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Abstract

Neural samplers such as variational autoen-
coders (VAEs) or generative adversarial net-
works (GANs) approximate distributions by
transforming samples from a simple random
source—the latent space—to samples from a
more complex distribution represented by a
dataset. While the manifold hypothesis im-
plies that a dataset contains large regions of
low density, the training criterions of VAEs
and GANs will make the latent space densely
covered. Consequently points that are sep-
arated by low-density regions in observation
space will be pushed together in latent space,
making stationary distances poor proxies for
similarity. We transfer ideas from Rieman-
nian geometry to this setting, letting the
distance between two points be the short-
est path on a Riemannian manifold induced
by the transformation. The method yields a
principled distance measure, provides a tool
for visual inspection of deep generative mod-
els, and an alternative to linear interpolation
in latent space. In addition, it can be ap-
plied for robot movement generalization us-
ing previously learned skills. The method is
evaluated on a synthetic dataset with known
ground truth; on a simulated robot arm
dataset; on human motion capture data; and
on a generative model of handwritten digits.

1 Introduction

Matrices of pairwise distances serve as the input for
a wide range of classic machine learning algorithms,
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such as k-nearest neighbour, multidimensional scaling,
or stationary kernels. In the case of high-dimensional
spaces, obtaining a meaningful distance is challeng-
ing for two reasons. First, choosing a metric, e.g. an
instance of Minkowski distance, comes with certain as-
sumptions on the data—e.g., distances are invariant to
rotation under the L2 norm. Second, these distances
become increasingly meaningless for higher dimensions
[Aggarwal et al., 2001]. Numerous researchers have
proposed to learn distances from data, sometimes re-
ferred to as metric learning [Xing et al., 2003, Wein-
berger et al., 2006, Davis et al., 2007, Kulis et al.,
2013]. For data distributed according to the multi-
variate normal, the Mahalanobis distance is a pop-
ular choice, making the distance measure effectively
invariant to translation and scaling. The idea of a lin-
ear transformation of the data has been extended to
also reflect supervised side information such as class
labels [Weinberger and Saul, 2009, Goldberger et al.,
2004]. Further work has pushed this to use non-linear
[Salakhutdinov and Hinton, 2007] and recurrent [Bayer
et al., 2012] transformations.

Probabilistic modelling of high-dimensional data has
progressed enormously. Two distinct “neural sam-
pling” approaches are those of generative adversarial
networks (GANs) [Goodfellow et al., 2014] and vari-
ational autoencoders (VAEs) [Kingma and Welling,
2013, Rezende et al., 2014].

This work aims to bring a set of techniques to neural
sampling that makes them powerful tools for metric
learning. Pioneering work on interpolation and gener-
ation between two given points on a Riemannian man-
ifold includes [Noakes et al., 1989] and [Crouch and
Leite, 1995]. In addition, Principal Geodesic Analysis
(PGA) [Fletcher et al., 2004] describing the variability
of data on a manifold uses geodesics in Principal com-
ponent analysis. Recent work of Tosi et al. [2014] pro-
posed to perceive the latent space of Gaussian process
latent variable models (GP-LVMs) as a Riemannian
manifold, where the distance between two data points
is given as the shortest path along the data manifold.
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We transfer the idea of [Tosi et al., 2014] to neural sam-
plers. We show how to represent such shortest paths
in a parameterized fashion, where the calculation of
the distance between two data points is effectively a
minimization of the length of a curve. The method
is evaluated on a range of high-dimensional datasets.
Further, we provide evidence of the manifold hypoth-
esis [Rifai et al., 2011]. We would also like to mention
Arvanitidis et al. [2017] and Shao et al. [2017] who in-
dependently worked on this topic at the same time as
us.

In robotic domains, our approach can be applied to
path planning based on the learned skills. The demon-
strations from experts enable robots to generate par-
ticular motions. Simultaneously, robots require natu-
ral motion exploration [Havoutis and Ramamoorthy,
2013]. In our method, a Riemannian metric is used
to achieve such optimal motion paths along the data
manifolds.

