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1 Proof of Lemma 2

Statement of Lemma: The transformed population K-
endall’s tau correlation vector β satisfies

β =
β̃

σy
=

Σ̃θ̃

σy
, (S.1)

where σ2
y is the variance of y. The transformed sample

Kendall’s tau correlation vector β̂, with probability at least
1− 2

p , satisfies

‖β̂ − β‖∞ ≤ 2π

√
log p

n
(S.2)

Proof: By definition, β̃ = E[yx̃] = Ex̃[x̃ · Ey[y|x̃]] =

E[x̃x̃T θ̃] = Σ̃θ̃. Given that λmin > 0 and the properties of
elliptical distribution (15), we have E[x̃] = 0, rank(A) =
rank(Σ̃) = p and Cov[x̃] = Σ̃. Since x̃, y are jointly
elliptical and β is invariant to f , using Theorem 2 in [3],
we have for each βj ,

βj =
E[yx̃j ]− E[y]E[x̃j ]√

Var[y]
√

Var[x̃j ]
=

E
[
〈θ̃, x̃〉 · x̃j

]
√

Var[y]
=
〈θ̃, σ̃j〉
σy

,

which implies (S.1). Using Hoeffding’s inequality for U-
statistics [2], we have for each βj and β̂j

P
(∣∣∣βj − β̂j∣∣∣ ≥ ε) ≤ P

(∣∣∣bj − b̂j∣∣∣ ≥ 2

π
ε

)
≤ 2 exp

(
−nε

2

2π2

)
.

Letting ε = 2π
√

log p
n and taking union bound, we obtain

P

(∥∥∥β − β̂
∥∥∥
∞
≥ 2π

√
log p

n

)
≤ 2

p
,

which completes the proof.

2 Proof of Lemma 3

Statement of Lemma: Define the descent cone for any s-
sparse vector θ∗ ∈ Rp,

C = {v ∈ Rp | ‖θ∗ + v‖1 ≤ ‖θ∗‖1} . (S.3)

If x ∼ TE(Σ̃, ξ, f) and n ≥
(

24π
λmin

)2
s2 log p =

O(s2 log p), with probability at least 1 − p−2.5, the fol-
lowing RE condition holds for Σ̂ in C,

inf
v∈C∩Sp−1

vT Σ̂v ≥ λmin

2
, (S.4)

where λmin is the smallest eigenvalue of Σ̃.

Proof: Let S be the support of θ∗, then we have

v ∈ C ∩ Sp−1 =⇒ ‖θ∗S + vS‖1 + ‖vSc‖1 ≤ ‖θ∗‖1
=⇒ ‖θ∗S‖1 − ‖vS‖1 + ‖vSc‖1 ≤ ‖θ∗‖1 =⇒

‖vSc‖1 ≤ ‖vS‖1 =⇒ ‖v‖1 ≤ 2‖vS‖1 ≤ 2
√
s‖vS‖2 ≤ 2

√
s

With probability at least 1 − p−2.5, we have for any v ∈
C ∩ Sp−1

vT Σ̂v ≥ vT Σ̃v −
∣∣∣vT (Σ̂− Σ̃

)
v
∣∣∣

≥ λmin −

∣∣∣∣∣∣
∑

1≤i,j≤p

vivj (σ̂ij − σ̃ij)

∣∣∣∣∣∣
≥ λmin − ‖v‖21

∥∥∥Σ̂− Σ̃
∥∥∥
max
≥ λmin − 12π

√
s2 log p

n
,

where we use Lemma 1 and the fact that ‖v‖1 ≤ 2
√
s.

Since we choose n ≥
(

24π
λmin

)2
s2 log p, we have

vT Σ̂v ≥ λmin − 12π

√
s2 log p

n
≥ λmin −

λmin

2
=
λmin

2
,

which completes the proof.

3 Proof of Theorem 2

Statement of Theorem: Let X = [x1,x2, . . . ,xn]T be
i.i.d. samples of x ∼ TE(Σ̃, ξ, f) for which the sign sub-



Supplementary Material to Sparse Linear Isotonic Models

Gaussian condition holds with constant κ. Define the con-
stant

c0 = max

{
320κπ4‖Σ̃‖22

λ2min

,
π2

λmin

}
,

in which λmin is the smallest eigenvalue Σ̃. If n ≥
128c0
λmin

s log p = O(s log p), with probability at least 1 −
2
p −

1
p2 , Σ̂ satisfies the following RE condition,

inf
v∈C∩Sp−1

vT Σ̂v ≥ λmin

2
, (S.5)

where C is defined in (21).

To prove Theorem 2, we first formally state below the con-
vergence result for Σ̂ and Σ̃ in [1].

Lemma A (Theorem 4.10 in [1]) Let X =
[x1,x2, . . . ,xn]T be i.i.d. samples of x ∼ TE(Σ̃, ξ, f) for
which the sign sub-Gaussian condition holds with constant
κ. With probability at least 1 − 2α − α2, Σ̂ constructed
from X satisfies

‖Σ̂− Σ̃‖2,s0 ≤ π2

(
s0 log p

n
+

2
√

2κ‖Σ̃‖2

√
s0 (3 + log(p/s0)) + log(1/α)

n

)
, (S.6)

where ‖A‖2,s0 , supv∈Sp−1,‖v‖0≤s0 vTAv.

