Supplementary materials for “Nearly second-order optimality of
online joint detection and estimation via one-sample update schemes”

1 Proofs

Proof of Theorem [l In the proof, for the simplicity of
notation we use N to denote 7(b). Recall 0 is the true
parameter. Define that

RSN /10.0)
Sy —glog Fon (X)

Then under the measure Py, S; is a random walk
with i.i.d. increment. Then, by Wald’s identity (e.g.,
Siegmund| [1985]) we have that

Eg,0[S%] = Ego[N] - 1(8,6). (1)

On the other hand, let 03 denote the MLE based on
(X1,...,Xn). The key to the proof is to decompose

the stopped process SI% as a summation of three terms
as follows:

S = Zlog fa*
N .
+Zl f9 X;) 2)

+Zlog f )
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Note that the first term of the decomposition on the
right-hand side of is always non-positive since

Zlog fe* Zlog fo(X

Therefore we have
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Now consider the third term in the decomposition .

Similar to the proof of equation (5.109) in Tartakovsky
et al|[2014], we obtain that under the condition (11)),
its expectation under measure Py ¢ is upper bounded

by b/1(6,60) + O(1) as b — oo. Then, for any positive
integer n, we may further decompose the third term in

as

N fo, (X9
Zl o8 ;00( ) :Mn(a)_R”(0)+mn(9700)+n1(9,90)7
(3)
where
R fo,_ (X3)

and

- Jo(Xi)
mn(6,6p) = log —nl(6,6p).
(0,00) = D _log 7 5y~ nI(0:60)
The decomposition of consists of stochastic pro-
cesses {M,,(8)} and {m,(6,6y)}, which are both Py -
martingales with zero expectation, i.e., Eg o[M,, ()] =
Eg,0[mn(8,60)] = 0 for any positive integer n. Since
for exponential family, the log-partition function ®(6)
is bounded, by the inequalities for martingales [Lipster]
and Shiryayev| [1989] we have that
(0,00)| < Cov/n, (4)

Eq,0| M, (8)| < Cy

where C7 and Cy are two absolute constants that do
not depend on n. Applying , together with con-
dition (L1, we have that n~TR,(0),n"*M,(0) and
nilmn(ﬁ,ﬂo) converge to 0 almost surely. More-
over, the convergence is Py -r-quickly for r = 1
(For the definition of r-quick convergence, refer to
Section 2.4.3 in Tartakovsky et al.| [2014]). There-
fore, dividing both sides of by n, we obtain

n=t 3 log(f  (Xi)/fe,(Xi)) converges 1-quickly
to 1(9, 90)

For € > 0, we now define the last entry time

1 & fo (Xy)
10,0 2 fo 5 "

>en}.
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By the definition of 1-quickly convergence, we have
that Eg o[L(e)] < o0 for all € > 0. In the following,
define a scaled threshold b = b/I(6,6). Observe that
conditioning on the event {L(e) +1 < N < o0}, we
have that

)

(1—€)(N —1)1(6,60) <

Z log feo

Therefore, conditioning on the event {L(e) +1 < N <
+oo}, we have that N < 1+ b/(1 — €). Hence, for any
0 < e <1, we have

N S1+IQN > L()) +1}) - 7—

HI{N < L) +1}) - L(e) <1+ 7

Since Eg o[L(¢€)] < oo for any € > 0, from (5)) above, we
have that the third term in is upper bounded by
b+ O(1).

Finally, the second term in can be written as
i f oy, ( ‘)
log
fo, (X)
= Z —log f5,_

which is just the regret defined in for the online
estimators: R, when the loss function is defined to be
the negative likelihood function. Then, the theorem is
proven by combining the above analysis for the three

terms in and . O

X;) — 1nf Z log f5(X.

Proof of Corollary[1 Let a = (b+O(1))/I1(0,6), B =
C/1(0,00) and = = Ego[r(b)]. Applying Jensen’s in-
equality, the upper bound in equation becomes
z < a+ flog(x). From this, we have z < O(a).
Taking logarithm on both sides and using the fact
that max{a; + a2} < a1 4+ a2 < 2max{ay, a2} for
aj,az > 0, log(z) < max{log(2a),log(25logz)} <
log(a) + o(logb). Therefore, we have that z < a +
B(log(a) + o(logd)). Using this argument, we obtain

b Clogb

Ego[T(0)] < 1(60,6,) T 1(0,00)

(1+o0(1)).  (6)
O

Next we will establish a few Lemmas useful for proving
theorem [2] for sequential detection procedures. Define
a measure Q on (X'°°, B°°) under which the probability
density of X; conditional on F;_; is fé%_l. Then for

any event A € F;, we have that Q(A) = [, AidP
The following lemma shows that the restrlctlon of Q
to F; is well defined.