2 Using Riemannian geometry in
generative latent variable models

Latent variable models are commonly defined as

p(x) =

∫
p(x | z) p(z) dz, (1)

where latent variables z ∈ RNz are used to explain the
data x ∈ RNx .

Assume we want to obtain a distance measure δ(x, x̃)
from the learned manifolds, which adequately reflects
the “similarity” between data points x and x̃. If we
can infer the corresponding latent variables z and z̃,
an obvious choice is the Euclidean distance in latent
space, ||z− z̃||2. This has the implicit assumption that
moving a certain distance in latent spaces moves us
proportionally far in observation space, ||z − z̃||2 ∝
||x − x̃||2. But this is a fallacy: for latent variables
to adequately model the data, stark discontinuities in
the likelihood p(x | z) are virtually always present. To
see this, we note that the prior can be expressed as the
posterior aggregated over the data:

p(z) =

∫
p(z |x) p(x) dx = Ex∼p(X)[p(z |x)].

A direct consequence of the discontinuities is that
there are no regions of low density in the latent space.
Hence, separated manifolds in the observation space
(e.g., the set of points from different classes) may be
placed directly next to each other in latent space—
a property that can only be compensated through
rapid changes in the likelihood p(x | z) at the respec-
tive “borders”.

For the estimation of nonlinear latent variable mod-
els we use importance-weighted autoencoders (IWAE)
[Burda et al., 2015] (see Section 2.1). Treating the la-
tent space as a Riemannian manifold (see Section 2.2)
provides tools to define distances between data points
by taking into account changes in the likelihood.

2.1 Importance-weighted autoencoder

Inference and learning in models of the form given by
Eq. (1)—based on the maximum-likelihood principle—
are intractable because of the marginalization over the
latent variables. Typically, approximations are used
which are either based on sampling or on variational
inference. In the latter case, the intractable posterior
is approximated by a distribution q

(
z(i)
)
. The prob-

lem of inference is then substituted by one of optimiza-
tion, namely the maximization of the evidence lower
bound (ELBO). Let X = {x(1), . . . ,x(N)} be observ-
able data and z(i) the corresponding latent variables.
Further, let pθ(x|z) be a likelihood function parame-
terized by θ. Then

ln pθ(X) =

N∑
i=1

ln pθ(x
(i))

≥
N∑
i=1

Eq(z(i))

[
ln
pθ(x

(i)|z(i))pθ(z(i))
q(z(i))

]
= LELBO.

(2)
If we implement q

(
z(i)
)

= qφ(z|x(i)) with a neural net-
work parameterized by φ, we obtain the variational au-
toencoder of Kingma and Welling [2013], which jointly
optimizes LELBO with respect to θ and φ.

Since the inference and generative models are tightly
coupled, an inflexible variational posterior has a direct
impact on the generative model, causing both models
to underuse their capacity.

In order to learn richer latent representations
and achieve better generative performance, the
importance-weighted autoencoder (IWAE) [Burda
et al., 2015, Cremer et al., 2017] has been introduced.
It treats qφ(z|x) as a proposal distribution and obtains
a tighter lower bound using importance sampling:

ln pθ(X) =

N∑
i=1

ln pθ(x
(i))

≥
N∑
i=1

E
z
(i)
1 ,...,z

(i)
K ∼qφ(z(i)|x(i))

[
ln

1

K

K∑
k=1

w
(i)
k

]
,

(3)

where w
(i)
k are the importance weights:

w
(i)
k =

pθ(x
(i)|z(i)k ) pθ(z

(i)
k )

qφ(z
(i)
k |x(i))

. (4)
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The IWAE is the basis of our approach, since it can
yield an accurate generative model.

2.2 Riemannian geometry

A Riemannian manifold is a differentiable manifold M
with a metric tensor G. It assigns to each point z an
inner product on the tangent space TzM , where the
inner product is defined as:

〈z′, z′〉z := z′T G(z) z′ (5)

with z′ ∈ TzM and z ∈M .

