol{b})} H(T)=H\left(\boldsymbol{a b}^{\top}\right)=H(\boldsymbol{a})+H(\boldsymbol{b})
$$

Lemma 3 Bounding the squared 2-norm of a transportation plan
Let $\boldsymbol{a} \in \Delta^{m}, \boldsymbol{b} \in \triangle^{n}$ and $T \in \mathcal{U}(\boldsymbol{a}, \boldsymbol{b})$. Then,

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\frac{a_{i}}{n}+\frac{b_{j}}{m}-\frac{1}{m n}\right)^{2} \leq\|T\|^{2} \leq \min \left\{\|\boldsymbol{a}\|^{2},\|\boldsymbol{b}\|^{2}\right\}
$$

Proof. The tightest lower bound is given by $\min _{T \in \mathcal{U}(\boldsymbol{a}, \boldsymbol{b})}\|T\|^{2}$. An exact iterative algorithm was proposed in Calvillo and Romero, 2016 to solve this problem. However, since we are interested in an explicit formula, we consider instead the lower bound $\min _{\substack{T \mathbf{1}_{n}=\boldsymbol{a} \\ T^{\top} \mathbf{1}_{m}=\boldsymbol{b}}}\|T\|^{2}$ (i.e., we ignore the non-negativity constraint). It is known Romero, 1990
that the minimum is achieved at $t_{i, j}=\frac{a_{i}}{n}+\frac{b_{j}}{m}-\frac{1}{m n}$, hence our lower bound. For the upper bound, we have

$$
\begin{aligned}
\|T\|^{2} & =\sum_{i=1}^{m} \sum_{j=1}^{n} t_{i, j}^{2} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n}\left(a_{i} \frac{t_{i, j}}{a_{i}}\right)^{2} \\
& =\sum_{i=1}^{m} a_{i}^{2} \sum_{j=1}^{n}\left(\frac{t_{i, j}}{a_{i}}\right)^{2} \\
& \leq \sum_{i=1}^{m} a_{i}^{2} \sum_{j=1}^{n}\left(\frac{t_{i, j}}{a_{i}}\right)^{2} \\
& =\|\boldsymbol{a}\|^{2}
\end{aligned}
$$

We can do the same with $\boldsymbol{b} \in \triangle^{n}$ to obtain $\|T\|^{2} \leq\|\boldsymbol{b}\|^{2}$, yielding the claimed result.
Together with $0 \leq\|\boldsymbol{a}\|^{2} \leq 1$ and $0 \leq\|\boldsymbol{b}\|^{2} \leq 1$, this provides lower and upper bounds for the squared 2-norm of a transportation plan.

Proof of the theorem. Let T^{\star} and T_{Ω}^{\star} be optimal solutions of (2) and (5), respectively. Then,

$$
\mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})+\Omega\left(T_{\Omega}^{\star}\right)=\left\langle T^{\star}, C\right\rangle+\Omega\left(T_{\Omega}^{\star}\right) \leq\left\langle T_{\Omega}^{\star}, C\right\rangle+\Omega\left(T_{\Omega}^{\star}\right)=\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b})
$$

Likewise,

$$
\mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b})=\left\langle T_{\Omega}^{\star}, C\right\rangle+\Omega\left(T_{\Omega}^{\star}\right) \leq\left\langle T^{\star}, C\right\rangle+\Omega\left(T^{\star}\right)=\mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})+\Omega\left(T^{\star}\right)
$$

Combining the two, we obtain

$$
\mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})+\Omega\left(T_{\Omega}^{\star}\right) \leq \mathrm{OT}_{\Omega}(\boldsymbol{a}, \boldsymbol{b}) \leq \mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})+\Omega\left(T^{\star}\right)
$$

Using $T^{\star}, T_{\Omega}^{\star} \in \mathcal{U}(\boldsymbol{a}, \boldsymbol{b})$ together with Lemma 2 and Lemma 3 gives the claimed results.