Lemma 1. Let Q; be the restriction of Q to F;. Then
for any A € Fi and any i >k, Q;(A) = Qr(A4).

Proof of Lemma[dl To bound the term Py (7(b) < 00),
we need take advantage of the martingale property of
A in . The major technique is the combination of
change of measure and Wald’s likelihood ratio identity
Siegmund, [1985]. The proof is based on the method
presented in |Lai| [2004] and [Lorden and Pollak| [2005].

Define the L; = dP;/dQ; as the Radon-Nikodym deriva-
tive, where P; and Q; are the restriction of P, and Q
to F;, respectively. Then we have that L; = (A;)~! for
any i > 1 (note that A; is defined in (2)). Combining
the Lemma [T] and the Wald’s likelihood ratio identity,
we have that

Poo (AN {7(b) < o0})

=Eq [I({r(b) < oo})- L
where I(E) is an indicator function that is equal to 1 for
any w € F and is equal to 0 otherwise. By the definition

of 7(b) we have that L) < exp(—b). Taking A = A>
n (7) we prove that P (7(b) < 00) < exp(—b). O

(7)
)] VA e ]:T(b),

Proof of Corollary[4 Using (5.180) and (5.188) in[Tar]
takovsky et al| [2014], which are about asymptotic
performance of open-ended tests. Since our problem
is a special case of the problem in [Tartakovsky et al.
[2014], we can obtain

log(log(1/a))
21(6,6,)

log «v
I(97 00)

Combing the above result and the right-hand side of
, we prove the corollary. O

(1+ o(1)).

inf Egyo[T]| =
TGHCI'(a) 970[ ]

Proof of Theorem[3 From @, we have that for any
v>1,
Eo,,[Tasr(b) — v | Tasr(b) > v]
<Eg[Tacm(b) — v | Tacm(b) > v].

Therefore, to prove the theorem, using Theorem [I] it
suffices to show that

Sg%EG,u[TACM(b) -V ‘ TACM(b) > l/] < EQ,O[T(b)].

Using an argument similar to the remarks in|Lorden and
Pollak| [2005], we have that the supreme of detection
delay over all change locations is achieved by the case
when change occurs at the first instance.

=Egpo[Tacr(b)].
(8)

SlipEe v[Tacm (b)—v | Tacn (D) > V]



Notice that since 6y is known, for any j > 1, the dis-
tribution of {max;1<r<t Ak}, under Py ; con-
ditional on F; is the same as the distribution of
{maxi<p<t Mg}, under Pyo. Below, we use a re-
newal property of the ACM procedure. Define
Tien ()

=inf{t > j: max logAg; > b}.

jH1<k<t

= Eq, (T2 (b) —
However, maxj<r<¢logAg; >

Then we have that Eg o[Tacnr(D)]
G| T ) > ). ,
max;1<k<t Mg, for any ¢ > j. Therefore, TX(}M(b) >
Tacnm(b) conditioning on {Tacar(b) > j}. So that for
all j > 1,

Eo,0[Tacar (b)) =Eo ;[T (0) — 5 | Tacar(b) > j]
>Eg j[Taca(b) — j | Taca(b) > j].

Thus, to prove , it suffices to show that
Eg.0[Taca (b)] < Ego[r(b)]. To show this, define 7(b)®
as the new stopping time that applies the sequential hy-
pothesis testing procedure 7(b) to data {X;}2,. Then
we have that in fact Tacar(b) = mingsq {7(b)® +¢—1},
this relationship was developed in |Lorden| [1971]. Thus,
Taca(b) < 7(0)V4+1-1 = 7(b), and Eg o [Tacas (b)] <
Ego[T(D)]. O

Proof of Lemma[3 First, rewrite Tagr(b) as

t
TASR(b) = inf {t >1: log (Z Ak,t) > b} .

k=1
Next, since
log <kz Ay t) > log ( max A t> = 11£1ax log A+,
1

9)
we have Eo [Tacn (b)] > Exo[Tasr(b)]. So it suffices
to show that Eo[Tasr(b)] > v, if b > log~y. Define
Ry = 22:1 Aj¢. Direct computation shows that

Eoo[R: | Fe—1]
t—1
=l At,t+ZAk,t|ft—1]
k=1
= fo,  (Xt)
g
=FEo |14+ > Api—1- 10g;|]:71
kZl . fo,(Xo)
L fo, ,(X4)
=14+ > Agsi1-Ex logé)‘;|}‘_
S [ g
:1+Rt71'