Consider a curve γ : [0, 1] → RNz in the Rieman-
nian manifold, transformed by a continuous function
f(γ(t)) to an Nx-dimensional observation space, where
γ(t) ∈ RNz . The length of the curve in the observation
space is defined as

L(γ) :=

∫ 1

0

∥∥∥∥∂f(γ(t))

∂t

∥∥∥∥dt

=

∫ 1

0

∥∥∥∥∂f(γ(t))

∂γ(t)

∂γ(t)

∂t

∥∥∥∥dt

=

∫ 1

0

∥∥∥∥J∂γ(t)

∂t

∥∥∥∥dt, (6)

where J is the Jacobian. Eq. (6) can be expressed as

L(γ) =

∫ 1

0

√〈
γ′(t), γ′(t)

〉
γ(t)

dt (7)

with the metric tensor G = JTJ.

3 Approximating the geodesic

In this work, we are primarily interested in length-
minimizing curves between samples of generative
models. In Riemannian geometry, locally length-
minimizing curves are referred to as geodesics. We
treat the latent space of generative models as a Rie-
mannian manifold. This allows us to parametrize the
curve in the latent space, while distances are measured
by taking into account distortions from the generative
model.

We use a neural network gω : R→ RNz to approximate
the curve γ in the latent space, where ω are the weights
and biases. The function f from Eqs. (6) corresponds
to the mean of the generative model’s probability dis-
tribution hgen : RNz → RNx and the components of
the Jacobian are

Ji,j =
∂xi
∂zj

. (8)

xi and zj denote the i-th and j-th element of the gener-
ated data points x and latent variables z, respectively,
with x ∈ RNx and z ∈ RNz .

We approximate the integral of Eq. (7) with n equidis-
tantly spaced sampling points of t ∈ [0, 1]:

L(gω(t)) ≈ 1

n

n∑
i=1

√
〈g′ω(ti), g′ω(ti)〉gω(ti) (9)

=
1

n

n∑
i=1

√
g′ω(ti)TJTJg′ω(ti). (10)

The term inside the summation can be interpreted as
the rate of change at point gω(ti), induced by the gen-
erative model, and we will refer to it as velocity:

φ(t) =
√
〈g′ω(ti), g′ω(ti)〉gω(ti). (11)

An approximation of the geodesic between two points
in the latent space is obtained by minimizing the
length in Eq. (10), where the weights and biases ω of
the neural network gω(t) are subject to optimization.

With the start and end points of the curve in the latent
space given as z0 and z1, we consider the following
constrained optimization problem:

min
ω

L(gω(t))

s.t. gω(0) = z0, gω(1) = z1. (12)

3.1 Dealing with boundary constraints

To satisfy the boundary constraints in Eq. (12), we
shift and rescale the predicted line to get

z(t) = Aẑ(t)−B, (13)

where

A =
z0 − z1

ẑ(0)− ẑ(1)

B =
z0ẑ(1)− z1ẑ(0)

ẑ(0)− ẑ(1)
. (14)

ẑ and z are the outputs of the neural network gω before
cq. after normalization. The advantage of this proceed
is that the optimization problem in Eq. (12) simplifies
to find minω L(gω(t)).

3.2 Smoothing the metric tensor

To ensure the geodesic is following the data manifold—
which entails that the manifold distance is smaller
than the Euclidean distance—a penalization term is
added to smooth the metric tensor G. It leads to the
following loss function:

L = L+ λs‖G‖2, (15)
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where λs > 0 acts as a regularization coefficient. This
optimization step is implemented as a post-processing
of Eq. (12) via singular-value decomposition (SVD)

G = USVT , (16)

where the columns of U are the eigenvectors of the
covariance matrix GGT , and the columns of V are
the eigenvectors of GTG. The diagonal entries in S
contain singular values with scaling information about
how a vector is stretched or shrunk when it is trans-
formed from the column space of G to the row space
of G.