The next step for showing Theorem 2 is to extend the RE
condition on all s0-sparse unit vectors (s0 needs to be ap-
propriately specified) to all unit vectors inside the targeted
descent cone C. Lemma B accomplishes this goal.

Lemma B Given Σ̂ constructed from X whose rows are
generated from x ∼ TE(Σ̃, ξ, f), we assume that for ev-
ery s0-sparse unit vector v, the condition vT Σ̂v ≥ µ is
satisfied. Then we have for any u ∈ C ∩ Sp−1,

uT Σ̂u ≥ µ− 4s

s0 − 1
(1− µ) . (S.7)

Proof: For any u ∈ C ∩ Sp−1, let z ∈ Rp be a random
vector defined by

P (z = ‖u‖1sign(ui) · ei) =
|ui|
‖u‖1

, (S.8)

where {ei}pi=1 is the canonical basis of Rp. Therefore,
E[z] = u. Let z1, z2, . . . , zs0 be independent copies of
z and set z̄ = 1

s0

∑s0
i=1 zi. Therefore z̄ is an s0-sparse vec-

tor, and by our assumption on quadratic forms on s0-sparse
vectors

z̄T Σ̂z̄ ≥ µ‖z̄‖22 =⇒ E
[
z̄T Σ̂z̄

]
≥ µE

[
‖z̄‖22

]
, (S.9)

where the expectation is taken w.r.t z̄. Since z̄ =
1
s0

∑s0
i=1 zi, we have

E
[
z̄T Σ̂z̄

]
=

1

s20

∑
1≤i,j≤s0

E
[
zTi Σ̂zj

]
=

1

s20

∑
1≤i,j≤s0
i 6=j

E
[
zTi Σ̂zj

]
+

1

s20

∑
1≤i≤s0

E
[
zTi Σ̂zi

]

=
s0(s0 − 1)

s20
uT Σ̂u +

s0
s20

p∑
i=1

|ui|
‖u‖1

‖u‖21σ̂ii

=
s0 − 1

s0
uT Σ̂u +

‖u‖21
s0

,

since σ̂ii = 1, and
∑p
i=1

|ui|
‖u‖1 = 1. Replacing Σ̂ in the

above expression by the identity matrix I ∈ Rp×p, we have

E‖z̄‖22 =
s0 − 1

s0
‖u‖22 +

‖u‖21
s0

.

Plugging both these expressions back in (S.9), we have

s0 − 1

s0
uT Σ̂u +

‖u‖21
s0
≥ µs0 − 1

s0
‖u‖22 + µ

‖u‖21
s0

=⇒

uT Σ̂u ≥ µ‖u‖22 −
‖u‖21
s0 − 1

(1− µ) ≥ µ− 4s

s0 − 1
(1− µ) ,

where we use the facts that ‖u‖2 = 1 and ‖u‖1 ≤ 2
√
s.

That completes the proof.

Equipped with Lemma A and B, we present the proof of
Theorem 2.

Proof of Theorem 2: For Lemma A, we set α = 1
p ,

s0 = 16s
λmin

, and let c0 = max{ 320κπ
4‖Σ̃‖22

λ2
min

, π2

λmin
}. When

n ≥ 128c0
λmin

s log p = 8c0s0 log p, by Lemma A, we have

‖Σ̂− Σ̃‖2,s0 ≤ π2

(
s0 log p

n

+ 2
√

2κ‖Σ̃‖2

√
s0(3 + log(p/s0)) + log p

n

)

≤ π2

(
s0 log p

π2

λmin
· 8s0 log p

+ 2
√

2κ‖Σ̃‖2

√√√√s0(3 + log(p/s0)) + log p
320κπ4‖Σ̃‖22

λ2
min

· 8s0 log p

)

≤ π2

(
λmin

π2

√
5s0 log p

320s0 log p
+
λmin

π2

s0 log p

8s0 log p

)

≤ λmin

8
+
λmin

8
=
λmin

4
,
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with probability at least 1− 2
p −

1
p2 . It follows that for any

s0-sparse unit vector v,

vT Σ̂v ≥ vT Σ̃v −
∣∣∣vT (Σ̂− Σ̃

)
v
∣∣∣

≥ λmin − ‖Σ̂− Σ̃‖2,s0 ≥
3

4
λmin ,

which satisfies the assumption in Lemma B with µ =
3
4λmin. With the same s0 = 16s

λmin
, by Lemma B, we have

for any v ∈ C ∩ Sp−1,

vT Σ̂v ≥ 3

4
λmin −

4s
16s
λmin
− 1

(
1− 3

4
λmin

)
≥ 3

4
λmin −

4s
16s
λmin
− 12s

(
1− 3

4
λmin

)
=

3

4
λmin −

4s
16s
λmin

(1− 3
4λmin)

(
1− 3

4
λmin

)
=

3

4
λmin −

λmin

4
=
λmin

2
,

which completes the proof.

