Supplementary Material to Sparse Linear Isotonic Models

Sheng Chen
Department of Computer Science and Engineering, University of Minnesota, Twin Cities
\{shengc, banerjee\}@cs.umn.edu

1 Proof of Lemma 2

Statement of Lemma: The transformed population Kendall's tau correlation vector $\boldsymbol{\beta}$ satisfies

$$
\begin{equation*}
\boldsymbol{\beta}=\frac{\tilde{\boldsymbol{\beta}}}{\sigma_{y}}=\frac{\tilde{\boldsymbol{\Sigma}} \tilde{\boldsymbol{\theta}}}{\sigma_{y}} \tag{S.1}
\end{equation*}
$$

where σ_{y}^{2} is the variance of y. The transformed sample Kendall's tau correlation vector $\hat{\boldsymbol{\beta}}$, with probability at least $1-\frac{2}{p}$, satisfies

$$
\begin{equation*}
\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|_{\infty} \leq 2 \pi \sqrt{\frac{\log p}{n}} \tag{S.2}
\end{equation*}
$$

Proof: By definition, $\tilde{\boldsymbol{\beta}}=\mathbb{E}[y \tilde{\mathbf{x}}]=\mathbb{E}_{\tilde{\mathbf{x}}}\left[\tilde{\mathbf{x}} \cdot \mathbb{E}_{y}[y \mid \tilde{\mathbf{x}}]\right]=$ $\mathbb{E}\left[\tilde{\mathbf{x}} \tilde{\mathbf{x}}^{T} \tilde{\boldsymbol{\theta}}\right]=\tilde{\boldsymbol{\Sigma}} \tilde{\boldsymbol{\theta}}$. Given that $\lambda_{\min }>0$ and the properties of elliptical distribution (15], we have $\mathbb{E}[\tilde{\mathbf{x}}]=\mathbf{0}, \operatorname{rank}(\mathbf{A})=$ $\operatorname{rank}(\tilde{\boldsymbol{\Sigma}})=p$ and $\operatorname{Cov}[\tilde{\mathbf{x}}]=\tilde{\boldsymbol{\Sigma}}$. Since $\tilde{\mathbf{x}}, y$ are jointly elliptical and $\boldsymbol{\beta}$ is invariant to \mathbf{f}, using Theorem 2 in [3], we have for each β_{j},

$$
\beta_{j}=\frac{\mathbb{E}\left[y \tilde{x}_{j}\right]-\mathbb{E}[y] \mathbb{E}\left[\tilde{x}_{j}\right]}{\sqrt{\operatorname{Var}[y]} \sqrt{\operatorname{Var}\left[\tilde{x}_{j}\right]}}=\frac{\mathbb{E}\left[\langle\tilde{\boldsymbol{\theta}}, \tilde{\mathbf{x}}\rangle \cdot \tilde{x}_{j}\right]}{\sqrt{\operatorname{Var}[y]}}=\frac{\left\langle\tilde{\boldsymbol{\theta}}, \tilde{\boldsymbol{\sigma}}_{j}\right\rangle}{\sigma_{y}}
$$

which implies S.1. Using Hoeffding's inequality for Ustatistics [2], we have for each β_{j} and $\hat{\beta}_{j}$

$$
\begin{aligned}
\mathbb{P}\left(\left|\beta_{j}-\hat{\beta}_{j}\right| \geq \epsilon\right) & \leq \mathbb{P}\left(\left|b_{j}-\hat{b}_{j}\right| \geq \frac{2}{\pi} \epsilon\right) \\
& \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 \pi^{2}}\right)
\end{aligned}
$$

Letting $\epsilon=2 \pi \sqrt{\frac{\log p}{n}}$ and taking union bound, we obtain

$$
\mathbb{P}\left(\|\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}\|_{\infty} \geq 2 \pi \sqrt{\frac{\log p}{n}}\right) \leq \frac{2}{p}
$$

which completes the proof.