A. 5 Proof of Theorem 2

To prove the theorem, we first need the following two lemmas.
Lemma 4 Bounding the 1-norm of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ for $(\boldsymbol{\alpha}, \boldsymbol{\beta}) \in \mathcal{P}(C)$
Let $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)$ with extra constraints $\boldsymbol{\alpha}^{\top} \mathbf{1}_{m}=0$ and $\boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b} \geq 0$, where $\boldsymbol{a} \in \triangle^{m}$ and $\boldsymbol{b} \in \triangle^{n}$. Then,

$$
0 \leq\|\boldsymbol{\alpha}\|_{1}+\|\boldsymbol{\beta}\|_{1} \leq\|C\|_{\infty}(\nu+n)
$$

where

$$
\nu=\max \left\{(2+n / m)\left\|\boldsymbol{a}^{-1}\right\|_{\infty},\left\|\boldsymbol{b}^{-1}\right\|_{\infty}\right\}
$$

Proof. The proof technique is inspired by Meshi et al. 2012, Supplementary material Lemma 1.2].
The 1-norm can be rewritten as

$$
\|\boldsymbol{\alpha}\|_{1}+\|\boldsymbol{\beta}\|_{1}=\max _{\substack{\boldsymbol{r} \in\{-1,1\}^{m} \\ \boldsymbol{s} \in\{-1,1\}^{n}}} \boldsymbol{r}^{\top} \boldsymbol{\alpha}+\boldsymbol{s}^{\top} \boldsymbol{\beta}
$$

Our goal is to upper bound the following objective

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}} \boldsymbol{r}^{\top} \boldsymbol{\alpha}+\boldsymbol{s}^{\top} \boldsymbol{\beta} \quad \text { s.t. } \quad 0 \leq \boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b}, \overline{ } \quad \begin{array}{ll}
& \alpha_{i}+\beta_{j} \leq c_{i, j} \\
& \boldsymbol{\alpha}^{\top} \mathbf{1}_{m}=0
\end{array}
$$

with a constant that does not depend on \boldsymbol{r} and \boldsymbol{s}. We call the above the dual problem. Its Lagrangian is

$$
\begin{aligned}
L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \mu, \nu, T) & =\boldsymbol{r}^{\top} \boldsymbol{\alpha}+\boldsymbol{s}^{\top} \boldsymbol{\beta}+\mu \boldsymbol{\alpha}^{\top} \mathbf{1}_{m}+\nu\left(\boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b}\right)+\sum_{i, j=1}^{m, n} t_{i, j}\left(c_{i, j}-\alpha_{i}-\beta_{j}\right) \\
& =\left(\boldsymbol{r}+\mu \mathbf{1}_{m}+\nu \boldsymbol{a}-T \mathbf{1}_{n}\right)^{\top} \boldsymbol{\alpha}+\left(\boldsymbol{s}+\nu \boldsymbol{b}-T^{\top} \mathbf{1}_{m}\right)^{\top} \boldsymbol{\beta}+\langle T, C\rangle
\end{aligned}
$$

with $\mu \in \mathbb{R}, \nu \geq 0, T \geq \mathbf{0}$. Maximizing the Lagrangian w.r.t. $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ gives the corresponding primal problem

$$
\begin{aligned}
& \left.\min _{T \geq 0,} \operatorname{miR}^{2}, \nu \geq 0<T, C\right\rangle \quad \text { s.t. } T \mathbf{1}_{n}=\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m}, \\
& T^{\top} \mathbf{1}_{m}=\nu \boldsymbol{b}+\boldsymbol{s} .
\end{aligned}
$$

By weak duality, any feasible primal point provides an upper bound of the dual problem. We start by choosing $\mu=\frac{1}{m}\left(\sum_{j} s_{j}-\sum_{i} r_{i}\right)$ so that $\sum_{i, j} t_{i, j}$ provides the same values w.r.t. the last two constraints. Next, we choose

$$
\nu=\max \left\{\max _{i} \frac{2+n / m}{a_{i}}, \max _{j} \frac{1}{b_{j}}\right\}
$$

which ensures the non-negativity of $\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m}$ and $\nu \boldsymbol{b}+\boldsymbol{s}$ regardless of \boldsymbol{r} and \boldsymbol{s}. It follows that the transportation plan T defined by

$$
T=\frac{1}{(\nu \boldsymbol{b}+\boldsymbol{s})^{T} \mathbf{1}_{n}}\left(\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m}\right)(\nu \boldsymbol{b}+\boldsymbol{s})^{\top}
$$

is feasible. We finally bound the objective, $\langle T, C\rangle \leq\|C\|_{\infty} \sum_{i, j} t_{i, j} \leq\|C\|_{\infty}(\nu+n)$.
Lemma 5 Bounding the 1-norm of $\boldsymbol{\alpha}$ for $(\boldsymbol{\alpha}, \cdot) \in \mathcal{P}(C)$
Let $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)$ with extra constraints $\sum_{i=1}^{m} \alpha_{i}=0$ and $\alpha^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b} \geq 0$, where $\boldsymbol{a} \in \triangle^{m}$ and $\boldsymbol{b} \in \triangle^{n}$. Then,

$$
0 \leq\|\boldsymbol{\alpha}\|_{1} \leq 2\|C\|_{\infty}\left\|\boldsymbol{a}^{-1}\right\|_{\infty}
$$

