
Supplementary materials for “Nearly second-order optimality of
online joint detection and estimation via one-sample update schemes”

1 Proofs

Proof of Theorem 1. In the proof, for the simplicity of
notation we use N to denote τ(b). Recall θ is the true
parameter. Define that

Sθt =

t∑
i=1

log
fθ(Xi)

fθ0(Xi)
.

Then under the measure Pθ,0, St is a random walk
with i.i.d. increment. Then, by Wald’s identity (e.g.,
Siegmund [1985]) we have that

Eθ,0[SθN ] = Eθ,0[N ] · I(θ, θ0). (1)

On the other hand, let θ∗N denote the MLE based on
(X1, . . . , XN ). The key to the proof is to decompose
the stopped process SθN as a summation of three terms
as follows:

SθN =

N∑
i=1

log
fθ(Xi)

fθ∗N (Xi)

+

N∑
i=1

log
fθ∗N (Xi)

fθ̂i−1
(Xi)

+

N∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
,

(2)

Note that the first term of the decomposition on the
right-hand side of (2) is always non-positive since

N∑
i=1

log
fθ(Xi)

fθ∗N (Xi)
=

N∑
i=1

log fθ(Xi)−sup
θ̃∈Θ

N∑
i=1

log fθ̃(Xi) ≤ 0.

Therefore we have

Eθ,0[SθN ]

≤Eθ,0[

N∑
i=1

log
fθ∗N (Xi)

fθ̂i−1
(Xi)

] + Eθ,0[

N∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
].

Now consider the third term in the decomposition (2).
Similar to the proof of equation (5.109) in Tartakovsky
et al. [2014], we obtain that under the condition (11),
its expectation under measure Pθ,0 is upper bounded

by b/I(θ, θ0) +O(1) as b→∞. Then, for any positive
integer n, we may further decompose the third term in
(2) as

n∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
= Mn(θ)−Rn(θ)+mn(θ, θ0)+nI(θ, θ0),

(3)
where

Mn(θ) =

n∑
i=1

log
fθ̂i−1

(Xi)

fθ(Xi)
+Rn(θ),

Rn(θ) =

n∑
i=1

I(θ, θ̂i−1),

and

mn(θ, θ0) =

n∑
i=1

log
fθ(Xi)

fθ0(Xi)
− nI(θ, θ0).

The decomposition of (3) consists of stochastic pro-
cesses {Mn(θ)} and {mn(θ, θ0)}, which are both Pθ,0-
martingales with zero expectation, i.e., Eθ,0[Mn(θ)] =
Eθ,0[mn(θ, θ0)] = 0 for any positive integer n. Since
for exponential family, the log-partition function Φ(θ)
is bounded, by the inequalities for martingales Lipster
and Shiryayev [1989] we have that

Eθ,0|Mn(θ)| ≤ C1

√
n, Eθ,0|mn(θ, θ0)| ≤ C2

√
n, (4)

where C1 and C2 are two absolute constants that do
not depend on n. Applying (4), together with con-
dition (11), we have that n−1Rn(θ), n−1Mn(θ) and
n−1mn(θ, θ0) converge to 0 almost surely. More-
over, the convergence is Pθ,0-r-quickly for r = 1
(For the definition of r-quick convergence, refer to
Section 2.4.3 in Tartakovsky et al. [2014]). There-
fore, dividing both sides of (3) by n, we obtain
n−1

∑n
i=1 log(fθ̂i−1

(Xi)/fθ0(Xi)) converges 1-quickly
to I(θ, θ0).

For ε > 0, we now define the last entry time

L(ε)

= sup

{
n ≥ 1 :

∣∣∣∣∣ 1

I(θ, θ0)

n∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
− n

∣∣∣∣∣ > εn

}
.
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By the definition of 1-quickly convergence, we have
that Eθ,0[L(ε)] < +∞ for all ε > 0. In the following,
define a scaled threshold b̃ = b/I(θ, θ0). Observe that
conditioning on the event {L(ε) + 1 < N < +∞}, we
have that

(1− ε)(N − 1)I(θ, θ0) <

N−1∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
< b.

