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Abstract

Modern applications of machine teaching for
humans often involve domain-specific, non-
trivial target hypothesis classes. To facilitate
understanding of the target hypothesis, it
is crucial for the teaching algorithm to use
examples which are interpretable to the human
learner. In this paper, we propose NOTES,
a principled framework for constructing
interpretable teaching sets, utilizing explana-
tions to accelerate the teaching process. Our
algorithm is built upon a natural stochastic
model of learners and a novel submodular
surrogate objective function which greedily
selects interpretable teaching examples. We
prove that NOTES is competitive with the
optimal explanation-based teaching strategy.
We further instantiate NOTES with a specific
hypothesis class, which can be viewed as an
interpretable approximation of any hypoth-
esis class, allowing us to handle complex
hypothesis in practice. We demonstrate the
effectiveness of NOTES on several image
classification tasks, for both simulated and
real human learners. Our experimental results
suggest that by leveraging explanations, one
can significantly speed up teaching.

1 Introduction
How can we design the best strategy to teach a complex
hypothesis to a novice? How can we explain a concept
via a representative, yet interpretable, set of labeled
examples such that the concept derived from this
set also generalizes well to unseen examples? Such
problems, also known as machine teaching, have been
studied in various application domains, including model
compression (Ba & Caruana, 2014; Romero et al., 2014),
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citizen science and crowdsourcing services (Sullivan
et al., 2009), and human-in-the-loop systems (Cakmak
& Thomaz, 2014; Johns et al., 2015).

Unlike most machine learning applications where the
informativeness of training examples plays a vital role,
machine teaching requires the examples selected by
the teaching algorithm to be interpretable, because the
information contained in an example is useful only if it
is easily accessible to the learner. There could be many
factors that prevent a learner from adopting a novel
concept; two notable examples are (1) hard teaching
examples and (2) complex hypothesis classes. As an
example for the former, in image classification, a learner
could be overwhelmed by the information contained in
a training image and ignore the “important pieces” of
information which may be crucial for determining the
label. In the case of learning over complex hypothesis
classes, a learner may have converged to a suboptimal
hypothesis, which makes it hard for her to switch to a
different one unless she receives an interpretable expla-
nation. Therefore, as the complexity of the teaching
tasks increases, it becomes even more challenging to
convey the teacher’s hypothesis.

While the label-based teaching strategies quickly become
incapable of handling such complex tasks, it has been
shown that additional information (such as highlighting
regions or features on an image) can help improve novice
classification performance by guiding the student’s at-
tention (Grant & Spivey, 2003; Roads et al., 2016;
Mac Aodha et al., 2018). Having an additional degree of
expressiveness in the feedback allows us to generatemore
intuitive explanations of the teacher’s predictive model,
and hence dramatically improves the learner’s ability to
learn a new concept. While these results are encouraging,
several important questions remain open. First, allowing
explanations increases the computational complexity of
finding the optimal teaching set, by orders of magnitude,
as there are many more available actions for the teacher
to choose from. Second, this flexibility greatly improves
our ability to properly model the learners. The explana-
tions must be constructed in a way that is not only infor-
mative about the teacher’s hypothesis, but also makes
sense to the learner. Third, explanations often involve



Near-Optimal Machine Teaching via Explanatory Teaching Sets

structured information, i.e., each training example may
have multiple interacting features which are informative
for its label. Thus far, there has been little theoretical
understanding on how to efficiently construct the set of
teaching examples for complex, structured hypotheses.

Our contribution. We explore both theoretical and
practical aspects of the explanation-based teaching prob-
lem. First, we propose a novel formalism of the teaching
problem, where we model the learners’ hypothesis as a
two-stage decision-making process. Given a teaching
example, e.g., an image, she first chooses which part of
the image to inspect, and then makes a prediction of the
label based on that part information. By separating out
the learner’s attentionmodel fromher decisionmodel, we
can thus treat the explanations provided by the teacher
as intermediate labels of the teaching example, and lift
existing algorithmic tools for label-based machine teach-
ing to handle the explanatory feedback. Based on such
formalism, we develop a surrogate objective function
and prove that the greedy teaching strategy, which we
call NOTES (Near-Optimal Teaching via Explanatory
Sets), achieves strong theoretical guarantees.

We then instantiateNOTESwith a particular hypothesis
class for the learners, which can be viewed as an approx-
imation of any target hypothesis class. The hypothesis
class we adopt in this paper is based on recent advances in
interpretable models (Ribeiro et al., 2016). In particular,
each hypothesis is an ensemble of locally interpretable
models, each of which is trained to approximate a global
classifier in a local neighborhood. Our construction of hy-
pothesis class enables us to deal with complex hypotheses
and data distributions in a practicalmanner (i.e., beyond
linear classifiers). Moreover, since the teacher’s ground
truth classification model can also be approximated by a
hypothesis in our hypothesis class, we can automatically
generate (new) explanations of the labels provided by the
teacher, even if they are not available in the teaching set.