4 Proof of Theorem 3

Statement of Theorem: Given any monotone coneM, the
following equality holds

PM∩L∩B(·) = PB(PL(PM(·))) , (S.10)

where PL(z) = z− 1T z
n ·1 and PB(z) = min{

√
n

‖z‖2 , 1}·z.

Proof: It is easy to verify the the analytic expression for
PL(·) and PB(·). To show (S.10), we let x∗ = PM(z) and
x̃∗ = PM∩L∩B(z). We assume w.l.o.g. that the monotone
cone isM = {x | x1 ≥ x2 ≥ . . . ≥ xn}. By introducing
the Lagrange multipliers λ = [λ1, . . . , λn−1]T , the isoton-
ic regression PM(z) can be casted as

max
λ�0

min
x

g(x,λ) =
1

2
‖x− z‖22 +

n−1∑
i=1

λi(xi − xi+1) ,

where we use the strong duality. The optimum x∗ has to
satisfy the stationarity∇x g(x,λ) = 0, i.e.,

x∗1 − z1 + λ1 = 0 ,

x∗2 − z2 − λ1 + λ2 = 0 ,

...
x∗n−1 − zn−1 − λn−2 + λn−1 = 0 ,

x∗n − zn − λn−1 = 0 .

(S.11)

Using (S.11) to express x∗ in terms of λ, we denote
minx g(x,λ) by another function h(λ), and the optimal
dual variables λ∗ satisfies

λ∗ = argmax
λ�0

h(λ) .

For the standardized isotonic regression PM∩L∩B(z),
we can also introduce the Lagrange multipliers λ =
[λ1, . . . , λn−1]T , β and γ, and obtain the following opti-
mization problem

max
λ�0,γ≤0,β

min
x

g̃(x,λ, β, γ) =
1

2
‖x− z‖22

+

n−1∑
i=1

λi(xi − xi+1) + β

n∑
i=1

xi + γ(n− ‖x‖22) .

(S.12)

Again the optimum x̃∗ has to satisfy∇x g̃(x̃∗,λ, β, γ),

(1− 2γ)x̃∗1 − z1 + β + λ1 = 0 ,

(1− 2γ)x̃∗2 − z2 + β − λ1 + λ2 = 0 ,

...
(1− 2γ)x̃∗n−1 − zn−1 + β − λn−2 + λn−1 = 0 ,

(1− 2γ)x̃∗n − zn + β − λn−1 = 0 .
(S.13)

By substituting x̃∗ for λ, β and γ, we have

min
x
g̃(x,λ, β, γ) =

1− 2γ

2

n∑
i=1

(
x̃∗i −

zi − β
1− 2γ

)2

+

n−1∑
i=1

λi(x̃
∗
i − x̃∗i+1) +

‖z‖22
2
−
∑n
i=1(zi − β)2

2(1− 2γ)
+ γn

=
h(λ)

1− 2γ
+
‖z‖22

2
−
∑n
i=1(zi − β)2

2(1− 2γ)
+ γn ,

in which we note that the last three terms are free of λ.
Hence the optimal λ for standardized isotonic regression,

λ̃∗ = argmax
λ�0

h(λ)

1− 2γ
+
‖z‖22

2
−
∑n
i=1(zi − β)2

2(1− 2γ)
+ γn

= argmax
λ�0

h(λ)

is the same as the one for isotonic regression. Thus, com-
bining (S.11) and (S.13), we have

x̃∗ =
x∗ − β · 1

1− 2γ
. (S.14)

On the other hand, by summing up the equations respec-
tively in (S.11) and (S.13) and using the primal feasibility∑n
i=1 x̃

∗
i = 0, we have

n∑
i=1

x∗i =

n∑
i=1

zi,

n∑
i=1

zi = nβ =⇒ β =
1Tx∗

n
,

which implies that

x∗ − β · 1 = PL(x∗) = PL(PM(z)) . (S.15)

Denoting x∗ − β · 1 by x̂∗, we now show that scaling x̂∗

by 1
1−2γ is exactly the projection onto B. If ‖x̂∗‖2 >

√
n,
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then γ < 0 due to (S.14) and primal feasibility ‖x̃∗‖2 ≤√
n. By complementary slackness γ(n − ‖x̃∗‖22) = 0, we

have ‖x̃∗‖2 =
√
n. If ‖x̂∗‖2 <

√
n, then ‖x̃∗‖ <

√
n

due to (S.14) and dual feasibility γ ≤ 0. It follows from
complementary slackness that γ = 0, which result in x̃∗ =
x̂∗. If ‖x̂∗‖2 =

√
n, by similar argument, we have x̃∗ = x̂∗

as well. In a word, we have

x̃∗ =

{
x̂∗, if ‖x̂∗‖2 ≤

√
n√

n
‖x̂∗‖2 x̂∗, if ‖x̂∗‖2 >

√
n

,

which matches the expression for PB(·). Thus we complete
the proof by noting x̃∗ = PB(x̂∗) = PB(PL(PM(z))).
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