Therefore, conditioning on the event {L(ε) + 1 < N <
+∞}, we have that N < 1 + b/(1− ε). Hence, for any
0 < ε < 1, we have

N ≤1 + I({N > L(ε) + 1}) · b̃

1− ε

+I({N ≤ L(ε) + 1}) · L(ε) ≤ 1 +
b̃

1− ε
+ L(ε).

(5)

Since Eθ,0[L(ε)] <∞ for any ε > 0, from (5) above, we
have that the third term in (4) is upper bounded by
b̃+ O(1).

Finally, the second term in (2) can be written as

N∑
i=1

log
fθ∗N (Xi)

fθ̂i−1
(Xi)

=

N∑
i=1

− log fθ̂i−1
(Xi)− inf

θ̃∈Θ

N∑
i=1

− log fθ̃(Xi),

which is just the regret defined in (10) for the online
estimators: Rt, when the loss function is defined to be
the negative likelihood function. Then, the theorem is
proven by combining the above analysis for the three
terms in (4) and (1).

Proof of Corollary 1. Let α = (b+O(1))/I(θ, θ0), β =
C/I(θ, θ0) and x = Eθ,0[τ(b)]. Applying Jensen’s in-
equality, the upper bound in equation (12) becomes
x ≤ α + β log(x). From this, we have x ≤ O(α).
Taking logarithm on both sides and using the fact
that max{a1 + a2} ≤ a1 + a2 ≤ 2 max{a1, a2} for
a1, a2 ≥ 0, log(x) ≤ max{log(2α), log(2β log x)} ≤
log(α) + o(log b). Therefore, we have that x ≤ α +
β(log(α) + o(log b)). Using this argument, we obtain

Eθ,0[τ(b)] ≤ b

I(θ, θ0)
+
C log b

I(θ, θ0)
(1 + o(1)). (6)

Next we will establish a few Lemmas useful for proving
theorem 2 for sequential detection procedures. Define
a measure Q on (X∞,B∞) under which the probability
density of Xi conditional on Fi−1 is fθ̂i−1

. Then for

any event A ∈ Fi, we have that Q(A) =
∫
A

ΛidP∞.
The following lemma shows that the restriction of Q
to Fi is well defined.
Lemma 1. Let Qi be the restriction of Q to Fi. Then
for any A ∈ Fk and any i ≥ k, Qi(A) = Qk(A).

Proof of Lemma 1. To bound the term P∞(τ(b) <∞),
we need take advantage of the martingale property of
Λt in (2). The major technique is the combination of
change of measure and Wald’s likelihood ratio identity
Siegmund [1985]. The proof is based on the method
presented in Lai [2004] and Lorden and Pollak [2005].

Define the Li = dPi/dQi as the Radon-Nikodym deriva-
tive, where Pi and Qi are the restriction of P∞ and Q
to Fi, respectively. Then we have that Li = (Λi)

−1 for
any i ≥ 1 (note that Λi is defined in (2)). Combining
the Lemma 1 and the Wald’s likelihood ratio identity,
we have that

P∞(A ∩ {τ(b) <∞})
=EQ

[
I({τ(b) <∞}) · Lτ(b)

]
,∀A ∈ Fτ(b),

(7)

where I(E) is an indicator function that is equal to 1 for
any ω ∈ E and is equal to 0 otherwise. By the definition
of τ(b) we have that Lτ(b) ≤ exp(−b). Taking A = X∞
in (7) we prove that P∞(τ(b) <∞) ≤ exp(−b).

Proof of Corollary 2. Using (5.180) and (5.188) in Tar-
takovsky et al. [2014], which are about asymptotic
performance of open-ended tests. Since our problem
is a special case of the problem in Tartakovsky et al.
[2014], we can obtain

inf
T∈C(α)

Eθ,0[T ] =
logα

I(θ, θ0)
+

log(log(1/α))

2I(θ, θ0)
(1 + o(1)).

Combing the above result and the right-hand side of
(13), we prove the corollary.

Proof of Theorem 2. From (9), we have that for any
ν ≥ 1,

Eθ,ν [TASR(b)− ν | TASR(b) > ν]

≤Eθ,ν [TACM (b)− ν | TACM (b) > ν].

Therefore, to prove the theorem, using Theorem 1, it
suffices to show that

sup
ν≥0

Eθ,ν [TACM (b)− ν | TACM (b) > ν] ≤ Eθ,0[τ(b)].