Proof. Similarly as before, our goal is to upper bound

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{m}, \boldsymbol{\beta} \in \mathbb{R}^{n}} \boldsymbol{r}^{\top} \boldsymbol{\alpha} \quad \text { s.t. } \quad 0 \leq \boldsymbol{\alpha}^{\top} \boldsymbol{a}+\boldsymbol{\beta}^{\top} \boldsymbol{b}, ~ 子 \begin{aligned}
& \\
& \\
& \\
& \alpha_{i}+\beta_{j} \leq c_{i, j}, \\
& \\
& \boldsymbol{\alpha}^{\top} \mathbf{1}_{m}=0,
\end{aligned}
$$

with a constant which does not depend on \boldsymbol{r}. The corresponding primal is

$$
\begin{aligned}
\min _{T \geq 0, \mu \in \mathbb{R}, \nu \geq 0}\langle T, C\rangle \quad \text { s.t. } & T \mathbf{1}_{n}=\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m} \\
& T^{\top} \mathbf{1}_{m}=\nu \boldsymbol{b} .
\end{aligned}
$$

By weak duality, any feasible primal point gives us an upper bound. We start by choosing $\mu=\frac{1}{m} \sum_{i} r_{i}$ so that $\sum_{i j} t_{i, j}$ provides the same values w.r.t. the last two constraints. Next, we choose, $\nu=\max _{i} \frac{2}{a_{i}}$, which ensures the non-negativity of $\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m}(\nu \boldsymbol{b} \geq 0$ is also satisfied since $\nu \geq 0)$ which appears in the r.h.s. of the second constraint, independently of \boldsymbol{r}. It follows that the transportation plan T defined by

$$
T=\frac{1}{\nu \boldsymbol{b}^{\top} \mathbf{1}_{n}}\left(\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m}\right)(\nu \boldsymbol{b})^{\top}=\left(\nu \boldsymbol{a}+\boldsymbol{r}+\mu \mathbf{1}_{m}\right) \boldsymbol{b}^{\top}
$$

is feasible. We finally bound the objective

$$
\langle T, C\rangle \leq\|C\|_{\infty} \sum_{i, j} t_{i, j} \leq \nu\|C\|_{\infty}=2\|C\|_{\infty}\left\|\boldsymbol{a}^{-1}\right\|_{\infty}
$$

which concludes the proof.
Proof of the theorem. We begin by deriving the bound for the relaxed primal. Let $\left(\boldsymbol{\alpha}^{\star}, \boldsymbol{\beta}^{\star}\right)$ and $\left(\boldsymbol{\alpha}_{\Phi}^{\star}, \boldsymbol{\beta}_{\Phi}^{\star}\right)$ be optimal solutions of (3) and (17), respectively. Since $\left(\boldsymbol{\alpha}_{\Phi}^{\star}\right)^{\top} \boldsymbol{a}+\left(\boldsymbol{\beta}_{\Phi}^{\star}\right)^{\top} \boldsymbol{b} \leq\left(\boldsymbol{\alpha}^{\star}\right)^{\top} \boldsymbol{a}+\left(\boldsymbol{\beta}^{\star}\right)^{\top} \boldsymbol{b}$, we have

$$
\operatorname{ROT}_{\Phi}(\boldsymbol{a}, \boldsymbol{b}) \leq \mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})-\frac{\gamma}{2}\left(\left\|\boldsymbol{\alpha}_{\Phi}\right\|^{2}+\left\|\boldsymbol{\beta}_{\Phi}\right\|^{2}\right)
$$

Likewise,

$$
\mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})-\frac{\gamma}{2}\left(\left\|\boldsymbol{\alpha}^{\star}\right\|^{2}+\left\|\boldsymbol{\beta}^{\star}\right\|^{2}\right) \leq \operatorname{ROT}_{\Phi}(\boldsymbol{a}, \boldsymbol{b}) .
$$