Minimizing the term λs‖G‖2 is equivalent to a low-
rank reconstruction for G

Ĝ = Urdiag

{
s3i

s2i + λs

}r
i=1

VT
r , (17)

where r is a pre-defined lower rank of G. r is prede-
fined which is equal or slightly smaller than the full
rank of the metric tensor. λs rescales the singular val-
ues of G nonlinearly, which allows making the smaller
singular values much smaller than the leading singular
values. The smoothing therefore weakens the recon-
structed off-diagonal values of Ĝ which correspond-
ingly reduces the manifold distance dramatically com-
pared to the Euclidean distance. The smoothing effect
is that a higher λs augments the difference between
the Euclidean interpolation and the path along the
manifold—and will be demonstrated experimentally in
Section 4.3.

4 Experiments

We evaluate our approach by conducting a series of
experiments on three different datasets—an artificial
pendulum dataset, the binarized MNIST digit dataset
[Larochelle and Murray, 2011], a simulated robot arm
dataset and the human motion dataset1.

Our goal is to enable smooth interpolations be-
tween the reconstructed images of an importance-
weighted autoencoder and to differentiate between
classes within the latent space. To show that the paths
of geodesics can differ from Euclidean interpolations,
the following experiments mainly focus on comparing
geodesics with the Euclidean interpolations as well as
the reconstructed data generated from points along
their paths.

4.1 Training

In all experiments, we chose a Gaussian prior p(z) =
N (0, I). The inference model and the likelihood are

1http://mocap.cs.cmu.edu/

represented by random variables of which the param-
eters are functions of the respective conditions.

For the inference model we consistently used a diag-
onal Gaussian, i.e. qφ(z|x) = N (µφ(x),diag(σ2

φ(x))).
Depending on the experiments, the likelihood pθ(x|z)
either represents a Bernoulli variable B(rθ(z)) or a
Gaussian N (µθ(z), σ2). σ is a global variable and the
parameters rθ, µθ, σ

2
θ , µφ, σ

2
φ are functions of the latent

variables represented by neural networks parameter-
ized by θ and φ respectively.

The hyperparameters of gω are summarized in Table
1 of the Appendix. We used sigmoid, tanh and soft-
plus activation functions in the generative model (see
App. B and C). See App. A for further details of the
training procedure.

4.2 Visualization

There are several approaches to visualize the proper-
ties of the metric tensor, including Tissot’s indicatrix.
We use the magnification factor to visualize metric ten-
sors during the evaluation, when we have two latent
dimensions. The magnification factor [Bishop et al.,
1997] is defined as

MF :=
√

detG. (18)

To get an intuitive understanding of the magnification
factor, it is helpful to consider the rule for changing
variables dx =

√
detJxdx

′. This rule shows the rela-
tion between infinitesimal volumes of different equidi-
mensional Euclidean spaces. The same rule can be
applied to express the relationship between infinitesi-
mal volumes of a Euclidean space and a Riemannian
manifold—with the difference of using the MF instead
of
√

detJx. Hence, the magnification factor visualizes
the extent of change of the infinitesimal volume by
mapping a point from the Riemannian manifold to the
Euclidean space [Gemici et al., 2016].

4.3 Pendulum

We created an artificial dataset of 16×16 pixel images
of a pendulum with a joint angle as the only degree
of freedom and augmented it by adding 0.05 per-pixel
Gaussian noise. We generated 15,000 pendulum im-
ages, with joint angles uniformly distributed in the
range [0, 360). The architecture of the IWAE can be
found in Table 2 of the Appendix.

Fig. 2 illustrates the trained two-dimensional latent
space of the IWAE. The grayscale in the background is
proportional to the magnification factor, whereas the
rotation angles of the pendulum are encoded by colors.
The comparison of the geodesic (see Fig. 1, top row)
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Figure 1: The reconstructions of the geodesic and the Euclidean interpolation between a single pair from the
pendulum data. Top row: the mean of the reconstruction from the geodesic. Middle row: the mean of the
reconstruction from the Euclidean interpolation. Bottom row: the velocity (Eq. (11)) of each sample. The
distance of the Euclidean interpolation is 0.827, whereas the distance of the geodesic is 0.538.

Figure 2: Geodesic and Euclidean interpolation in the
latent space of the artificial pendulum dataset. The
color encodes the pendulum rotation angles.

with the Euclidean interpolation (Fig. 1, middle row)
shows a much more uniform rotation of the pendulum
for reconstructed images of points along the geodesic.