We empirically evaluate our teaching strategy on sim-
ulated learners on five different datasets, two of which
involving synthetic visual objects and three on real-world
images. We further conduct experiments with real-
world user studies on Amazon Mechanical Turk. Our
results show the clear advantage of using NOTES as a
principled approach for handling explanatory feedback.

2 Related Work

Machine teaching. Machine teaching has shown thriv-
ing development in the past two decades, in both the
practical and theoretical machine teaching communi-
ties. In practice, intelligent tutoring systems have been
developed to teach diverse topics such as mathematics
(Koedinger et al., 1997; Canfield, 2001) and languages
(von Ahn, 2013). A rich class of teaching approaches

has been explored to model the potential of the learners,
including, among others, heuristic-based approaches
(Basu & Christensen, 2013), Bayesian models (Corbett
& Anderson, 1994; Eaves et al., 2015), recurrent neural
networks (Piech et al., 2015), and reinforcement learn-
ing based models (Rafferty et al., 2011; Bak et al., 2016;
Whitehill & Movellan, 2017).

From the theoretical perspective, there have been many
attempts tomake the sequence of teaching labels optimal.
The notion of teaching “optimality” has been rigorously
defined in terms of the teaching dimension (Goldman &
Kearns, 1995), or via cognitive models (Patil et al., 2014)
that consider human learner’s learning capacity as a
constraint. However, existing algorithms are commonly
analyzed in terms of their statistical, as opposed to
computational, complexity (Goldman & Kearns, 1995;
Zhu, 2013; Chen et al., 2016; Liu et al., 2017). An
alternative line of work considers machine teaching as
a discrete optimization problem. Here, the goal is to
efficiently identify a minimal number of informative
examples to teach some concept. While the optimal
solution is intractable in general, it is of great interest
to devise efficient algorithms that are competitive with
the optimal algorithm. Along with this line, Singla et al.
(2014) proposed a greedy framework for teaching visual
classification tasks, where they rely on a submodular
surrogate function that enables efficient optimization.
While our work is related in spirit, it provides richer
information and interpretable feedback to the learners.

Interpretable models. Interpretable predictive mod-
eling, in general, is useful in many application domains
where black-box models are hard to interpret (e.g., med-
ical/biological research, emergency response planning,
business processes, etc.). Depending on the heuristics
used to measure interprebility, existing methods can
be categorized into three types: (1) sparse models such
as sparse linear classifiers, which use a small number
of features and parameters (Chang et al., 2009; Ustun
& Rudin, 2014; Ribeiro et al., 2016), (low-rank) latent
factor models, (2) discretization based methods such as
decision trees and decision lists, which split up a problem
into several (independent) sub-problems (Letham et al.,
2015; Lakkaraju et al., 2016), and (3) prototype-based
classifiers such as nearest neighbors, which use examples
and basic features instead of formal models and con-
structed features (Cover & Hart, 1967). In our work, we
view machine teaching as the problem of developing an
interpretable model. Rather than building an offline in-
terpretable model to represent the hypotheses, we would
like to generate a sequence of interpretable predictions
(i.e., explanations) at run-time, so that the learner would
fully adapt to (i.e., interpret) the teacher’s hypothesis.
Our approach builds upon existing interpretable models
as a means of generating interpretable explanations.



Yuxin Chen, Oisin Mac Aodha, Shihan Su, Pietro Perona, Yisong Yue

3 Problem Statement
Here we formally state the problem studied in this
paper and introduce some notation for our model.

3.1 Teaching set and hypothesis class

Suppose we are given a ground (teaching) set of
examples X := {x1,...,xm}. Let Y = {y1,...,yc} be the
set of all possible class labels. Each example xi ∈ X
has a label yi∈Y , and (up to) k interpretable attributes
ai :=(ai1,...,aik). Let A :=R∪{null} denote the domain
of the attribute values1, where aij ∈R if the jth attribute
is present, and aij=null otherwise. Furthermore, let us
use φ :X →Ak to denote the process by which attributes
are generated. We can think of these attributes as
features that can be easily parsed and interpreted by the
learners (in other words, φ is known to the learners, and
the output of φ can be informed by the learners’ knowl-
edge of the world). For example, in medical diagnosis,
the attributes may represent patients’ medical records,
such as gender, age, and outcomes of medical tests; in
image classification, the attributes could correspond to
high-level visual features such as image parts or natural
language descriptions of the image.

Attention model. The number of attributes k can be
large. However, we assume that for each xi, a sparse
subset of these attributes is sufficient to determine its
label yi. Let f :X →Bk be a (deterministic) mapping
from xi ∈ X to binary vectors of length k, denoted
by ei := {ei1, ... ,eik}, indicating which attributes are
important in determining the label for xi. Intuitively, f
can be viewed as an attention model of the learner that
captures which part of the attribute space one should
focus on to learn the classification task.

Decision model. Once the attributes are chosen, we
can decide upon the label of an example. We define
the decision model g : (A×B)k→Y as a deterministic
mapping from “important” attributes to class labels.
Therefore, our end-to-end decision model of the learner,
denoted by a function h :X →Y, can be expressed as
a composite of the attention model and the decision
model:

h(x) :=g(φ(x),f(x)). (3.1)

We refer to each possible model of the learner h as a
hypothesis, and the space of all possible decision models
as the hypothesis class, denoted by H.