Combining the two, we get

$$
\begin{equation*}
\mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})-\frac{\gamma}{2}\left(\left\|\boldsymbol{\alpha}^{\star}\right\|^{2}+\left\|\boldsymbol{\beta}^{\star}\right\|^{2}\right) \leq \operatorname{ROT}_{\Phi}(\boldsymbol{a}, \boldsymbol{b}) \leq \mathrm{OT}(\boldsymbol{a}, \boldsymbol{b})-\frac{\gamma}{2}\left(\left\|\boldsymbol{\alpha}_{\Phi}\right\|^{2}+\left\|\boldsymbol{\beta}_{\Phi}\right\|^{2}\right) \tag{18}
\end{equation*}
$$

Hence we need to bound variables $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathcal{P}(C)$. Since $\|\cdot\|_{2} \leq\|\cdot\|_{1}$, we can upper bound $\left\|\boldsymbol{\alpha}^{\star}\right\|_{1}+\left\|\boldsymbol{\beta}^{\star}\right\|_{1}$. In addition, we can always add the additional constraint that $\boldsymbol{\alpha}^{\top} \boldsymbol{a}+\beta^{\top} \boldsymbol{b} \geq \mathbf{0}^{\top} \boldsymbol{a}+\mathbf{0}^{\top} \boldsymbol{b}=0$ since ($\mathbf{0}, \mathbf{0}$) is dual feasible for (3). Since for any optimal pair $\boldsymbol{\alpha}^{\star}, \boldsymbol{\beta}^{\star}$, the pair $\boldsymbol{\alpha}^{\star}-\sigma \mathbf{1}, \boldsymbol{\beta}^{\star}+\sigma \mathbf{1}$ is also feasible and optimal for any $\sigma \in \mathbb{R}$, we can also add the constraint $\boldsymbol{\alpha}^{\top} \mathbf{1}_{m}=0$. The obtained bound will obviously hold for any optimal pair $\boldsymbol{\alpha}^{\star}, \boldsymbol{\beta}^{\star}$. Hence, we can apply Lemma 4. By the same reasoning but using the constraint $\boldsymbol{\beta}^{\top} \mathbf{1}_{n}=0$ in place of $\boldsymbol{\alpha}^{\top} \mathbf{1}_{m}=0$, we can obtain a similar bound. By combining these two bounds, we obtain our final bound:

$$
\|\boldsymbol{\alpha}\|_{1}+\|\boldsymbol{\beta}\|_{1} \leq\|C\|_{\infty} \min \left\{\nu_{1}+n, \nu_{2}+m\right\}
$$

where

$$
\begin{aligned}
& \nu_{1}=\max \left\{(2+n / m)\left\|\boldsymbol{a}^{-1}\right\|_{\infty},\left\|\boldsymbol{b}^{-1}\right\|_{\infty}\right\} \\
& \nu_{2}=\max \left\{\left\|\boldsymbol{a}^{-1}\right\|_{\infty},(2+m / n)\left\|\boldsymbol{b}^{-1}\right\|_{\infty}\right\} .
\end{aligned}
$$

Taking the square of this bound and plugging the result in gives the claimed result. Applying the same reasoning with Lemma 5 gives the claimed result for the semi-relaxed primal.

B Alternating minimization with exact block updates

General case. Let $\boldsymbol{\beta}(\boldsymbol{\alpha})$ be an optimal solution of 7 given $\boldsymbol{\alpha}$ fixed, and similarly for $\boldsymbol{\alpha}(\boldsymbol{\beta})$. From the first-order optimality conditions,

$$
\begin{equation*}
\nabla \delta_{\Omega}\left(\boldsymbol{\alpha}+\beta_{j}(\boldsymbol{\alpha}) \mathbf{1}_{m}-\boldsymbol{c}_{j}\right)^{\top} \mathbf{1}_{m}=b_{j} \quad \forall j \in[n] \tag{19}
\end{equation*}
$$

and similarly for $\boldsymbol{\alpha}$ given $\boldsymbol{\beta}$ fixed. Solving these equations is non-trivial in general. However, because

$$
\nabla \delta_{\Omega}\left(\boldsymbol{\alpha}+\beta_{j}(\boldsymbol{\alpha}) \mathbf{1}_{m}-\boldsymbol{c}_{j}\right)=b_{j} \nabla \max _{\Omega_{j}}\left(\boldsymbol{\alpha}-\boldsymbol{c}_{j}\right)
$$

holds $\forall \boldsymbol{\alpha} \in \mathbb{R}^{m}, j \in[n]$, we can retrieve $\beta_{j}(\boldsymbol{\alpha})$ if we know how to compute $\nabla \max _{\Omega}(\boldsymbol{x})$ and the inverse map $\left(\nabla \delta_{\Omega}\right)^{-1}(\boldsymbol{y})$ exists. That map exists and equals $\nabla \Omega(\boldsymbol{y})$ provided that Ω is differentiable and $\boldsymbol{y}>\mathbf{0}$.