For this dataset, an SVD regularization with large val-
ues of λs was necessary for the optimization, to yield
a path along the data manifold. Fig. 3 illustrates the
influence of λs on the distance metric. It is a prop-
erty of this dataset, due to the generative distribu-
tion, that small values of λs lead to shorter distances
of the Euclidean interpolation than of paths along the
data manifold. Fig. 4 shows the interpolations of 100
pairs of samples. We compared the geodesic with the
Euclidean interpolation and an interpolation along the
data manifold. The samples are randomly chosen with

Figure 3: λs. The distances, along the Euclidean in-
terpolation and the data manifold, between 100 pairs
of randomly selected starting and end points. The
shadow areas represent a 95% confidence interval.

Figure 4: The horizontal axis is the angle between the
starting and end points. The average of the length
of the geodesics, the Euclidean interpolations, and the
paths along the data manifold are 0.319, 0.820, and
0.353 respectively.

the condition to have a difference in the rotation angle
of (0, 180] degrees. The distances of the geodesics and
the paths along the data manifold are linearly corre-
lated to the angles between two points in the observa-
tion space and fit to each other.
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Figure 5: Reconstructions of the geodesic and the Euclidean interpolation based on the MNIST digit dataset.
Top row: the mean of the reconstruction from the geodesic. Middle row: the mean of the reconstruction from
the Euclidean interpolation. Bottom row: the velocity (Eq. (11)) of each sample. The distance of the Euclidean
interpolation is 74.3, whereas the distance of the geodesic amounts to 62.9.

Figure 6: Equidistance lines around two selected data
points in the latent space. Equidistance refers to the
observation space and illustrates how regarding the la-
tent space as a Riemannian manifold can help to sep-
arate classes.

4.4 MNIST

To evaluate our model on a benchmark dataset, we
used a fixed binarized version of the MNIST digit
dataset defined by Larochelle and Murray [2011]. It
consists of 50,000 training and 10,000 test images of
handwritten digits (0 to 9) which are 28× 28 pixels in
size. The architecture of the IWAE is summarized in
Table 3 of the Appendix.

Fig. 6 shows the trained two-dimensional latent space
of the IWAE. Distances between the selected data
point and any point on the equidistance line are
equal in the observation space. The courses of the

Figure 7: Geodesic and Euclidean interpolation in the
latent space between two data points. The ten MNIST
classes are encoded by colours, whereas the magnifica-
tion factor is represented by the greyscale in the back-
ground. The MF and the samples are coloured the
same as Fig. 6.

equidistance lines demonstrate that treating the la-
tent space as a Riemannian manifold enables to sep-
arate classes, since the geodesic between similar data
points is shorter than between dissimilar ones. This
is especially useful for state of the art methods that
lead to very tight boundaries, like in this case—data
points of different MNIST classes are almost not sep-
arable in the latent space by their Euclidean distance.
Hence, the Euclidean distance cannot reflect the true
similarity of two data points.

The difference between the geodesic and the Euclidean
interpolation is shown in Fig. 7. The Euclidean in-
terpolation crosses four classes, the geodesic just two.
Compared to the geodesic, the Euclidean interpolation
leads to less smooth transitions in the reconstructions
(see Fig. 5, top and middle row). The transition be-
tween different classes is visualized by a higher velocity
in this area (see Fig. 5, bottom row).
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4.5 Robot arm

We simulated a movement of a KUKA robot that has
six degrees of freedom (DOF). The end effector moved
a circle with a 0.4 meter radius, generating a dataset
with 6284 time steps. At each time step, the joint an-
gles were obtained by inverse kinematics. The input
data consisted of six-dimensional joint angles. Gaus-
sian noise with a standard deviation of 0.03 was added
to the data. The validation dataset also included a
complete movement of a circle but only with 150 time
steps. The architecture of the IWAE is shown in Table
4 of the Appendix.

Figure 8: Geodesic and Euclidean interpolation in the
latent space of the robot motions.