Therefore, {R; — t};>1 is a (Poo, Fi)-martingale with
zero mean. Suppose that Eo[Tasr(D)] < co (otherwise

the statement of proposition is trivial), then we have
that

oo

> Poo(Tasr(b) > t) < 0. (10)

t=1

leads to the fact that Po(Tasr(b)) >t = o(t™1)
and the fact that 0 < R; < exp(b) conditioning on the
event {Tasr(b) > t}, we have that

lim inf/ |R: — t|dPoo
1700 N Tasr(b)>t} (11)

< litm inf (exp(b) + ¢)Poo(Tasr(b) > t) = 0.
— 00

Therefore, we can apply the optional stopping theo-
rem for martingale, to obtain that Eo[Ry,.,m)] =
Eoo[Tasr(b)]. By the definition of Tasr(b
Rr,srv) > exp(b) we have that E [Tasr ()] > exp(b).
Therefore, if b > log~y, we have that Eo[Tac (b))
Eoo[Tasr(b)] > .

)

==

v

Proof of Corollary[3 Our Theorem 1 and the remarks
in |Siegmund and Yakir| [2008] show that the minimum
worst-case detection delay, given a fixed ARL level -,
is given by

inf  supEp, [T(b)—v+1|T()>v]
T(b)eS(v) V>1 (12)
logy dloglog~y
= 1 1 .

It can be shown that the infimum is attained by choos-
ing T'(b) as a weighted Shiryayev-Roberts detection
procedure, with a careful choice of the weight over the
parameter space ©. Combing with the right-hand
side of , we prove the corollary. O

2 Regret bound for OMD

In this subsection, we show that the regret bound R,
can be expressed as a weighted sum of Bregman di-
vergences between two consecutive estimators. This
form of R, is useful in the showing of the logarithmic
expected regret property. This is also useful in show-
ing how the assumptions required by Corollary [1| are
satisfied. The following result comes as a modification
of |Azoury and Warmuth| [2001].

Theorem 1. Assume that X1, Xo,... are i.i.d. ran-
dom variables with density function fo(x). Letn; =1/i
n Algomthm Assume that {9 }l>17 {fti}i>1 are ob-
tained using Algorzthm I and 0; = 6; for any i > 1.
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Then for any 0y € © and t > 1,
R, = Zz Be- (fuir jui-1)
i=1

g D = )TV ) — i),

=1

where fi; = Mi; + (1 — N)fij—1, for some X € (0,1).
Let us delay the proof for Theorem [I] a bit and first
see how to use Theorem [I] by a concrete example with
multivariate normal distribution, {Py,0 € ©} with
unknown mean parameter 6, and known covariance
matrix Iy (I; is a d x d identity matrlx denoted
by N(0,1;). Here ¢(z) = x, dH(x 1/\/|271'Id
exp (—xTz/2), © = O, = R? for any o <2, ®(0)
(1/2)676, u = 6 and ®*(u) = (1/2)uTu , where |

| denotes the determinant of a matrix, and H is a
probability measure under which the sample follows
N(0,1;)). When the covariance matrix is known to
be some X # I, one can “whiten” the vectors by
multiplying ¥~1/2 to obtain the situation here.

Corollary 1 (Upper bound for expected regret
bound, Gaussian). Assume X1, Xao,... are i.i.d. fol-
lowing N(0,1;) with some 0 € RY.  Assume that
{9 Yi>1, {fi}i>1 are obtained using Algomthm I with

=1/i and T = R%. For any t > 0, we have that for
some constant Cy > 0 that depends on 0,

Ego[Ri] < Cidlogt/2.

The following calculations justify Corollary [1} which
also serve as an example of how to use regret bound.
First, the assumption ét = 0, in Theorem [1] is satisfied
for the following reasons. Consider I' = R? is the
full space. According to Algorithm [1} using the non-
negativity of the Bregman divergence, we have 6, =
argmin, . Ba(u, ;) = 0;. The the regret bound can
be written as

Ry =3 (1 — o) (i — fio)
+3 iu (B = )T (R = fi)
:%(X1 — 09)T(X — Bo)
+z _zt;mi — )G — ).

Since the step-size n; = 1/i, the second term in the

above equation can be written as:
i — fli—1)T((Xi) — fli-1)
— pi—1)T(9(X5) + fui)

1, N . .
i(ui — fi—1)T(fli-1 + i)

1=2
‘1
N 2 L2
+Z§(HM¢71H = Nl ll”)
i=2
t t
1 2 1 2
=> Il = [l il
—2i-1) —2i-1)
1

1

.2 .2

5 [l A ] 5 el
Combining above, we have

Eg0[R:] SlEe,o[(Xl —00)T(X1 — 6)]

+Z

1
TEo.0lll X 1) + §E6,0[||X1H2]~

Finally, since Eg o[|| X:||*] = d(1+62) for any i > 1, we
obtain desired result. Thus, with i.i.d. multivariate nor-
mal samples, the expected regret grows logarithmically
with the number of observations.

