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Appendix
A Proofs

A.1 Derivation of the smooth relaxed dual

Recall that

OTΩ(a, b) = min
T∈U(a,b)

n∑

j=1

t⊤j cj +Ω(tj). (16)

We now add Lagrange multipliers for the two equality constraints but keep the constraint T ≥ 0 explicitly:

OTΩ(a, b) = min
T≥0

max
α∈Rm,β∈Rn

n∑

j=1

t⊤j cj +Ω(tj) +α⊤(T1n − a) + β⊤(T⊤1m − b).

Since (16) is a convex optimization problem with only linear equality and inequality constraints, Slater’s condi-
tions reduce to feasibility [Boyd and Vandenberghe, 2004, §5.2.3] and hence strong duality holds:

OTΩ(a, b) = max
α∈Rm,β∈Rn

min
T≥0

n∑

j=1

t⊤j cj +Ω(tj) +α⊤(T1n − a) + β⊤(T⊤1m − b)

= max
α∈Rm,β∈Rn

n∑

j=1

min
tj≥0

t⊤j (cj +α+ βj1m) + Ω(tj)−α⊤a− β⊤b

= max
α∈Rm,β∈Rn

−

n∑

j=1

max
tj≥0

t⊤j (−cj −α− βj1m)− Ω(tj)−α⊤a− β⊤b

= max
α∈Rm,β∈Rn

α⊤a+ β⊤b−
n∑

j=1

max
tj≥0

t⊤j (α+ βj1m − cj)− Ω(tj).

Finally, plugging the expression of (6) gives the claimed result.

A.2 Derivation of the convex conjugate

The convex conjugate of OTΩ(a, b) w.r.t. the first argument is

OT∗
Ω(g, b) = sup

a∈△m

g⊤a−OTΩ(a, b).

Following a similar argument as [Cuturi and Peyré, 2016, Theorem 2.4], we have

OT∗
Ω(g, b) = max

T≥0

T⊤
1m=b

〈T, g1⊤
n − C〉 −

n∑

j=1

Ω(tj).

Notice that this is an easier optimization problem than (5), since there are equality constraints only in one
direction. Cuturi and Peyré [2016] showed that this optimization problem admits a closed form in the case of
entropic regularization. Here, we show how to compute OT∗

Ω for any strongly-convex regularization.

The problem clearly decomposes over columns and we can rewrite it as

OT∗
Ω(g, b) =

n∑

j=1

max
tj≥0

t⊤j 1m=bj

t⊤j (g − cj)− Ω(tj)

=

n∑

j=1

bj max
τ j∈△m

τ⊤
j (g − cj)−

1

bj
Ω(bjτ j)

=

n∑

j=1

bjmaxΩj
(g − cj),
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where we defined Ωj(y) :=
1
bj
Ω(bjy) and where maxΩ is defined in (8).

A.3 Expression of the strongly-convex duals

Using a similar derivation as before, we obtain the duals of (13) and (14).

Proposition 3 Duals of (13) and (14)

ROTΦ(a, b) = max
α,β∈P(C)

−
1

2
Φ∗(−2α,a)−

1

2
Φ∗(−2β, b)

R̃OTΦ(a, b) = max
α,β∈P(C)

−Φ∗(−α,a) + β⊤b

= max
α∈Rm

−Φ∗(−α,a)−

n∑

j=1

bj max
i∈[m]

(αi − ci,j),

where Φ∗ is the conjugate of Φ in the first argument.

The duals are strongly convex if Φ is smooth.
When Φ(x,y) = 1

2γ ‖x− y‖2, Φ∗(−α,a) = γ
2 ‖α‖

2 −α⊤a. Plugging that expression in the above, we get

ROTΦ(a, b) = max
α,β∈P(C)

α⊤a+ β⊤b− γ
(
‖α‖2 + ‖β‖2

)
(17)

and

R̃OTΦ(a, b) = max
α,β∈P(C)

α⊤a+ β⊤b−
γ

2
‖α‖2

= max
α∈Rm

α⊤a−
n∑

j=1

bj max
i∈[m]

(αi − ci,j)−
γ

2
‖α‖2.

This corresponds to the original dual and semi-dual with squared 2-norm regularization on the variables.

A.4 Proof of Theorem 1

Before proving the theorem, we introduce the next two lemmas, which bound the regularization value achieved
by any transportation plan.