2 Proof of Lemma 3

Statement of Lemma: Define the descent cone for any ssparse vector $\boldsymbol{\theta}^{*} \in \mathbb{R}^{p}$,

$$
\begin{equation*}
\mathcal{C}=\left\{\mathbf{v} \in \mathbb{R}^{p} \mid\left\|\boldsymbol{\theta}^{*}+\mathbf{v}\right\|_{1} \leq\left\|\boldsymbol{\theta}^{*}\right\|_{1}\right\} \tag{S.3}
\end{equation*}
$$

If $\mathbf{x} \sim T E(\tilde{\boldsymbol{\Sigma}}, \xi, \mathbf{f})$ and $n \geq\left(\frac{24 \pi}{\lambda_{\text {min }}}\right)^{2} s^{2} \log p=$ $O\left(s^{2} \log p\right)$, with probability at least $1-p^{-2.5}$, the following RE condition holds for $\hat{\boldsymbol{\Sigma}}$ in \mathcal{C},

$$
\begin{equation*}
\inf _{\mathbf{v} \in \mathcal{C} \cap \mathbb{S}^{p-1}} \mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} \geq \frac{\lambda_{\min }}{2} \tag{S.4}
\end{equation*}
$$

where $\lambda_{\min }$ is the smallest eigenvalue of $\tilde{\boldsymbol{\Sigma}}$.
Proof: Let \mathcal{S} be the support of $\boldsymbol{\theta}^{*}$, then we have

$$
\begin{gathered}
\mathbf{v} \in \mathcal{C} \cap \mathbb{S}^{p-1} \Longrightarrow\left\|\boldsymbol{\theta}_{\mathcal{S}}^{*}+\mathbf{v}_{\mathcal{S}}\right\|_{1}+\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1} \leq\left\|\boldsymbol{\theta}^{*}\right\|_{1} \\
\Longrightarrow\left\|\boldsymbol{\theta}_{\mathcal{S}}^{*}\right\|_{1}-\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1}+\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1} \leq\left\|\boldsymbol{\theta}^{*}\right\|_{1} \Longrightarrow \\
\left\|\mathbf{v}_{\mathcal{S}^{c}}\right\|_{1} \leq\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1} \Longrightarrow\|\mathbf{v}\|_{1} \leq 2\left\|\mathbf{v}_{\mathcal{S}}\right\|_{1} \leq 2 \sqrt{s}\left\|\mathbf{v}_{\mathcal{S}}\right\|_{2} \leq 2 \sqrt{s}
\end{gathered}
$$

With probability at least $1-p^{-2.5}$, we have for any $\mathbf{v} \in$ $\mathcal{C} \cap \mathbb{S}^{p-1}$

$$
\begin{aligned}
& \mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} \geq \mathbf{v}^{T} \tilde{\boldsymbol{\Sigma}} \mathbf{v}-\left|\mathbf{v}^{T}(\hat{\boldsymbol{\Sigma}}-\tilde{\boldsymbol{\Sigma}}) \mathbf{v}\right| \\
\geq & \lambda_{\min }-\left|\sum_{1 \leq i, j \leq p} v_{i} v_{j}\left(\hat{\sigma}_{i j}-\tilde{\sigma}_{i j}\right)\right| \\
\geq & \lambda_{\min }-\|\mathbf{v}\|_{1}^{2}\|\hat{\boldsymbol{\Sigma}}-\tilde{\boldsymbol{\Sigma}}\|_{\max } \geq \lambda_{\min }-12 \pi \sqrt{\frac{s^{2} \log p}{n}}
\end{aligned}
$$

where we use Lemma 1 and the fact that $\|\mathbf{v}\|_{1} \leq 2 \sqrt{s}$. Since we choose $n \geq\left(\frac{24 \pi}{\lambda_{\text {min }}}\right)^{2} s^{2} \log p$, we have $\mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} \geq \lambda_{\text {min }}-12 \pi \sqrt{\frac{s^{2} \log p}{n}} \geq \lambda_{\text {min }}-\frac{\lambda_{\text {min }}}{2}=\frac{\lambda_{\text {min }}}{2}$, which completes the proof.