Entropic regularization. It is easy to verify that 19 is satisfied with

$$
\boldsymbol{\beta}(\boldsymbol{\alpha})=\gamma \log \left(\frac{\boldsymbol{b}}{K^{\top} e^{\frac{\boldsymbol{\alpha}}{\gamma}-\mathbf{1}_{m}}}\right) \quad \text { where } \quad K:=e^{\frac{-C}{\gamma}}
$$

and similarly for $\boldsymbol{\alpha}(\boldsymbol{\beta})$. These updates recover the iterates of the Sinkhorn algorithm Cuturi, 2013.
Squared 2-norm regularization. Plugging the expression of $\nabla \delta_{\Omega}$ in $\sqrt{19}$, we get that $\boldsymbol{\beta}(\boldsymbol{\alpha})$ must satisfy

$$
\left[\boldsymbol{\alpha}+\beta_{j}(\boldsymbol{\alpha}) \mathbf{1}_{m}-\boldsymbol{c}_{j}\right]_{+}^{\top} \mathbf{1}_{m}=\gamma b_{j} \quad \forall j \in[n]
$$

Close inspection shows that it is exactly the same optimality condition as the Euclidean projection onto the simplex $\underset{\boldsymbol{y} \in \triangle_{m}}{\operatorname{argmin}}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}$ must satisfy, with $\boldsymbol{x}=\frac{\boldsymbol{\alpha}-\boldsymbol{c}_{j}}{\gamma b_{j}}$. Let $x_{[1]} \geq \cdots \geq x_{[m]}$ be the values of \boldsymbol{x} in sorted order. Following Michelot, 1986, Duchi et al. 2008, if we let

$$
\rho:=\max \left\{i \in[m]: x_{[i]}-\frac{1}{i}\left(\sum_{r=1}^{i} x_{[r]}-1\right)>0\right\}
$$

then \boldsymbol{y}^{\star} is exactly achieved at $\left[\boldsymbol{x}+\frac{\beta_{j}(\boldsymbol{\alpha})}{\gamma b_{j}} \mathbf{1}_{m}\right]_{+}$, where

$$
\beta_{j}(\boldsymbol{\alpha})=-\frac{\gamma b_{j}}{\rho}\left(\sum_{r=1}^{\rho} x_{[r]}-1\right)
$$

The expression for $\boldsymbol{\alpha}(\boldsymbol{\beta})$ is completely symmetrical. While a projection onto the simplex is required for each coordinate, as discussed in $\$ 3.3$, this can be done in expected linear time. In addition, each coordinate-wise solution can be computed in parallel.
Alternating minimization. Once we know how to compute $\boldsymbol{\beta}(\boldsymbol{\alpha})$ and $\boldsymbol{\alpha}(\boldsymbol{\beta})$, there are a number of ways we can build a proper algorithm to solve the smoothed dual. Perhaps the simplest is to alternate between $\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}(\boldsymbol{\alpha})$ and $\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}(\boldsymbol{\beta})$. For entropic regularization, this two-block coordinate descent (CD) scheme is known as the Sinkhorn algorithm and was recently popularized in the context of optimal transport by Cuturi 2013. A disadvantage of this approach, however, is that computational effort is spent updating coordinates that may already be near-optimal. To address this issue, we can instead adopt a greedy CD scheme as recently proposed for entropic regularization by Altschuler et al. 2017.

C Additional experiments

We ran the same experiments as Figure 2 and Figure 3 on one more image pair: "Grafiti" by Jon Ander and "Rainbow Bridge National Monument Utah", by Bernard Spragg. Both images are in the public domain. The results, presented in Figure 5 and Figure 6 below, confirm the empirical findings described in 86.1 and 66.2 . The images are available at https://github.com/mblondel/smooth-ot/tree/master/data

Figure 5: Same experiment as Figure 3 on one more image pair.

Figure 6: Same experiment as Figure 2 on one more image pair.