3.2 Teaching protocol and model of learner

We focus on the non-adaptive setting, where the teacher
(sequentially) shows a subset of the teaching examples to

1For interpretable models such as decision trees, aij ’s are
boolean variables (i.e., A≡B), indicating whether a decision
rule (i.e., predicate) is satisfied.

the learner, without observing the learner’s prediction
of the examples shown to them. For each teaching
example revealed, the teacher provides both its label and
an explanation of why the label is assigned. We assume
that the teacher has access to such information for all
of the examples in X , as well as a prior distribution over
the learner’s hypotheses P[h].

Learner model with label-only instructions. To
characterize how learners adapt to the examples received
from the teacher, we adopt the stochastic learner model
introduced by Singla et al. (2014). Their model was orig-
inally proposed in the context of teaching with label-only
feedback to the learner. In their setting, at the beginning
of a teaching session, the learner randomly chooses a hy-
pothesis h∈H according to P[h]. When receiving a new
example, the learner either agrees or disagrees with its
true label (as provided by the teacher). If the true label
is consistent with the learner’s current hypothesis, she
sticks to the same hypothesis and proceeds to the next
round. Alternatively, if it is inconsistent, she randomly
switches to a hypothesis inH according to a distribution
which reduces the probability of the hypotheses that are
inconsistent with the true labels.

YiH

Ni

Di

Figure 1: The label-based learner model of Singla et al.
(2014). Node Yi is observable (by the learner) while
others are unobserved.

The above stochastic process can be equivalently repre-
sented by the graphicalmodel shown inFig. 1. LetH∈H,
Yi∈Y be random variables representing the learner’s hy-
pothesis and her prediction of the label of example xi, re-
spectively. We assume thatYi depends onH and another
boolean random variableNi∈B, which encodes the pres-
ence of noise. First, xi goes through the deterministic
mappingH as defined in Eq. (3.1). The output, denoted
by Di, will then be perturbed by the noise if Ni=True,
and produce Yi; otherwise (if Ni=False) Yi=Di. Im-
portantly, the noise Ni depends on h and is asymmetric:

P[Ni=True |H=h]=

{
0 if h(xi)=yi
νi o.w.,

where νi ∈ [0, 1] is some noise parameter known
to the learner. Intuitively, given example xi, the
learner explains her consistent prediction as “my
hypothesis is correct”, and inconsistent prediction as
“it is probably caused by noise”. Applying Bayes’ rule
(and marginalizing over Ni), we get

P[Yi=yi |H=h]=

{
1 if h(xi)=yi
νi o.w.

(3.2)
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Let S ⊆ {1, ... ,m} be the index set of the examples
received by the learner. We use xS := ∪i∈S{xi},
yS := ∪i∈S{yi} to denote the selected examples
and their (observed) true labels respectively. Upon
observing yS , the learner draws her hypothesis from the
posterior distribution of H, defined by

P[H=h |yS ]∝P[h]
∏
i∈S

P[yi |h]=P[h]
∏

i∈S∧h(xi)6=yi
νi.

As a result, hypotheses that are “more inconsistent”
with the received labels are less likely to be chosen,
which reflects how the learner learns from the examples.

Explanation-based learner model. In §3.1, we for-
mulated the learner’s attention as a function of the
teaching example. The output of the attention function,
by construction, is interpretable and can naturally be
used as an “explanation” for the class label.

Our explanation-based learner model is depicted in
Fig. 2. Let F be a random variable representing the
learner’s attention function f . For a given input xi, we
use random variable2 Ei∈Bk to denote the explanation
(as a k−dimensional boolean vector) of its class label
Yi. The value of Ei is determined by the true attention
function which is unknown to the learner, as well as
another random variable Nf

i indicating the noise in the
estimated attention vector for xi. Similarly, let G be
a random variable representing the learner’s decision
function g, and Ng

i be the noise involved in the decision.
The learner’s prediction of Yi, therefore, depends on the
explanation Ei, the (output of) the decision function
G and the noise Ng

i .

YiG

F
H

Nf
i

Ng
i

Ei

Ni

Figure 2: Our explanation-based model of the learners.
The learner’s hypothesis H is now decomposed into two
independent random variables, namely the attention
function F and the decision function G. Each random
variable is perturbed by its associated noise before gen-
erating the label of the teaching example xi.

Intuitively, the explanation Ei can be viewed as an
intermediate label of the input example. Following
Eq. (3.2) for the label-only scenario, we parameterize

2From the learner’s perspective, both Ei and Yi are un-
known until the teacher reveals them, and therefore are
considered as random variables (even though the true expla-
nations and labels are fixed from the teacher’s perspective).

our explanation-based learner model as

P[Ei=ei |F =f ]=

{
1 if f(xi)=ei

νfi o.w.
(3.3)

P[Yi=yi |Ei=ei,G=g]=

{
1 if g(φ(xi),ei)=yi
νgi o.w.,

where νgi (resp. νfi ) is some known parameter indicating
the noise level of false predictions of the label (resp.
explanation).