3 Proof of Theorem 2

■ Statement of Theorem: Let $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]^{T}$ be i.i.d. samples of $\mathbf{x} \sim \operatorname{TE}(\tilde{\boldsymbol{\Sigma}}, \xi, \mathbf{f})$ for which the sign sub-

Gaussian condition holds with constant κ. Define the constant

$$
c_{0}=\max \left\{\frac{320 \kappa \pi^{4}\|\tilde{\boldsymbol{\Sigma}}\|_{2}^{2}}{\lambda_{\min }^{2}}, \frac{\pi^{2}}{\lambda_{\min }}\right\}
$$

in which $\lambda_{\min }$ is the smallest eigenvalue $\tilde{\boldsymbol{\Sigma}}$. If $n \geq$ $\frac{128 c_{0}}{\lambda_{\min }} s \log p=O(s \log p)$, with probability at least $1-$ $\frac{2}{p}-\frac{1}{p^{2}}, \hat{\boldsymbol{\Sigma}}$ satisfies the following RE condition,

$$
\begin{equation*}
\inf _{\mathbf{v} \in \mathcal{C} \cap \mathbb{S}^{p-1}} \mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} \geq \frac{\lambda_{\min }}{2} \tag{S.5}
\end{equation*}
$$

where \mathcal{C} is defined in 21.
To prove Theorem 2 , we first formally state below the convergence result for $\boldsymbol{\Sigma}$ and $\tilde{\boldsymbol{\Sigma}}$ in [1].

Lemma A (Theorem 4.10 in [1]) Let $\quad \mathbf{X} \quad=$ $\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]^{T}$ be i.i.d. samples of $\mathbf{x} \sim T E(\tilde{\boldsymbol{\Sigma}}, \xi, \mathbf{f})$ for which the sign sub-Gaussian condition holds with constant κ. With probability at least $1-2 \alpha-\alpha^{2}, \hat{\boldsymbol{\Sigma}}$ constructed from \mathbf{X} satisfies

$$
\begin{align*}
& \|\hat{\boldsymbol{\Sigma}}-\tilde{\boldsymbol{\Sigma}}\|_{2, s_{0}} \leq \pi^{2}\left(\frac{s_{0} \log p}{n}+\right. \\
& \left.2 \sqrt{2 \kappa}\|\tilde{\boldsymbol{\Sigma}}\|_{2} \sqrt{\frac{s_{0}\left(3+\log \left(p / s_{0}\right)\right)+\log (1 / \alpha)}{n}}\right) \tag{S.6}
\end{align*}
$$

where $\|\mathbf{A}\|_{2, s_{0}} \triangleq \sup _{\mathbf{v} \in \mathbb{S}^{p-1},\|\mathbf{v}\|_{0} \leq s_{0}} \mathbf{v}^{T} \mathbf{A} \mathbf{v}$.
The next step for showing Theorem 2 is to extend the RE condition on all s_{0}-sparse unit vectors (s_{0} needs to be appropriately specified) to all unit vectors inside the targeted descent cone \mathcal{C}. Lemma B accomplishes this goal.

Lemma B Given $\hat{\boldsymbol{\Sigma}}$ constructed from \mathbf{X} whose rows are generated from $\mathbf{x} \sim T E(\tilde{\boldsymbol{\Sigma}}, \xi, \mathbf{f})$, we assume that for ev ery s_{0}-sparse unit vector \mathbf{v}, the condition $\mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} \geq \mu$ is satisfied. Then we have for any $\mathbf{u} \in \mathcal{C} \cap \mathbb{S}^{p-1}$,

$$
\begin{equation*}
\mathbf{u}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{u} \geq \mu-\frac{4 s}{s_{0}-1}(1-\mu) \tag{S.7}
\end{equation*}
$$