Using an argument similar to the remarks in Lorden and
Pollak [2005], we have that the supreme of detection
delay over all change locations is achieved by the case
when change occurs at the first instance.

sup
ν≥0

Eθ,ν [TACM (b)−ν | TACM (b) > ν] = Eθ,0[TACM (b)].

(8)



Notice that since θ0 is known, for any j ≥ 1, the dis-
tribution of {maxj+1≤k≤t Λk,t}∞t=j+1 under Pθ,j con-
ditional on Fj is the same as the distribution of
{max1≤k≤t Λk,t}∞t=1 under Pθ,0. Below, we use a re-
newal property of the ACM procedure. Define

T
(j)
ACM (b) = inf{t > j : max

j+1≤k≤t
log Λk,t > b}.

Then we have that Eθ,0[TACM (b)] = Eθ,j [T (j)
ACM (b) −

j | T (j)
ACM (b) > j]. However, max1≤k≤t log Λk,t ≥

maxj+1≤k≤t Λk,t for any t > j. Therefore, T (j)
ACM (b) ≥

TACM (b) conditioning on {TACM (b) > j}. So that for
all j ≥ 1,

Eθ,0[TACM (b)] =Eθ,j [T (j)
ACM (b)− j | TACM (b) > j]

≥Eθ,j [TACM (b)− j | TACM (b) > j].

Thus, to prove (8), it suffices to show that
Eθ,0[TACM (b)] ≤ Eθ,0[τ(b)]. To show this, define τ(b)(t)

as the new stopping time that applies the sequential hy-
pothesis testing procedure τ(b) to data {Xi}∞i=t. Then
we have that in fact TACM (b) = mint≥1{τ(b)(t) +t−1},
this relationship was developed in Lorden [1971]. Thus,
TACM (b) ≤ τ(b)(1)+1−1 = τ(b), and Eθ,0[TACM (b)] ≤
Eθ,0[τ(b)].

Proof of Lemma 2. First, rewrite TASR(b) as

TASR(b) = inf

{
t ≥ 1 : log

(
t∑

k=1

Λk,t

)
> b

}
.

Next, since

log

(
t∑

k=1

Λk,t

)
> log

(
max

1≤k≤t
Λk,t

)
= max

1≤k≤t
log Λk,t,

(9)
we have E∞[TACM (b)] ≥ E∞[TASR(b)]. So it suffices
to show that E∞[TASR(b)] ≥ γ, if b ≥ log γ. Define
Rt =

∑t
k=1 Λk,t. Direct computation shows that

E∞[Rt | Ft−1]

=E∞

[
Λt,t +

t−1∑
k=1

Λk,t | Ft−1

]

=E∞

[
1 +

t−1∑
k=1

Λk,t−1 · log
fθ̂t−1

(Xt)

fθ0(Xt)
| Ft−1

]

=1 +

t−1∑
k=1

Λk,t−1 · E∞

[
log

fθ̂t−1
(Xt)

fθ0(Xt)
| Ft−1

]
=1 +Rt−1.

Therefore, {Rt − t}t≥1 is a (P∞,Ft)-martingale with
zero mean. Suppose that E∞[TASR(b)] <∞ (otherwise

the statement of proposition is trivial), then we have
that

∞∑
t=1

P∞(TASR(b) ≥ t) <∞. (10)

(10) leads to the fact that P∞(TASR(b)) ≥ t = o(t−1)
and the fact that 0 ≤ Rt ≤ exp(b) conditioning on the
event {TASR(b) > t}, we have that

lim inf
t→∞

∫
{TASR(b)>t}

|Rt − t|dP∞

≤ lim inf
t→∞

(exp(b) + t)P∞(TASR(b) ≥ t) = 0.
(11)

Therefore, we can apply the optional stopping theo-
rem for martingale, to obtain that E∞[RTASR(b)] =
E∞[TASR(b)]. By the definition of TASR(b),
RTASR(b) > exp(b) we have that E∞[TASR(b)] > exp(b).
Therefore, if b ≥ log γ, we have that E∞[TACM (b)] ≥
E∞[TASR(b)] ≥ γ.