3.3 Explanation-based machine teaching

Similar to the label-based teaching scenario, we would
like to design a strategy for selecting useful teach-
ing examples (i.e., with both their labels and expla-
nations), such that the resulting distribution of the
learner’s hypotheses implies a low prediction error on
the labels for all future examples. More concretely, let
err(h) := |{xi∈X :h(xi) 6=yi}|

m be the error rate of hypothesis
h. Assume that we have access to the prior distributions
of the learner’s attention and decision models P[f ] and
P[g], as well as the conditional probabilities (i.e., the
noise parameters) νfi ,ν

g
i for all f , g in the support of the

prior distribution with i∈{1,...,m}. Our goal is to find a
set S∗ of the minimal size, such that upon observing the
labels and explanations of xS∗ , the learner would achieve
an expected error rate of at most ε. Formally, we seek

S∗∈ argmin
S⊆{1,...,m}

|S|, s.t., E[err(h) |eS ,yS ]≤ε. (3.4)

where eS :=∪i∈S{ei} and yS denote the explanations
and labels for the set of examples indexed by S.

It can be shown that Problem 3.4 is NP-hard even for
the special case of label-based teaching scenario (Singla
et al., 2014). Even though adding explanations further
increases the computation complexity of selecting the
optimal teaching set, we show that it can drastically
reduce the teaching effort (i.e., label complexity).

Proposition 1. There exist problem instances where
the optimal label-based strategy is arbitrarily worse than
the optimal explanation-based strategy.

4 The NOTES Algorithm
Let us use f∗, g∗ and h∗=g∗◦f∗ to denote the true atten-
tion function, decision function, and hypothesis respec-
tively. That is, f∗ and g∗ output the true explanation
and label for any teaching example (i.e., ∀i, f∗(xi)=ei
and g∗(φ(xi),ei)=yi). Note that teaching the true hy-
pothesish∗ amounts to teaching the learner not to choose
hypotheses that make an error. A sufficient condition
for an arbitrary h=g◦f to make an error on example xi
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is that either f or g makes an error at xi, but not both3:

g◦f(xi) 6=yi if
(f(xi) 6=f∗(xi)∧g(φ(xi),ei)=g∗(φ(xi),ei)) ∨
(f(xi)=f

∗(xi)∧g(φ(xi),ei) 6=g∗(φ(xi),ei)).

Meanwhile, a necessary condition for h to make an error
on xi is that at least one of its components makes an
error:

g◦f(xi) 6=yi only if
f(xi) 6=f∗(xi)∨g(φ(xi),ei) 6=g∗(φ(xi),ei).

If we can effectively discourage the learner from choosing
the wrong combinations of f and g’s, we will make good
progress towards teaching the learner h∗. Such intuition
motivates us to consider a bipartite graph representation
of the hypotheses (see Fig. 3), where we draw an edge be-
tween an attention function node and a decision function
node as long as (exactly) one of them is true. In other
words, each edge is associated with a node, either repre-
senting an attention function or a decision function, that
has to be ruled out if we want to teach the learner h∗.

f⇤

g⇤

Figure 3: Illustration of the bipartite graph constructed
by NOTES (Algorithm 1). In this figure, we see 9 de-
cision functions (red nodes) and 8 attention functions
(blue nodes). The size of each node represents the prior
probability. Edges are drawn between the true decision
functions (solid red) and all attention functions and
between the true attention functions (solid blue) and all
decision functions.

Formally, denote the set of edges as E := {{f,g} : (f =
f∗∧g 6= g∗)∨ (f 6= f∗∧g= g∗)}. We define the initial
weight of each edge {f,g}∈E as

w({f,g}) :=P[f ]P[g](err(g∗◦f)+err(g◦f∗)). (4.1)

Intuitively, one can think of w({f,g}) as a measure of
how much f and g are accountable for the expected
error of the learner (with respect to the prior dis-
tribution). After the teacher picks examples S and
shows {(xi, yi, ei)}i∈S to the learner, we discount
the weight of the edge {f, g} through Bayesian
updates, i.e., by multiplying the probabilities of its
incident nodes with the likelihood of the observations:

3If both f and g make an error on xi, the composite
function h may output a correct label for xi.

Algorithm 1: NOTES
1 Input: Teaching set {(xi,yi,ei)}i=1:m; prior P[f ], P[g];

noise parameters {νfi ,ν
g
i }i=1:m; tolerance ε.

begin
2 S←∅;
3 while r(S)>P[f∗]P[g∗]ε do
4 i∗←argminir(S∪{i})
5 S←S∪{i∗}
6 Output: Selected teaching examples S.

w({f,g} | S) :=w({f,g}) ·P[eS ,yS |f,g]. Our objective
function, denoted by r, is then defined as the remaining
weight of the bipartite graph upon observing set S:

r(S) :=
∑
{f,g}∈E

w({f,g}|S)

(a)
=

∑
{f,g}∈E

w({f,g})
∏
i∈S

P[ei,yi |f,g]. (4.2)

Here, step (a) holds because P[eS ,yS |f,g] can be factor-
ized according to the graphical model in Fig. 2 (i.e., the
tuples (ei,yi) and (ej ,yj) are conditionally independent
given g and f). A key property of the function r (more
precisely, the reduction in r: r(∅)− r(S)) that allows
us to efficiently select teaching examples, as stated in
Lemma 2, is that it satisfies submodularity.
Lemma 2. The edge weight removed from the bipartite
graph is a monotone submodular function of S.