Proof: For any $\mathbf{u} \in \mathcal{C} \cap \mathbb{S}^{p-1}$, let $\mathbf{z} \in \mathbb{R}^{p}$ be a random vector defined by

$$
\begin{equation*}
\mathbb{P}\left(\mathbf{z}=\|\mathbf{u}\|_{1} \operatorname{sign}\left(u_{i}\right) \cdot \mathbf{e}_{i}\right)=\frac{\left|u_{i}\right|}{\|\mathbf{u}\|_{1}} \tag{S.8}
\end{equation*}
$$

where $\left\{\mathbf{e}_{i}\right\}_{i=1}^{p}$ is the canonical basis of \mathbb{R}^{p}. Therefore, $\mathbb{E}[\mathbf{z}]=\mathbf{u}$. Let $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{s_{0}}$ be independent copies of \mathbf{z} and set $\overline{\mathbf{z}}=\frac{1}{s_{0}} \sum_{i=1}^{s_{0}} \mathbf{z}_{i}$. Therefore $\overline{\mathbf{z}}$ is an s_{0}-sparse vector, and by our assumption on quadratic forms on s_{0}-sparse vectors

$$
\begin{equation*}
\overline{\mathbf{z}}^{T} \hat{\boldsymbol{\Sigma}} \overline{\mathbf{z}} \geq \mu\|\overline{\mathbf{z}}\|_{2}^{2} \Longrightarrow \mathbb{E}\left[\overline{\mathbf{z}}^{T} \hat{\boldsymbol{\Sigma}} \overline{\mathbf{z}}\right] \geq \mu \mathbb{E}\left[\|\overline{\mathbf{z}}\|_{2}^{2}\right] \tag{S.9}
\end{equation*}
$$

where the expectation is taken w.r.t $\overline{\mathbf{z}}$. Since $\overline{\mathbf{z}}=$ $\frac{1}{s_{0}} \sum_{i=1}^{s_{0}} \mathbf{z}_{i}$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\overline{\mathbf{z}}^{T} \hat{\boldsymbol{\Sigma}} \overline{\mathbf{z}}\right]=\frac{1}{s_{0}^{2}} \sum_{1 \leq i, j \leq s_{0}} \mathbb{E}\left[\mathbf{z}_{i}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{z}_{j}\right] \\
& \quad=\frac{1}{s_{0}^{2}} \sum_{\substack{1 \leq i, j \leq s_{0} \\
i \neq j}} \mathbb{E}\left[\mathbf{z}_{i}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{z}_{j}\right]+\frac{1}{s_{0}^{2}} \sum_{1 \leq i \leq s_{0}} \mathbb{E}\left[\mathbf{z}_{i}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{z}_{i}\right] \\
& \quad=\frac{s_{0}\left(s_{0}-1\right)}{s_{0}^{2}} \mathbf{u}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{u}+\frac{s_{0}}{s_{0}^{2}} \sum_{i=1}^{p} \frac{\left|u_{i}\right|}{\|\mathbf{u}\|_{1}}\|\mathbf{u}\|_{1}^{2} \hat{\sigma}_{i i} \\
& \quad=\frac{s_{0}-1}{s_{0}} \mathbf{u}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{u}+\frac{\|\mathbf{u}\|_{1}^{2}}{s_{0}}
\end{aligned}
$$

since $\hat{\sigma}_{i i}=1$, and $\sum_{i=1}^{p} \frac{\left|u_{i}\right|}{\|\mathbf{u}\|_{1}}=1$. Replacing $\hat{\boldsymbol{\Sigma}}$ in the above expression by the identity matrix $\mathbf{I} \in \mathbb{R}^{p \times p}$, we have

$$
\mathbb{E}\|\overline{\mathbf{z}}\|_{2}^{2}=\frac{s_{0}-1}{s_{0}}\|\mathbf{u}\|_{2}^{2}+\frac{\|\mathbf{u}\|_{1}^{2}}{s_{0}}
$$

Plugging both these expressions back in S.9, we have

$$
\begin{gathered}
\frac{s_{0}-1}{s_{0}} \mathbf{u}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{u}+\frac{\|\mathbf{u}\|_{1}^{2}}{s_{0}} \geq \mu \frac{s_{0}-1}{s_{0}}\|\mathbf{u}\|_{2}^{2}+\mu \frac{\|\mathbf{u}\|_{1}^{2}}{s_{0}} \Longrightarrow \\
\mathbf{u}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{u} \geq \mu\|\mathbf{u}\|_{2}^{2}-\frac{\|\mathbf{u}\|_{1}^{2}}{s_{0}-1}(1-\mu) \geq \mu-\frac{4 s}{s_{0}-1}(1-\mu),
\end{gathered}
$$

where we use the facts that $\|\mathbf{u}\|_{2}=1$ and $\|\mathbf{u}\|_{1} \leq 2 \sqrt{s}$. That completes the proof.