Proof of Corollary 3. Our Theorem 1 and the remarks
in Siegmund and Yakir [2008] show that the minimum
worst-case detection delay, given a fixed ARL level γ,
is given by

inf
T (b)∈S(γ)

sup
ν≥1

Eθ,ν [T (b)− ν + 1 | T (b) ≥ ν]

=
log γ

I(θ, θ0)
+
d log log γ

2I(θ, θ0)
(1 + o(1)).

(12)

It can be shown that the infimum is attained by choos-
ing T (b) as a weighted Shiryayev-Roberts detection
procedure, with a careful choice of the weight over the
parameter space Θ. Combing (12) with the right-hand
side of (13), we prove the corollary.

2 Regret bound for OMD

In this subsection, we show that the regret bound Rt
can be expressed as a weighted sum of Bregman di-
vergences between two consecutive estimators. This
form of Rt is useful in the showing of the logarithmic
expected regret property. This is also useful in show-
ing how the assumptions required by Corollary 1 are
satisfied. The following result comes as a modification
of Azoury and Warmuth [2001].

Theorem 1. Assume that X1, X2, . . . are i.i.d. ran-
dom variables with density function fθ(x). Let ηi = 1/i

in Algorithm 1. Assume that {θ̂i}i≥1, {µ̂i}i≥1 are ob-
tained using Algorithm 1 and θ̂i = θ̃i for any i ≥ 1.
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Then for any θ0 ∈ Θ and t ≥ 1,

Rt =

t∑
i=1

i ·BΦ∗(µ̂i, µ̂i−1)

=
1

2

t∑
i=1

i · (µ̂i − µ̂i−1)ᵀ[∇2Φ∗(µ̃i)](µ̂i − µ̂i−1),

where µ̃i = λµ̂i + (1− λ)µ̂i−1, for some λ ∈ (0, 1).

Let us delay the proof for Theorem 1 a bit and first
see how to use Theorem 1 by a concrete example with
multivariate normal distribution, {Pθ, θ ∈ Θ} with
unknown mean parameter θ, and known covariance
matrix Id (Id is a d × d identity matrix), denoted
by N (θ, Id). Here φ(x) = x, dH(x) = (1/

√
|2πId|) ·

exp (−xᵀx/2), Θ = Θσ = Rd for any σ < 2, Φ(θ) =
(1/2)θᵀθ, µ = θ and Φ∗(µ) = (1/2)µᵀµ , where | ·
| denotes the determinant of a matrix, and H is a
probability measure under which the sample follows
N (0, Id)). When the covariance matrix is known to
be some Σ 6= Id, one can “whiten” the vectors by
multiplying Σ−1/2 to obtain the situation here.

Corollary 1 (Upper bound for expected regret
bound, Gaussian). Assume X1, X2, . . . are i.i.d. fol-
lowing N (θ, Id) with some θ ∈ Rd. Assume that
{θ̂i}i≥1, {µ̂i}i≥1 are obtained using Algorithm 1 with
ηi = 1/i and Γ = Rd. For any t > 0, we have that for
some constant C1 > 0 that depends on θ,

Eθ,0[Rt] ≤ C1d log t/2.

The following calculations justify Corollary 1, which
also serve as an example of how to use regret bound.
First, the assumption θ̂t = θ̃t in Theorem 1 is satisfied
for the following reasons. Consider Γ = Rd is the
full space. According to Algorithm 1, using the non-
negativity of the Bregman divergence, we have θ̂t =
arg minu∈ΓBΦ(u, θ̃t) = θ̃t. The the regret bound can
be written as

Rt =
1

2
(µ̂1 − µ̂0)ᵀ(µ̂1 − µ̂0)

+
1

2

t∑
i=2

[i · (µ̂i − µ̂i−1)ᵀ(µ̂i − µ̂i−1)]

=
1

2
(X1 − θ0)ᵀ(X1 − θ0)

+
1

2

t∑
i=2

(µ̂i − µ̂i−1)ᵀ(φ(Xi)− µ̂i−1).