Submodularity is a natural diminishing returns
condition that makes r amenable to efficient greedy
optimization. We now show that optimizing r provides
a sufficient and necessary condition for optimizing the
original objective function, i.e., the expected error prob-
ability. Concretely, we establish a connection between
r(S) and E[err(h) |eS ,yS ] through the following lemma.
Lemma 3. r is within constant factors of the expected
error rate:

P[f∗]P[g∗]E[err(h) |eS ,yS ]≤r(S)≤E[err(h) |eS ,yS ].

Lemma 3 implies that if r(S) is sufficiently small, then
the expected error of the learner is also small. Therefore,
we can greedily select teaching examples according to
r(S) until r(S)≤P[f∗]P[g∗]ε, and by Lemma 3 we know
that E[err(h) |eS ,yS ]≤ε. We call this greedy algorithm
NOTES (Near-Optimal Teaching via Explanatory Sets)
and outline it in Algorithm 1.
Theorem 4. Let OPT(ε) be the worst-case cost of the
optimal algorithm that achieves expected error rate of
at most ε. The worst-case cost of NOTES achieving
expected error rate ε is upper bounded by

OPT(
P[f∗]P[g∗]ε

2
)·log

(
1

P[f∗]P[g∗]ε

)
.
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The proofs of Lemma 2, Lemma 3 and Theorem 4 are
provided in the supplemental material. Observe that
when the true attention function is known to the learner
(i.e., P[f∗]=1), Problem 3.4 reduces to the label-based
teaching problem, in which case NOTES is equivalent
to the STRICT policy proposed by Singla et al. (2014).
Hence, our algorithm strictly generalizes STRICT to
the explanation-based teaching scenario while still
preserving provable guarantees.

5 Implementation Details

In §4, we introduced a general framework to accom-
modate explanations for machine teaching. We now
instantiate NOTES with a specific class of atten-
tion and decision functions, and propose an efficient
implementation for teaching such composite hypotheses.

We employ the LIME model of Ribeiro et al. (2016)
to generate explanations for the examples in the
teaching set. LIME was originally developed as an
analytics tool for explaining the behavior of any
machine learning classifier. It works by fitting simple,
human-interpretable, models around local regions of the
original data distribution. In particular, given an input
example and its label produced by a complex hypothesis
(say by the teacher’s model h∗), LIME aims to reproduce
the predictive results of h∗ in the vicinity of the input via
a sparse linear classifier (see Fig. 4). With only a small
number of non-zero entries to inspect, the hope is that
LIME can help humans understand h∗, at least, locally.

In the context of machine teaching, such interpretable
approximations of the true model can naturally be
used as explanations for the provided label. Given the
original hypothesis class H and the teaching set X , we
can construct an approximate hypothesis class Ĥ, by

(a) 2-D toy dataset (b) Local interpretation

Figure 4: Explaining a hypothesis with LIME on a 2-D
toy dataset shown in Fig. 4(a). The teacher’s hypothesis
h∗ is represented by the orange circle in Fig. 4(b). Given
a teaching example (marked by “X”), the teacher first
generates a local sparse approximation of h∗ around it
(as marked by the red line) as the explanation of its label.
In words, the explanation can be interpreted as: “X is
classified as the blue class, mainly because its horizon
axis is less than the threshold marked by the red line”.

running LIME on each (h,x) pair. This naive construc-
tion strategy4 gives us m · |H| sparse linear functions
(recall thatm= |X | is the number of teaching examples).

Let us denote the sparse linear function generated from
(h,x) by `(h,x). Following the discussion from §3.1, we
interpret `(h,x) as a two-stage decision-making function.
First, it maps the input examplex to the non-zero entries
of its weight vector. Then, using the non-zero weights, it
outputs a value that approximates h’s prediction of the
label of x, i.e., h(x) (as is defined in Eq. (3.1)). Since the
non-zero dimensions of the weight vector naturally mod-
els the importance of the corresponding attributes, they
can be used as explanations of the label. In other words,
we can derive both the output of the attention function
f(x) and the decision function g itself from `(h,x).

Now that we have a concrete representation of f and g for
each hypothesis of the learner, we are able to generate the
full explanatory teaching set {(xi,yi,ei)}i=1:m, by apply-
ing the LIME approximation of the teacher’s hypothesis
to all teaching examples.5 To run NOTES, we still need
to know the learner’s noise parameters νfi ,ν

g
i for each xi

(Eq. (3.3)). We propose to use the following likelihood
functions for inconsistent explanations (labels) for xi:

{
νfi =2expit

(
α
(∣∣∣ f`(xi)∧ei

f`(xi)∨ei

∣∣∣−1))
νgi =expit

(
β`(h,x)(x)yi

)
,

(5.1)

where f` represents the attention function associated
with the linear function `(h,x) (i.e., the indices of the
non-zero weights), expit(x) = 1

1+exp(−x) is the logistic
function, and α,β > 0 are global parameters that can
be tuned for different teaching tasks. Intuitively, α
captures the learner’s ability to adapt to the explana-
tions, while β reflects the learner’s ability to adapt to
label feedback. If α,β →∞, then νfi = νgi = 0 which
corresponds to the noise-free setting.