Equipped with Lemma A and B, we present the proof of Theorem 2

Proof of Theorem 2. For Lemma A we set $\alpha=\frac{1}{p}$, $s_{0}=\frac{16 \mathrm{~s}}{\lambda_{\text {min }}}$, and let $c_{0}=\max \left\{\frac{320 \kappa \pi^{4}\|\boldsymbol{\Sigma}\|_{2}^{2}}{\lambda_{\text {min }}^{2}}, \frac{\pi^{2}}{\lambda_{\text {min }}}\right\}$. When $n \geq \frac{128 c_{0}}{\lambda_{\text {min }}} s \log p=8 c_{0} s_{0} \log p$, by Lemma A, we have

$$
\begin{aligned}
\| \hat{\boldsymbol{\Sigma}}- & \tilde{\boldsymbol{\Sigma}} \|_{2, s_{0}} \leq \pi^{2}\left(\frac{s_{0} \log p}{n}\right. \\
& \left.+2 \sqrt{2 \kappa}\|\tilde{\boldsymbol{\Sigma}}\|_{2} \sqrt{\frac{s_{0}\left(3+\log \left(p / s_{0}\right)\right)+\log p}{n}}\right) \\
\leq & \pi^{2}\left(\frac{s_{0} \log p}{\frac{\pi^{2}}{\lambda_{\min }} \cdot 8 s_{0} \log p}\right. \\
& \left.+2 \sqrt{2 \kappa}\|\tilde{\boldsymbol{\Sigma}}\|_{2} \sqrt{\frac{s_{0}\left(3+\log \left(p / s_{0}\right)\right)+\log p}{\frac{320 \kappa \pi^{4}\|\tilde{\boldsymbol{\Sigma}}\|_{2}^{2}}{\lambda_{\min }^{2}} \cdot 8 s_{0} \log p}}\right) \\
\leq & \pi^{2}\left(\frac{\lambda_{\min }}{\pi^{2}} \sqrt{\left.\frac{5 s_{0} \log p}{320 s_{0} \log p}+\frac{\lambda_{\min }}{\pi^{2}} \frac{s_{0} \log p}{8 s_{0} \log p}\right)}\right. \\
\leq & \frac{\lambda_{\min }}{8}+\frac{\lambda_{\min }}{8}=\frac{\lambda_{\min }}{4},
\end{aligned}
$$

with probability at least $1-\frac{2}{p}-\frac{1}{p^{2}}$. It follows that for any s_{0}-sparse unit vector \mathbf{v},

$$
\begin{aligned}
\mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} & \geq \mathbf{v}^{T} \tilde{\boldsymbol{\Sigma}} \mathbf{v}-\left|\mathbf{v}^{T}(\hat{\boldsymbol{\Sigma}}-\tilde{\boldsymbol{\Sigma}}) \mathbf{v}\right| \\
& \geq \lambda_{\min }-\|\hat{\boldsymbol{\Sigma}}-\tilde{\boldsymbol{\Sigma}}\|_{2, s_{0}} \geq \frac{3}{4} \lambda_{\min }
\end{aligned}
$$

which satisfies the assumption in Lemma B with $\mu=$ $\frac{3}{4} \lambda_{\text {min }}$. With the same $s_{0}=\frac{16 \mathrm{~s}}{\lambda_{\text {min }}}$, by Lemma B, we have for any $\mathbf{v} \in \mathcal{C} \cap \mathbb{S}^{p-1}$,