Lemma 2 Bounding the entropy of a transportation plan

Let H(a) := −
∑

i ai log ai and H(T ) := −
∑

i,j ti,j log ti,j be the joint entropy.

Let a ∈ △m, b ∈ △n and T ∈ U(a, b). Then,

max{H(a), H(b)} ≤ H(T ) ≤ H(a) +H(b).

Proof. See, for instance, [Cover and Thomas, 2006].

Together with 0 ≤ H(a) ≤ logm and 0 ≤ H(b) ≤ log n, this provides lower and upper bounds for the entropy of
a transportation plan. As noted in [Cuturi, 2013], the upper bound is tight since

max
T∈U(a,b)

H(T ) = H(ab⊤) = H(a) +H(b).

Lemma 3 Bounding the squared 2-norm of a transportation plan

Let a ∈ △m, b ∈ △n and T ∈ U(a, b). Then,

m∑

i=1

n∑

j=1

(
ai
n

+
bj
m
−

1

mn

)2

≤ ‖T‖2 ≤ min
{
‖a‖2, ‖b‖2

}
.
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Proof. The tightest lower bound is given by min
T∈U(a,b)

‖T‖2. An exact iterative algorithm was proposed in [Calvillo

and Romero, 2016] to solve this problem. However, since we are interested in an explicit formula, we consider
instead the lower bound min

T1n=a

T⊤
1m=b

‖T‖2 (i.e., we ignore the non-negativity constraint). It is known [Romero, 1990]

that the minimum is achieved at ti,j =
ai

n
+

bj
m
− 1

mn
, hence our lower bound. For the upper bound, we have

‖T‖2 =

m∑

i=1

n∑

j=1

t2i,j

=

m∑

i=1

n∑

j=1

(
ai
ti,j
ai

)2

=

m∑

i=1

a2i

n∑

j=1

(
ti,j
ai

)2

≤
m∑

i=1

a2i

n∑

j=1

(
ti,j
ai

)

= ‖a‖2.

We can do the same with b ∈ △n to obtain ‖T‖2 ≤ ‖b‖2, yielding the claimed result. �

Together with 0 ≤ ‖a‖2 ≤ 1 and 0 ≤ ‖b‖2 ≤ 1, this provides lower and upper bounds for the squared 2-norm of
a transportation plan.

Proof of the theorem. Let T ⋆ and T ⋆
Ω be optimal solutions of (2) and (5), respectively. Then,

OT(a, b) + Ω(T ⋆
Ω) = 〈T

⋆, C〉+Ω(T ⋆
Ω) ≤ 〈T

⋆
Ω, C〉+Ω(T ⋆

Ω) = OTΩ(a, b).

Likewise,

OTΩ(a, b) = 〈T
⋆
Ω, C〉+Ω(T ⋆

Ω) ≤ 〈T
⋆, C〉+Ω(T ⋆) = OT(a, b) + Ω(T ⋆).

Combining the two, we obtain

OT(a, b) + Ω(T ⋆
Ω) ≤ OTΩ(a, b) ≤ OT(a, b) + Ω(T ⋆).

Using T ⋆, T ⋆
Ω ∈ U(a, b) together with Lemma 2 and Lemma 3 gives the claimed results.

A.5 Proof of Theorem 2

To prove the theorem, we first need the following two lemmas.

Lemma 4 Bounding the 1-norm of α and β for (α,β) ∈ P(C)

Let α,β ∈ P(C) with extra constraints α⊤1m = 0 and α⊤a+ β⊤b ≥ 0, where a ∈ △m and b ∈ △n. Then,

0 ≤ ‖α‖1 + ‖β‖1 ≤ ‖C‖∞(ν + n)

where

ν = max
{
(2 + n/m)

∣∣∣∣a−1
∣∣∣∣
∞ ,

∣∣∣∣b−1
∣∣∣∣
∞
}
.

Proof. The proof technique is inspired by [Meshi et al., 2012, Supplementary material Lemma 1.2].