It is worth noting that, similar to h∗, a learner’s
hypothesis h = g ◦ f can also be an ensemble of
sparse linear functions. In such cases, to compute the
likelihood of a given teaching example xi, we use the
sparse linear function `(h,x) whose associated example
x being explained is the closest to the target teaching
example xi, and apply Eq. (5.1) to compute νfi and νgi .

4One can also use an extension of LIME for explaining
a global machine learning model (as opposed to a single
prediction), reducing the number of linear functions used to
approximate a hypothesis, see (Ribeiro et al., 2016).

5Admittedly, the performance of NOTES is limited by
the quality of the underlying LIME local approximations.
However, as we will see in §6, our algorithm is capable of
making sensible explanations for most of the test scenarios.
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(a) Mars 1 (b) Mars 2 (c) Jupiter 1 (d) Jupiter 2 (e) Weevil (f) Vespula 1 (g) Vespula 2

Figure 5: Sample images from the JM and VW datasets. For JM, objects from Mars must have blue color, grey
square shape, and thick size on the three dimensions highlighted by the arrows, from top to bottom - otherwise they
are from Jupiter. For VW, the Weevil has a mid-sized body and mid-sized head, while the Vespula does not.

6 Experiments
In this section, we present experimental results for both
simulated learners and real human participants from
Amazon Mechanical Turk.

Baselines. We compare NOTES against three other
baselines in our experiments: (1) random, which ran-
domly selects a sequence of teaching examples, and only
reveals their labels to the learners; (2) randexp, which
randomly selects a teaching example, along with a ran-
dom valid explanation to show to the learner; and (3)
STRICT (Singla et al., 2014) which selects a teaching
sequence with label-only feedback. We measure the
overall performance of the different algorithms as the
average classification error of the learners on the test set.

Datasets. We employed five different image datasets in
our experiments - two synthetic and three real datasets.
These datasets were selected with varying characteristics
so that they reflect a wide range of practical scenarios.
Our synthetic datasets, namely (1) “Jupiter vs Mars”
(JM), and (2) “Vespula vs Weevil” (VW), each contains
two groups of hypothetical alien objects with different
features. We visualize these datasets by assembling
meaningful visual parts defined by their feature values.
Sample images of the two synthetic datasets are shown
in Fig. 5. The JM dataset contains 128 images, each
with 8 parts. Every part may have different color and
shape, which gives us a 10-D binary feature vector (some
parts share). The VW dataset was created based on the
2-D dataset shown in Fig. 4. The 2-D features are visual-
ized as the head and body size of the hypothetical bugs
(Vespula and Weevil), along with two non-informative
dimensions - tail length and texture. This dataset is
an extended version of a similar dataset proposed by
(Singla et al., 2014). Unlike Singla et al. (2014), we use
a non-linear decision rule to distinguish the two groups.
This simulated data gives us full control over the gener-
ating distribution and the hypothesis space, and allows
us to demonstrate the algorithms’ teaching ability when
we have full knowledge of the learners’ hypotheses distri-
bution. We further study three real bird species classifi-
cation tasks in images. We select three pairs of visually
similar species from the CUB dataset (Wah et al., 2011)
- “Heermann Gull vs Western Gull ” (CUB-1), “Baird

Sparrow and Chipping Sparrow ” (CUB-2), and “Song
Sparrow vs Northern Waterthrush” (CUB-3). Each in-
dividual species consists of 60 images and we use all the
visual attributes that have a corresponding part location
in the images as our feature representation (237 out of
312). After grouping the attributes based on part loca-
tions, we are left with a 22-D categorical feature vector.

Hypothesis class. Unlike the simulated learners, for
theCUBdatasets, we do not have an estimate of the prior
over the real learners’ attention and decision functions.
Therefore, we estimate the learner’s hypothesis with a
simple heuristic. Novices may make the wrong predic-
tion of the bird species, but their mistakes are usually
systematically consistent. Therefore for each dataset,
we first divide it into six clusters and then randomly
pick three clusters and assign them the same label - with
the opposite label for the remaining three. This gives
us
(
6
3

)
= 20 possible noisy label assignments for each

dataset. We fit LIME to the perturbed datasets and gen-
erate 20 sparse linear classifiers for each of the perturbed
label assignments. We further generate 20 hypotheses
from the original dataset, where one of the hypotheses is
the ensemble of all the sparse linear classifiers generated
for each teaching example. This hypothesis is used as
the ground-truth teacher’s model for providing inter-
pretable explanations to the learners, i.e., h∗ :=g∗◦f∗.
To guarantee stability during teaching, we remove all
the teaching examples whose label are inconsistent with
the prediction of h∗. Note that we only perform this
preprocessing step for the teaching/training phase and
use the original test set for evaluation. We set α=1,β=1
for all experiments.