$$
\begin{aligned}
\mathbf{v}^{T} \hat{\boldsymbol{\Sigma}} \mathbf{v} & \geq \frac{3}{4} \lambda_{\min }-\frac{4 s}{\frac{16 s}{\lambda_{\min }}-1}\left(1-\frac{3}{4} \lambda_{\min }\right) \\
& \geq \frac{3}{4} \lambda_{\min }-\frac{4 s}{\frac{16 s}{\lambda_{\min }}-12 s}\left(1-\frac{3}{4} \lambda_{\min }\right) \\
& =\frac{3}{4} \lambda_{\min }-\frac{4 s}{\frac{16 s}{\lambda_{\min }}\left(1-\frac{3}{4} \lambda_{\min }\right)}\left(1-\frac{3}{4} \lambda_{\min }\right) \\
& =\frac{3}{4} \lambda_{\min }-\frac{\lambda_{\min }}{4}=\frac{\lambda_{\min }}{2},
\end{aligned}
$$

which completes the proof.

4 Proof of Theorem 3

Statement of Theorem: Given any monotone cone \mathcal{M}, the following equality holds

$$
\begin{equation*}
P_{\mathcal{M} \cap \mathcal{L} \cap \mathcal{B}}(\cdot)=P_{\mathcal{B}}\left(P_{\mathcal{L}}\left(P_{\mathcal{M}}(\cdot)\right)\right), \tag{S.10}
\end{equation*}
$$

where $P_{\mathcal{L}}(\mathbf{z})=\mathbf{z}-\frac{\mathbf{1}^{T} \mathbf{z}}{n} \cdot \mathbf{1}$ and $P_{\mathcal{B}}(\mathbf{z})=\min \left\{\frac{\sqrt{n}}{\|\mathbf{z}\|_{2}}, 1\right\} \cdot \mathbf{z}$.
Proof: It is easy to verify the the analytic expression for $P_{\mathcal{L}}(\cdot)$ and $P_{\mathcal{B}}(\cdot)$. To show (S.10), we let $\mathbf{x}^{*}=P_{\mathcal{M}}(\mathbf{z})$ and $\tilde{\mathbf{x}}^{*}=P_{\mathcal{M} \cap \mathcal{L} \cap \mathcal{B}}(\mathbf{z})$. We assume w.l.o.g. that the monotone cone is $\mathcal{M}=\left\{\mathbf{x} \mid x_{1} \geq x_{2} \geq \ldots \geq x_{n}\right\}$. By introducing the Lagrange multipliers $\boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{n-1}\right]^{T}$, the isotonic regression $P_{\mathcal{M}}(\mathbf{z})$ can be casted as

$$
\max _{\boldsymbol{\lambda} \preceq \mathbf{0}} \min _{\mathbf{x}} g(\mathbf{x}, \boldsymbol{\lambda})=\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|_{2}^{2}+\sum_{i=1}^{n-1} \lambda_{i}\left(x_{i}-x_{i+1}\right),
$$

where we use the strong duality. The optimum x^{*} has to satisfy the stationarity $\nabla_{\mathbf{x}} g(\mathbf{x}, \boldsymbol{\lambda})=0$, i.e.,

$$
\begin{gather*}
x_{1}^{*}-z_{1}+\lambda_{1}=0 \\
x_{2}^{*}-z_{2}-\lambda_{1}+\lambda_{2}=0, \\
\vdots \tag{S.11}\\
x_{n-1}^{*}-z_{n-1}-\lambda_{n-2}+\lambda_{n-1}=0 \\
x_{n}^{*}-z_{n}-\lambda_{n-1}=0
\end{gather*}
$$

Using S.11 to express x^{*} in terms of $\boldsymbol{\lambda}$, we denote $\min _{\mathbf{x}} g(\mathbf{x}, \boldsymbol{\lambda})$ by another function $h(\boldsymbol{\lambda})$, and the optimal dual variables $\boldsymbol{\lambda}^{*}$ satisfies

$$
\boldsymbol{\lambda}^{*}=\underset{\boldsymbol{\lambda} \preceq \mathbf{0}}{\operatorname{argmax}} h(\boldsymbol{\lambda}) .
$$