The 1-norm can be rewritten as

||α||1 + ||β||1 = max
r∈{−1,1}m

s∈{−1,1}n

r⊤α+ s⊤β.
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Our goal is to upper bound the following objective

max
α∈Rm,β∈Rn

r⊤α+ s⊤β s.t. 0 ≤ α⊤a+ β⊤b,

αi + βj ≤ ci,j ,

α⊤1m = 0,

with a constant that does not depend on r and s. We call the above the dual problem. Its Lagrangian is

L(α,β, µ, ν, T ) = r⊤α+ s⊤β + µα⊤1m + ν(α⊤a+ β⊤b) +
m,n∑

i,j=1

ti,j (ci,j − αi − βj)

= (r + µ1m + νa− T1n)
⊤α+ (s+ νb− T⊤1m)⊤β + 〈T,C〉

with µ ∈ R, ν ≥ 0, T ≥ 0. Maximizing the Lagrangian w.r.t. α and β gives the corresponding primal problem

min
T≥0, µ∈R, ν≥0

〈T,C〉 s.t. T1n = νa+ r + µ1m,

T⊤1m = νb+ s.

By weak duality, any feasible primal point provides an upper bound of the dual problem. We start by choosing
µ = 1

m
(
∑

j sj −
∑

i ri) so that
∑

i,j ti,j provides the same values w.r.t. the last two constraints. Next, we choose

ν = max

{
max

i

2 + n/m

ai
,max

j

1

bj

}

which ensures the non-negativity of νa + r + µ1m and νb + s regardless of r and s. It follows that the
transportation plan T defined by

T =
1

(νb+ s)T1n

(νa+ r + µ1m)(νb+ s)⊤

is feasible. We finally bound the objective, 〈T,C〉 ≤ ||C||∞
∑

i,j ti,j ≤ ||C||∞ (ν + n). �

Lemma 5 Bounding the 1-norm of α for (α, ·) ∈ P(C)

Let α,β ∈ P(C) with extra constraints
∑m

i=1 αi = 0 and α⊤a+ β⊤b ≥ 0, where a ∈ △m and b ∈ △n. Then,

0 ≤ ‖α‖1 ≤ 2‖C‖∞
∣∣∣∣a−1

∣∣∣∣
∞ .

Proof. Similarly as before, our goal is to upper bound

max
α∈Rm,β∈Rn

r⊤α s.t. 0 ≤ α⊤a+ β⊤b,

αi + βj ≤ ci,j ,

α⊤1m = 0,

with a constant which does not depend on r. The corresponding primal is

min
T≥0, µ∈R, ν≥0

〈T,C〉 s.t. T1n = νa+ r + µ1m,

T⊤1m = νb.

By weak duality, any feasible primal point gives us an upper bound. We start by choosing µ = 1
m

∑
i ri so that∑

ij ti,j provides the same values w.r.t. the last two constraints. Next, we choose, ν = max
i

2
ai
, which ensures the

non-negativity of νa + r + µ1m (νb ≥ 0 is also satisfied since ν ≥ 0) which appears in the r.h.s. of the second
constraint, independently of r. It follows that the transportation plan T defined by

T =
1

νb⊤1n

(νa+ r + µ1m)(νb)⊤ = (νa+ r + µ1m)b⊤
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is feasible. We finally bound the objective

〈T,C〉 ≤ ||C||∞
∑

i,j

ti,j ≤ ν ||C||∞ = 2 ||C||∞
∣∣∣∣a−1

∣∣∣∣
∞ ,

which concludes the proof. �

Proof of the theorem. We begin by deriving the bound for the relaxed primal. Let (α⋆,β⋆) and (α⋆
Φ,β

⋆
Φ) be

optimal solutions of (3) and (17), respectively. Since (α⋆
Φ)

⊤a+ (β⋆
Φ)

⊤b ≤ (α⋆)⊤a+ (β⋆)⊤b, we have

ROTΦ(a, b) ≤ OT(a, b)−
γ

2
(‖αΦ‖

2 + ‖βΦ‖
2).

Likewise,

OT(a, b)−
γ

2
(‖α⋆‖2 + ‖β⋆‖2) ≤ ROTΦ(a, b).