Since the step-size ηi = 1/i, the second term in the

above equation can be written as:

1

2

t∑
i=2

(µ̂i − µ̂i−1)ᵀ(φ(Xi)− µ̂i−1)

=
1

2

t∑
i=2

(µ̂i − µ̂i−1)ᵀ(φ(Xi) + µ̂i)

−
t∑
i=2

1

2
(µ̂i − µ̂i−1)ᵀ(µ̂i−1 + µ̂i)

=

t∑
i=2

1

2(i− 1)
(φ(Xi)− µ̂i)ᵀ(φ(Xi) + µ̂i)

+

t∑
i=2

1

2
(‖µ̂i−1‖2 − ‖µ̂i‖2)

=
t∑
i=2

1

2(i− 1)
‖Xi‖2 −

t∑
i=2

1

2(i− 1)
‖µ̂i‖2

+
1

2
‖µ̂1‖2 −

1

2
‖µ̂t‖2 .

Combining above, we have

Eθ,0[Rt] ≤
1

2
Eθ,0[(X1 − θ0)ᵀ(X1 − θ0)]

+
1

2

t∑
i=2

1

i− 1
Eθ,0[‖Xi‖2] +

1

2
Eθ,0[‖X1‖2].

Finally, since Eθ,0[‖Xi‖2] = d(1 + θ2) for any i ≥ 1, we
obtain desired result. Thus, with i.i.d. multivariate nor-
mal samples, the expected regret grows logarithmically
with the number of observations.

Using similar calculation, we can also bound the ex-
pected regret in the general case. As shown in the
proof above for Corollary 1, the dominating term for
Rt can be rewritten as

t∑
i=2

1

2(i− 1)
(φ(Xi)− µ̂i)ᵀ[∇2Φ∗(µ̃i)](φ(Xi) + µ̂i),

where µ̃i is a convex combination of µ̂i−1 and µ̂i.
For an arbitrary distribution, the term (φ(Xi) −
µ̂i)

ᵀ[∇2Φ∗(µ̃i)](φ(Xi)+µ̂i) can be viewed as a local nor-
mal distribution with the changing curvature ∇2Φ∗(µ̃i).
Thus, it is possible to prove case-by-case the O(log t)-
style bounds. Proofs for Bernoulli distribution and
Gamma distribution can be found in Azoury and War-
muth [2001]. Proof of OCM for covariance matrix in
multivariate normal can be found in Dasgupta and Hsu
[2007]. A more general solution can be found in the
Theorem 3 in Raginsky et al. [2012], which however
requires stronger conditions.

The following derivation borrows ideas from [Azoury
and Warmuth, 2001]. First, we derive concise forms of
the two terms in the definition of Rt in (10).



Lemma 2. Assume that X1, X2, . . . are i.i.d. ran-
dom variables with density function fθ(x), and assume
decreasing step-size ηi = 1/i in Algorithm 1. Given
{θ̂i}i≥1, {µ̂i}i≥1 generated by Algorithm 1. If θ̂i = θ̃i
for any i ≥ 1, then for any null distribution parameter
θ0 ∈ Θ and t ≥ 1,

t∑
i=1

{− log fθ̂i−1
(Xi)} =

t∑
i=1

iBΦ∗(µ̂i, µ̂i−1)− tΦ∗(µ̂t).

(13)
Moreover, for any t ≥ 1,

inf
θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)} = −tΦ∗(µ̂), (14)

where µ̂ = (1/t) ·
∑t
i=1 φ(Xi).

By subtracting the expressions in (13) and (14), we
obtain the following result which shows that the regret
can be represented by a weighted sum of the Bregman
divergences between two consecutive estimators.

Proof of Lemma 2. By the definition of the Legendre-
Fenchel dual function we have that Φ∗(µ) = θᵀµ−Φ(θ)
for any θ ∈ Θ. By this definition, and choosing ηi = 1/i,
we have that for any i ≥ 1

− log fθ̂i−1
(Xi)

=Φ(θ̂i−1)− θ̂ᵀt−1φ(Xi)

=θ̂ᵀi−1(µ̂t−1 − φ(Xi))− Φ∗(µ̂i−1)

=
1

ηi
θ̂ᵀi−1(µ̂i−1 − µ̂i)− Φ∗(µ̂i−1)

=
1

ηi
(Φ∗(µ̂i)− Φ∗(µ̂i−1))− θ̂ᵀi−1(µ̂i − µ̂i−1)

− 1

ηi
Φ∗(µ̂i) +

(
1

ηi
− 1

)
Φ∗(µ̂i−1)