For the standardized isotonic regression $P_{\mathcal{M} \cap \mathcal{L} \cap \mathcal{B}}(\mathbf{z})$, we can also introduce the Lagrange multipliers $\boldsymbol{\lambda}=$ $\left[\lambda_{1}, \ldots, \lambda_{n-1}\right]^{T}, \beta$ and γ, and obtain the following optimization problem

$$
\begin{align*}
& \max _{\lambda \preceq \mathbf{0}, \gamma \leq 0, \beta} \min _{\mathbf{x}} \tilde{g}(\mathbf{x}, \boldsymbol{\lambda}, \beta, \gamma)=\frac{1}{2}\|\mathbf{x}-\mathbf{z}\|_{2}^{2} \\
& \quad+\sum_{i=1}^{n-1} \lambda_{i}\left(x_{i}-x_{i+1}\right)+\beta \sum_{i=1}^{n} x_{i}+\gamma\left(n-\|\mathbf{x}\|_{2}^{2}\right) . \tag{S.12}
\end{align*}
$$

Again the optimum $\tilde{\mathbf{x}}^{*}$ has to satisfy $\nabla_{\mathbf{x}} \tilde{g}\left(\tilde{\mathbf{x}}^{*}, \boldsymbol{\lambda}, \beta, \gamma\right)$,

$$
\begin{gather*}
(1-2 \gamma) \tilde{x}_{1}^{*}-z_{1}+\beta+\lambda_{1}=0 \\
(1-2 \gamma) \tilde{x}_{2}^{*}-z_{2}+\beta-\lambda_{1}+\lambda_{2}=0 \\
\vdots \\
(1-2 \gamma) \tilde{x}_{n-1}^{*}-z_{n-1}+\beta-\lambda_{n-2}+\lambda_{n-1}=0 \tag{S.13}\\
(1-2 \gamma) \tilde{x}_{n}^{*}-z_{n}+\beta-\lambda_{n-1}=0
\end{gather*}
$$

By substituting $\tilde{\mathbf{x}}^{*}$ for $\boldsymbol{\lambda}, \beta$ and γ, we have

$$
\begin{aligned}
& \min _{\mathbf{x}} \tilde{g}(\mathbf{x}, \boldsymbol{\lambda}, \beta, \gamma)=\frac{1-2 \gamma}{2} \sum_{i=1}^{n}\left(\tilde{x}_{i}^{*}-\frac{z_{i}-\beta}{1-2 \gamma}\right)^{2} \\
& +\sum_{i=1}^{n-1} \lambda_{i}\left(\tilde{x}_{i}^{*}-\tilde{x}_{i+1}^{*}\right)+\frac{\|\mathbf{z}\|_{2}^{2}}{2}-\frac{\sum_{i=1}^{n}\left(z_{i}-\beta\right)^{2}}{2(1-2 \gamma)}+\gamma n \\
& \quad=\frac{h(\boldsymbol{\lambda})}{1-2 \gamma}+\frac{\|\mathbf{z}\|_{2}^{2}}{2}-\frac{\sum_{i=1}^{n}\left(z_{i}-\beta\right)^{2}}{2(1-2 \gamma)}+\gamma n
\end{aligned}
$$

in which we note that the last three terms are free of $\boldsymbol{\lambda}$. Hence the optimal $\boldsymbol{\lambda}$ for standardized isotonic regression,

$$
\begin{aligned}
\tilde{\boldsymbol{\lambda}}^{*} & =\underset{\boldsymbol{\lambda} \preceq \mathbf{0}}{\operatorname{argmax}} \frac{h(\boldsymbol{\lambda})}{1-2 \gamma}+\frac{\|\mathbf{z}\|_{2}^{2}}{2}-\frac{\sum_{i=1}^{n}\left(z_{i}-\beta\right)^{2}}{2(1-2 \gamma)}+\gamma n \\
& =\underset{\boldsymbol{\lambda} \preceq \mathbf{0}}{\operatorname{argmax}} h(\boldsymbol{\lambda})
\end{aligned}
$$

is the same as the one for isotonic regression. Thus, combining (S.11) and (S.13), we have

$$
\begin{equation*}
\tilde{\mathbf{x}}^{*}=\frac{\mathbf{x}^{*}-\beta \cdot \mathbf{1}}{1-2 \gamma} \tag{S.14}
\end{equation*}
$$