6.1 Experimental results
Simulated learners. We first conduct a study of
NOTES with simulated learners on both the synthetic
and real-world image datasets. For simulated learners,
we know their hypothesis distribution, and thus these
experiments allow us to closely inspect the behavior
of the baseline algorithms. Experimental results, aver-
aged over 30 repeats, are shown in Fig. 6. From these
results, we can see that by incorporating explanations
NOTES systematically outperforms all other baselines
for simulated learners.



Near-Optimal Machine Teaching via Explanatory Teaching Sets

(a) JM (train) (b) VW (train) (c) CUB-1 (train) (d) CUB-2 (train) (e) CUB-3 (train)

(f) JM (test) (g) VW (test) (h) CUB-1 (test) (i) CUB-2 (test) (j) CUB-3 (test)

Figure 6: Results on simulated learners. The x-axis is the number of teaching images; the y-axis is error probability.

(a) JM (test) (b) VW (test) (c) CUB-1 (test) (d) CUB-2 (test) (e) CUB-3 (test)

Figure 7: Results on real human learners. The vertical axis displays the accuracy of human learners at test time.

Real human learners. We conducted five user studies
on Amazon Mechanical Turk (MTurk). Participants
were randomly assigned to one of three different teaching
strategies, where each strategy received on the order of
30 participants. They were shown 10, 12, and 5 teaching
and 12 testing images for the JM, VW, CUB datasets
respectively. In order to motivate the participants, we
paid a one dollar bonus to the top 10% of participants
based on their performance at test time. Experiments
were conducted using the same protocol as Johns et al.
(2015), where learners were shown a sequence of images
during the “teaching” phase and after each image they
were asked to estimate the correct class label. After
estimating the class label for a teaching image, they were
given the ground truth class label as feedback. In the case
of NOTES, they were also shown an additional 4, 1, and
2 interpretable features for the JM, VW, CUB datasets -
displayed as an arrow pointing to the feature locations in
each image. Teachingwas then followed by a “test” phase,
similar to teaching, where there was no feedback after
the learners’ responses. We used the same randomly
selected set of test images to compare all methods.

Results for real human workers are shown in Fig. 7.
Overall the performance improvement is not as
pronounced as with the simulated learners. This can
partially be attributed to the inherent noise of MTurk

participants and a potential mismatch between the
learner and teacher hypothesis spaces. Nevertheless,
NOTES still finishes within the top two on average
for each dataset. One interesting limitation is the VW
dataset, where the learners found it difficult to notice
small size differences in the objects.

7 Conclusion

We presented NOTES, a principled approach for
constructing interpretable teaching sets that uses
simple, yet informative, explanations to teach novel
concepts to learners. We prove that our approach
is competitive with the optimal explanation-based
teaching strategy. In addition, through experiments on
both simulated and real humans, we show that learners
taught with interpretable explanations outperform
those taught with weaker class label information.
Interpretable teaching algorithms like NOTES offer
the potential to automatically and efficiently teach a
diverse set of topics to large numbers of human learners.
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8 Proofs

Proof of Proposition 1. One can easily construct problem instances where the label-based strategy requires an
arbitrary number of teaching examples (up to the size of the full teaching set) compared to the explanation based
strategy. In an extreme case, consider the example where an explanation reveals the single informative feature in the
data, while there are infinitely many dummy features that are not correlated with the label. An explanation-based
teaching strategy explicitly points out the informative feature to the learner (in other words, the teacher shows
an explanation which directly leads to the optimal (constant) attention function f∗); while label-based strategy
requires the learner to discover the feature among an infinite pool of features. In the worst-case scenario, the
label-based learner cannot uncover the true hypothesis unless the teacher reveals the labels of all examples. However,
with explanation-based teaching one may instantly discover the hypothesis based on the informative feature.

Proof of Lemma 2. We now show that our objective function r(∅)− r(S) is monotone submodular. First, it is
clear that the sum of the weight of the edges will only be discounted when we show more examples with their
corresponding labels and explanations. For any edge, we never increase its weight, and therefore the remaining
weight r(S) is monotone non-increasing.

To prove submodularity, notice that the reduction of weight for each individual edge {f,g}∈E is a submodular
function. The reduction of total weight is a sum of submodular functions and hence is also submodular.