Using similar calculation, we can also bound the ex-
pected regret in the general case. As shown in the
proof above for Corollary [I] the dominating term for
R: can be rewritten as

‘Lo
221—
=2

where f[i; is a convex combination of fi;_; and fi;.
For an arbitrary distribution, the term (¢(X;) —
)T [V20* (j1;)](#(X;)+1;) can be viewed as a local nor-
mal distribution with the changing curvature V2®*(fi;).
Thus, it is possible to prove case-by-case the O(logt)-
style bounds. Proofs for Bernoulli distribution and
Gamma distribution can be found in [Azoury and War;
muth| [2001]. Proof of OCM for covariance matrix in
multivariate normal can be found in |Dasgupta and Hsu
[2007]. A more general solution can be found in the
Theorem 3 in Raginsky et al.|[2012], which however
requires stronger conditions.

Xi) = 1) T [V (7)) (6(X3) + fua),

The following derivation borrows ideas from [Azoury
and Warmuth| 2001|. First, we derive concise forms of
the two terms in the definition of R; in .



Lemma 2. Assume that X1, Xo,... are i.i.d. ran-
dom variables with density function fo(x), and assume
decreasmg step-size n; = 1/i in Algorithm . Given
{6; Yi>1, {fi}i>1 generated by Algomthm If0; = 6;
for any i > 1, then for any null distribution parameter

Goe@andtZI,

> {—logf; (
=1

t

Xi)} = ZiB<1>*(ﬂi>ﬂi—1) — 10" (fuy).

i=1
(13)
Moreover, for anyt > 1,
t
inf > {~log f3(Xi)} = —t@"(i),  (14)
beo —

where i = (1/t) - 2221 ¢(Xi).

By subtracting the expressions in and , we
obtain the following result which shows that the regret
can be represented by a weighted sum of the Bregman
divergences between two consecutive estimators.

Proof of Lemma[3 By the definition of the Legendre-
Fenchel dual function we have that ®* () = 0Ty — ®(6)
for any 6 € ©. By this definition, and choosing n; = 1/,
we have that for any i > 1

— log féi,l(Xi)

=0(0;_1) — 0], ¢(X;)
=07y (fue—1 — $(X)) — D" (f1i—1)

1.
:;95_1(/11'71 — i) — " (f1i-1)

1 i (15)
:;(‘b*(ﬂi) — " (f13-1)) — 0]y (f1i — fri—1)

1 1

- Eq)*(ﬂi) + <m - 1) D" (f15—1)

:%Bé*(ﬂivﬂi—l) + i71©*(ﬂi_1) - %‘I)*(ﬂi),

where we use the update rule in Line 6 of Algorithm
and the assumption HAl = 6; to have the third equation.
We define 1/19 = 0 in the last equation. Now sum-
ming the terms in , where the second term form a
telescopic series, over ¢ from 1 to ¢, we have that

>t los s, (X0}

1 1 ...
—Z B<I>* ,UJ'LnU'z 1) + (b ( ) -— (.ut)
i=1 i Ui

1 A s n
:ZfB@‘(Minuifl) —t®" (fur).

i=1 "

Moreover, from the definition we have that

D {—log fo(Xi)} =D [®(0) — 0TH(X;)] .
=1

i=1

Taking the first derivative of >>'_ {— log fo(X;)} with
respect to 6 and setting it to 0, we find i, the stationary
point, given by

Similarly, using the expression of the dual function,
and plugging [i back into the equation, we have that

t
inf ;{f log f;(X:)}

=t-0Tj — td*( Zew

= 12" (f).
O

Proof of Theorem[1 By choosing the step-size 7; =
1/i for any 4 > 1 in Algorithm |1} and assuming 6; = 6,
for any ¢ > 1, we have by induction that

Subtracting by (14), we obtain

t
= {~logfy . (
=1
t
= 3 iBa (e ) — 19 () + 19 ()
=1
t

= ZiBé*(ﬂuﬂifl)

i=1

=D i@ (1) — D" (fii-1) —

=1
t
Z — fli—1)

The final equality is obtained by Taylor expansion. [J

X;)} - inf Z{—log f3(Xi)}

(VO™ (f1i—1), fti — fri—1)]

_ )TIV2R* (f1s)] (f1i — friz1)-

l\D\>—~
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