The geodesic interpolation outperforms the Euclidean
interpolation for the robot arm movement, which is
demonstrated in Fig. 8, 9 and 10. For intuitive ob-
servations, the results are shown in a two-dimensional
end effector Cartesian space using forward kinematics
(see Fig. 9).

To efficiently plan motions, in prior works [Berenson
et al., 2009] constraints were created in the task space
(e.g., constraint on the end-effector to move in a 2D in-
stead of 3d). However, our method does not explicitly
require these constraints.

The approach can be applied to movements with
higher-dimensional joint angles like in case of the full-
body humanoids demonstrated in Section 4.6.

Figure 9: End effector trajectories in the Cartesian
space. xc and yc represent the two axes of the end
effector, while the third axis is not shown since the
values on it are close to constant.

Figure 10: Velocity (Eq. (11)) of each robot sample.
The distance of the Euclidean interpolation is 1.48,
and the distance of the geodesic is 0.54.

4.6 Human motion

The CMU Graphics Lab Motion Capture Database
consists of a large number of human motion record-
ings, which were recorded by using a Vicon motion
capture system. Human subjects wear 41 markers
while walking, dancing, etc. The data consists of
62-dimensional feature vectors, rendered using Vicon
Bodybuilder. We pre-process the 62-dimensional data
to 50-dimensional vectors as described in [Chen et al.,
2015]. To evaluate the metric on this dataset, we used
the walking movements (viz. trial 1 to 16) of subject
35, since it is very stable and widely used for algorithm
evaluation, e.g. [Schölkopf et al., 2007, Bitzer et al.,
2008, Chen et al., 2016]. The total of 6616 frames in
the dataset were augmented with Gaussian noise with
a standard deviation of 0.03, resulting in four times
the size of the original dataset. The noises smooth the
latent space which is observed through the magnifica-
tion factor and the interpolation reconstructions. The
architecture of the IWAE ca be found in Table 5 of the
Appendix.

Fig. 11 and 12 show the geodesic and the Euclidean
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Figure 11: The reconstructions of the geodesic and Euclidean interpolation of the human motion. Top row:
mean of the reconstruction from the geodesic. Middle row: mean of the reconstruction from the Euclidean
interpolation. Bottom row: velocity (Eq. (11)) of each sample. The distance of the Euclidean interpolation is
2.89, and the distance of the geodesic is 2.57.

Figure 12: Geodesic and Euclidean interpolation in
the latent space of the human motions. The blue dots
are samples inferred from the training set.

interpolation2. The geodesic follows the path along
the data manifold and generates a natural and smooth
walking movement. In contrast, the Euclidean interpo-
lation traverses two high MF areas which cause large
jumps of the movement, while the body poses hardly
change in other areas.

5 Conclusion and future work

The distance between points in the latent space in gen-
eral does not reflect the true similarity of correspond-
ing points in the observation space. We gave insight

2https://github.com/lawrennd/mocap is used to visu-
alize the movement in the observation space.

Figure 13: Selected samples of the human motion
dataset. The subfigures from left to right are the re-
constructions of the cyan colored points in Fig. 12.
From some center position (0, 0), the starting point in
the latent space is chosen with a radius of 1.5 in the
vertical up direction. The direction of movement in
the latent space is counterclockwise with a step length
of 40 degree. One circle in the latent space corresponds
to two steps of a walking movement in the observation
space (until the body reaches the same pose as in the
beginning).

into these issues using techniques from Riemannian ge-
ometry, applied to probabilistic latent variable models
using neural sampling.

In our approach, the Riemannian distance metric has
been successfully applied as an alternative metric that
takes into account the underlying manifold. In order
to produce shorter distances along the manifold com-
pared to the Euclidean distance, we applied SVD to
the metric tensor. As a secondary effect, the metric
can be used for smoother interpolations in the latent
space.

For two-dimensional latent spaces, the MF serves as
a powerful tool to visualize the magnitude of the gen-
erative model’s distortion of infinitesimal areas in the
latent space.

Future work includes facilitating the use of this dis-
tance metric and applying it to models with dynamics
such as [Chen et al., 2016] and [Karl et al., 2017].
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