=
1

ηi
BΦ∗(µ̂i, µ̂i−1) +

1

ηi−1
Φ∗(µ̂i−1)− 1

ηi
Φ∗(µ̂i),

(15)

where we use the update rule in Line 6 of Algorithm 1
and the assumption θ̂i = θ̃i to have the third equation.
We define 1/η0 = 0 in the last equation. Now sum-
ming the terms in (15), where the second term form a
telescopic series, over i from 1 to t, we have that

t∑
i=1

{− log fθ̂i−1
(Xi)}

=

t∑
i=1

1

ηi
BΦ∗(µ̂i, µ̂i−1) +

1

η0
Φ∗(µ̂0)− 1

ηt
Φ∗(µ̂t)

=

t∑
i=1

1

ηi
BΦ∗(µ̂i, µ̂i−1)− tΦ∗(µ̂t).

Moreover, from the definition we have that

t∑
i=1

{− log fθ(Xi)} =

t∑
i=1

[Φ(θ)− θᵀφ(Xi)] .

Taking the first derivative of
∑t
i=1{− log fθ(Xi)} with

respect to θ and setting it to 0, we find µ̂, the stationary
point, given by

µ̂ = ∇Φ(θ) =
1

t

t∑
i=1

φ(Xi).

Similarly, using the expression of the dual function,
and plugging µ̂ back into the equation, we have that

inf
θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)}

=t · θᵀµ̂− tΦ∗(µ̂)−
t∑
i=1

θᵀφ(Xi) = −tΦ∗(µ̂).

Proof of Theorem 1. By choosing the step-size ηi =
1/i for any i ≥ 1 in Algorithm 1, and assuming θ̂i = θ̃i
for any i ≥ 1, we have by induction that

µ̂t =
1

t

t∑
i=1

φ(Xi) = µ̂.

Subtracting (13) by (14), we obtain

Rt =

t∑
i=1

{− log fθ̂i−1
(Xi)} − inf

θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)}

=

t∑
i=1

iBΦ∗(µ̂i, µ̂i−1)− tΦ∗(µ̂t) + tΦ∗(µ̂)

=

t∑
i=1

iBΦ∗(µ̂i, µ̂i−1)

=

t∑
i=1

i[Φ∗(µ̂i)− Φ∗(µ̂i−1)− 〈∇Φ∗(µ̂i−1), µ̂i − µ̂i−1〉]

=
1

2

t∑
i=1

i · (µ̂i − µ̂i−1)ᵀ[∇2Φ∗(µ̃i)](µ̂i − µ̂i−1).

The final equality is obtained by Taylor expansion.

References

D. Siegmund. Sequential analysis: tests and confidence
intervals. Springer-Verlag, 1985.

A. Tartakovsky, I. Nikiforov, and M. Basseville. Se-
quential analysis: Hypothesis testing and changepoint
detection. CRC Press, 2014.



Supplementary materials

R. Lipster and A. Shiryayev. Theory of martingales.
1989.

T.-Z. Lai. Likelihood ratio identities and their applica-
tions to sequential analysis. Sequential Analysis, 23
(4):467–497, 2004.

G. Lorden and M. Pollak. Nonanticipating estimation
applied to sequential analysis and changepoint de-
tection. Annals of statistics, pages 1422–1454, 2005.

G. Lorden. Procedures for reacting to a change in
distribution. The Annals of Mathematical Statistics,
pages 1897–1908, 1971.

D. Siegmund and B. Yakir. Minimax optimality of
the Shiryayev-Roberts change-point detection rule.
Journal of Statistical Planning and Inference, 138(9):
2815–2825, 2008.

K. Azoury and M. Warmuth. Relative loss bounds
for on-line density estimation with the exponential
family of distributions. Machine Learning, 43(3):
211–246, 2001.

Sanjoy Dasgupta and Daniel Hsu. On-line estimation
with the multivariate gaussian distribution. Learning
Theory, pages 278–292, 2007.

M. Raginsky, R. Willet, C. Horn, J. Silva, and R. Mar-
cia. Sequential anomaly detection in the presence of
noise and limited feedback. IEEE Transactions on
Information Theory, 58(8):5544–5562, 2012.