Proof of Lemma 3. By definition, the error rate of a hypothesis h represents the probability that hmakes an error on
x drawn uniformly fromX , i.e., err(h)=P[x /∈{xi :h(xi)=yi}]. Suppose that hypothesis h is a composition of f and g,
i.e., h=g◦f . We know thathwillmake the correct prediction onx, as long as both f and gmake the correct predictions
on x. Denote the set of examples on which h makes the correct prediction as Xh :={xi :h(xi)=yi}; similarly, define
Xf :={x :f(xi)=ei}, and Xg :={x :g(φ(xi),ei)=yi}. From the above discussion, we get Xf∩Xg⊆Xh. Therefore,

X {
h ⊆(Xf∩Xg){=Xf {∪Xg{, (8.1)

where X {
h = X \ Xh represents the set complement. Note that err(h) = |{i∈{1,...,m}:h(xi)6=yi}|

m = P
[
x∈Xh{

]
,

err(f)= |{{i∈{1,...,m}:f(xi) 6=ei}|
m =P

[
x∈Xf {

]
and err(g)= |{{i∈{1,...,m}:g(φ(xi),ei)6=yi}|

m =P
[
x∈Xg{

]
. Therefore,

err(h)=P
[
x∈Xh{

] (a)
≤ P

[
x∈Xf {∪Xg{

]
(b)

≤ P
[
Xf {

]
+P
[
Xg{

]
=err(f)+err(g). (8.2)

where step (a) is by Eq. (8.1) and step (b) holds by the union bound.

Recall from Eq. (4.2), our surrogate objective is defined as

r(S)=
∑
{f,g}∈E

w({f,g})
∏
i∈S

P[ei,yi |f,g]

=
∑

f=f∗,g

w((f∗,g))
∏
i∈S

P[ei,yi |f∗,g]+
∑

f,g=g∗

w((f,g∗))
∏
i∈S

P[ei,yi |f,g∗]

Eq. (4.1)
=

∑
f=f∗,g

P[f∗]P[g]err(g◦f∗)
∏
i∈S

P[ei |f∗]P[yi |ei,g]+
∑

f,g=g∗

P[f ]P[g∗]err(g∗◦f)
∏
i∈S

P[ei |f ]P[yi |ei,g∗]

=P[f∗]
∑
g

P[g]err(g)
∏
i∈S

P[yi |ei,g]+P[g∗]
∑
f

P[f ]err(f)
∏
i∈S

P[ei |f ]. (8.3)

For notation simplicity, let us define

Q[f |S]=P[f ]
∏
i∈S

P[ei |f ]

Q[g |S]=P[g]
∏
i∈S

P[yi |ei,g]
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as the unnormalized posterior probability of the attention function and decision function, respectively. Taking
an expectation over h (and hence over f , g) on both sides of Eq. (8.2) we get an upper bound of E[err(h) |S]:

E[err(h) |S]≤E[err(f)+err(g) |S]

=
∑
f

P[f |S]err(f)+
∑
g

P[g |S]err(g)

≤
∑
f

P[f |S]
P[f∗ |S]

err(f)+
∑
g

P[g |S]
P[g∗ |S]

err(g)

(a)
=
∑
f

Q[f |S]
P[f∗]

err(f)+
∑
g

Q[g |S]
P[g∗]

err(g)

=
1

P[f∗]P[g∗]

∑
f

P[g∗]Q[f |S]err(f)+
∑
g

P[f∗]Q[g |S]err(g)


=

1

P[f∗]P[g∗]
r(S)

which gives us the lower bound on r(S). Step (a) in the above equations is due to the fact that

P[f |S]
P[f∗ |S]

=
Q[f |S]
Q[f∗ |S]

=
Q[f |S]
P[f∗]

, and
P[g |S]
P[g∗ |S]

=
Q[g |S]
Q[g∗ |S]

=
Q[g |S]
P[g∗]

.

Here, Q[f∗ |S]=P[f∗] and Q[g∗ |S]=P[g∗] follow from the definition of Q[· |S] and the fact that the probabilities
of f∗ and g∗ are never discounted.

For the lower bound of err(h), observe that

E[err(h) |S]=
∑
h

P[h |S]err(h)

=
∑
g

∑
f

P[g◦f |S]err(g◦f)

≥
∑
f

P[g∗◦f |S]err(g∗◦f)+
∑
g

P[g◦f∗ |S]err(g◦f∗)

=
∑
f

P[g∗ |S]P[f |S]err(f)+
∑
g

P[f∗ |S]P[g |S]err(g)

≥
∑
f

P[g∗]P[f |S]err(f)+
∑
g

P[f∗]P[g |S]err(g)

=r(S)

which completes the proof.

Proof of Theorem 4. By the seminal results of Nemhauser et al. (1978), we know that for maximizing a monotone
submodular function f under cardinality constraint, it holds that the value of the greedily selected set satisfies

f(S`)≥
(
1−e`/k

)
max
S:|S|≤k

f(S).

Let k∗ be the cardinality of the smallest set, such that r(S) ≤ P [f∗] P [g∗] ε/2. Therefore,
minS:|S|=k∗ r(S) ≤ P [f∗]P [g∗] ε/2. Let ` = k∗ log 2W

P[f∗]P[g∗]ε , where W = r(∅) denotes the initial weight of
the bipartite graph. Let S` be the remaining weight after showing ` teaching examples. We get

r(∅)−r(S`)≥
(
1−e`/k

∗
)
(r(∅)−P[f∗]P[g∗]ε/2)=

(
1−P[f∗]P[g∗]ε

2E

)(
r(∅)−P[f∗]P[g∗]ε

2

)
≥r(∅)−P[f∗]P[g∗]ε,

which proves the result.
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