Combining the two, we get

OT(a, b)−
γ

2
(‖α⋆‖2 + ‖β⋆‖2) ≤ ROTΦ(a, b) ≤ OT(a, b)−

γ

2
(‖αΦ‖

2 + ‖βΦ‖
2). (18)

Hence we need to bound variables α,β ∈ P(C). Since || · ||2 ≤ || · ||1, we can upper bound ||α⋆||1 + ||β⋆||1. In
addition, we can always add the additional constraint that α⊤a + β⊤b ≥ 0⊤a + 0⊤b = 0 since (0,0) is dual
feasible for (3). Since for any optimal pair α⋆,β⋆, the pair α⋆ − σ1, β⋆ + σ1 is also feasible and optimal for
any σ ∈ R, we can also add the constraint α⊤1m = 0. The obtained bound will obviously hold for any optimal
pair α⋆,β⋆. Hence, we can apply Lemma 4. By the same reasoning but using the constraint β⊤1n = 0 in place
of α⊤1m = 0, we can obtain a similar bound. By combining these two bounds, we obtain our final bound:

‖α‖1 + ‖β‖1 ≤ ‖C‖∞ min{ν1 + n, ν2 +m}

where

ν1 = max
{
(2 + n/m)

∣∣∣∣a−1
∣∣∣∣
∞ ,
∣∣∣∣b−1

∣∣∣∣
∞
}

ν2 = max
{∣∣∣∣a−1

∣∣∣∣
∞ , (2 +m/n)

∣∣∣∣b−1
∣∣∣∣
∞
}
.

Taking the square of this bound and plugging the result in (18) gives the claimed result. Applying the same
reasoning with Lemma 5 gives the claimed result for the semi-relaxed primal.

B Alternating minimization with exact block updates

General case. Let β(α) be an optimal solution of (7) given α fixed, and similarly for α(β). From the first-order
optimality conditions,

∇δΩ (α+ βj(α)1m − cj)
⊤
1m = bj ∀j ∈ [n] (19)

and similarly for α given β fixed. Solving these equations is non-trivial in general. However, because

∇δΩ (α+ βj(α)1m − cj) = bj∇maxΩj
(α− cj)

holds ∀α ∈ R
m, j ∈ [n], we can retrieve βj(α) if we know how to compute ∇maxΩ(x) and the inverse map

(∇δΩ)
−1(y) exists. That map exists and equals ∇Ω(y) provided that Ω is differentiable and y > 0.

Entropic regularization. It is easy to verify that (19) is satisfied with

β(α) = γ log

(
b

K⊤e
α

γ
−1m

)
where K := e

−C
γ

and similarly for α(β). These updates recover the iterates of the Sinkhorn algorithm [Cuturi, 2013].

Squared 2-norm regularization. Plugging the expression of ∇δΩ in (19), we get that β(α) must satisfy

[α+ βj(α)1m − cj ]
⊤
+1m = γbj ∀j ∈ [n].
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Close inspection shows that it is exactly the same optimality condition as the Euclidean projection onto the
simplex argmin

y∈△m

‖y − x‖2 must satisfy, with x =
α−cj

γbj
. Let x[1] ≥ · · · ≥ x[m] be the values of x in sorted order.

Following [Michelot, 1986, Duchi et al., 2008], if we let

ρ := max

{
i ∈ [m] : x[i] −

1

i

(
i∑

r=1

x[r] − 1

)
> 0

}

then y⋆ is exactly achieved at [x+
βj(α)
γbj

1m]+, where

βj(α) = −
γbj
ρ

(
ρ∑

r=1

x[r] − 1

)
.

The expression for α(β) is completely symmetrical. While a projection onto the simplex is required for each
coordinate, as discussed in §3.3, this can be done in expected linear time. In addition, each coordinate-wise
solution can be computed in parallel.

Alternating minimization. Once we know how to compute β(α) and α(β), there are a number of ways
we can build a proper algorithm to solve the smoothed dual. Perhaps the simplest is to alternate between
β ← β(α) and α← α(β). For entropic regularization, this two-block coordinate descent (CD) scheme is known
as the Sinkhorn algorithm and was recently popularized in the context of optimal transport by Cuturi [2013].
A disadvantage of this approach, however, is that computational effort is spent updating coordinates that may
already be near-optimal. To address this issue, we can instead adopt a greedy CD scheme as recently proposed
for entropic regularization by Altschuler et al. [2017].

C Additional experiments

We ran the same experiments as Figure 2 and Figure 3 on one more image pair: “Grafiti” by Jon Ander and
“Rainbow Bridge National Monument Utah”, by Bernard Spragg. Both images are in the public domain. The
results, presented in Figure 5 and Figure 6 below, confirm the empirical findings described in §6.1 and §6.2. The
images are available at https://github.com/mblondel/smooth-ot/tree/master/data.

https://github.com/mblondel/smooth-ot/tree/master/data
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Figure 5: Same experiment as Figure 3 on one more image pair.
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Figure 6: Same experiment as Figure 2 on one more image pair.