On the other hand, by summing up the equations respectively in (S.11) and (S.13) and using the primal feasibility $\sum_{i=1}^{n} \tilde{x}_{i}^{*}=0$, we have

$$
\sum_{i=1}^{n} x_{i}^{*}=\sum_{i=1}^{n} z_{i}, \sum_{i=1}^{n} z_{i}=n \beta \quad \Longrightarrow \quad \beta=\frac{\mathbf{1}^{T} \mathbf{x}^{*}}{n}
$$

which implies that

$$
\begin{equation*}
\mathbf{x}^{*}-\beta \cdot \mathbf{1}=P_{\mathcal{L}}\left(\mathbf{x}^{*}\right)=P_{\mathcal{L}}\left(P_{\mathcal{M}}(\mathbf{z})\right) \tag{S.15}
\end{equation*}
$$

Denoting $\mathbf{x}^{*}-\beta \cdot \mathbf{1}$ by $\hat{\mathbf{x}}^{*}$, we now show that scaling $\hat{\mathbf{x}}^{*}$ by $\frac{1}{1-2 \gamma}$ is exactly the projection onto \mathcal{B}. If $\left\|\hat{\mathbf{x}}^{*}\right\|_{2}>\sqrt{n}$,
then $\gamma<0$ due to (S.14) and primal feasibility $\left\|\tilde{\mathbf{x}}^{*}\right\|_{2} \leq$ \sqrt{n}. By complementary slackness $\gamma\left(n-\left\|\tilde{\mathrm{x}}^{*}\right\|_{2}^{2}\right)=0$, we have $\left\|\tilde{\mathbf{x}}^{*}\right\|_{2}=\sqrt{n}$. If $\left\|\hat{\mathbf{x}}^{*}\right\|_{2}<\sqrt{n}$, then $\left\|\tilde{\mathbf{x}}^{*}\right\|<\sqrt{n}$ due to (S.14) and dual feasibility $\gamma \leq 0$. It follows from complementary slackness that $\gamma=0$, which result in $\tilde{\mathbf{x}}^{*}=$ $\hat{\mathbf{x}}^{*}$. If $\left\|\hat{\mathbf{x}}^{*}\right\|_{2}=\sqrt{n}$, by similar argument, we have $\tilde{\mathbf{x}}^{*}=\hat{\mathbf{x}}^{*}$ as well. In a word, we have

$$
\tilde{\mathbf{x}}^{*}=\left\{\begin{array}{ll}
\hat{\mathbf{x}}^{*}, & \text { if }\left\|\hat{\mathbf{x}}^{*}\right\|_{2} \leq \sqrt{n} \\
\frac{\sqrt{n}}{\left\|\hat{x}^{*}\right\|_{2}} \hat{\mathbf{x}}^{*}, & \text { if }\left\|\hat{\mathbf{x}}^{*}\right\|_{2}>\sqrt{n}
\end{array},\right.
$$

which matches the expression for $P_{\mathcal{B}}(\cdot)$. Thus we complete the proof by noting $\tilde{\mathrm{x}}^{*}=P_{\mathcal{B}}\left(\hat{\mathbf{x}}^{*}\right)=P_{\mathcal{B}}\left(P_{\mathcal{L}}\left(P_{\mathcal{M}}(\mathbf{z})\right)\right)$.

References

[1] F. Han and H. Liu. Optimal rates of convergence for latent generalized correlation matrix estimation in transelliptical distribution. arXiv:1305.6916, 2013.
[2] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58:13-30, 1963.
[3] F. Lindskog, A. McNeil, and U. Schmock. Kendalls tau for elliptical distributions. In Credit Risk, Contributions to Economics, pages 149-156. Physica-Verlag HD, 2003.

