A Proofs

We now give the details for the proof of our main results, i.e., Theorems 1 and 2. Below, we outline the steps for the proof of FLAG's Theorem 1. The proof of Theorem 2 for FLARE follows the same line of reasoning. Also, we note that, in what follows, lemmas/corollaries required for the proof of Theorem 2, are given immediately after those of FLAG.

1. FLAG is essentially a combination of mirror descent and proximal gradient descent steps (Lemmas 1 and 4).
2. L_{k} in Algorithm 1 plays the role of an "effective gradient Lipschitz constant" in each iteration. The convergence rate of FLAG ultimately depends on $\sum_{k=1}^{T} L_{k}=L \sum_{k=1}^{T} \mathbf{g}_{k}^{T} S_{k}^{-1} \mathbf{g}_{k}$. (Lemma 8 and Corollary 3)
3. By picking S_{k} adaptively like in AdaGrad, we achieve a non-trivial upper bound for $\sum_{k=1}^{T} L_{k}$. (Lemma 5)
4. FLAG relies on picking an x_{k} at each iteration that satisfies an inequality involving L_{k} (Corollary 1). However, because L_{k} is not known prior to picking \mathbf{x}_{k}, we must choose an \mathbf{x}_{k} to roughly satisfy the inequality for all possible values of L_{k}. We do this by picking \mathbf{x}_{k} using binary search. (Lemmas 2 and 3 and Corollary 1)
5. Finally, we need to pick the right stepsize for each iteration. Our scheme is very similar to the one used in [1], but generalized to handle a different L_{k} each iteration. (Lemmas 6 and 8 as well as Corollary 3).
6. Theorem 3 combines items 1,2 and 4 , above. Finally, to prove Theorem 1, we combine Theorem 3 with items 3 and 5 above.

A. 1 Proof of Theorem 1 and Theorem 2

First, we obtain the following key result (similar to [4, Lemma 2.3]) regarding the vector $\mathbf{p}=$ $-L(\operatorname{prox}(\mathbf{x})-\mathbf{x})$, as in Step 3 of FLAG, which is known as the Gradient Mapping of F on \mathcal{C}.

Lemma 1 (Gradient Mapping)

For any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, we have

$$
\begin{aligned}
F(\boldsymbol{\operatorname { r o x }}(\mathbf{x})) \leq & F(\mathbf{y})+\langle L(\boldsymbol{\operatorname { r r o x }}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
& -\frac{L}{2}\|\mathbf{x}-\boldsymbol{\operatorname { p r o x }}(\mathbf{x})\|_{2}^{2},
\end{aligned}
$$

where $\boldsymbol{\operatorname { p r o x }}(\mathbf{x})$ is defined as in (3). In particu$\operatorname{lar}, F(\boldsymbol{\operatorname { p r o x }}(\mathbf{x})) \leq F(\mathbf{x})-\frac{L}{2}\|\mathbf{x}-\operatorname{prox}(\mathbf{x})\|_{2}^{2}$.

Proof of Lemma 1 This result is the same as Lemma 2.3 in [4]. We bring its proof here for completeness.
For any $\mathbf{y} \in \mathcal{C}$, any sub-gradient, \mathbf{v}, of h at $\operatorname{prox}(\mathbf{x})$, i.e., $\mathbf{v} \in \partial h(\operatorname{prox}(\mathbf{x}))$, and by optimality of $\operatorname{prox}(\mathbf{x})$ in (3), we have

$$
\begin{aligned}
0 \leq & \langle\nabla f(\mathbf{x})+\mathbf{v}+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{p r o x}(\mathbf{x})\rangle \\
= & \langle\nabla f(\mathbf{x})+\mathbf{v}+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\langle\nabla f(\mathbf{x}) \\
& +\mathbf{v}+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{x}-\operatorname{prox}(\mathbf{x})\rangle,
\end{aligned}
$$

and so

$$
\begin{aligned}
& \langle\nabla f(\mathbf{x}), \operatorname{prox}(\mathbf{x})-\mathbf{x}\rangle \\
& \leq\langle\nabla f(\mathbf{x})+\mathbf{v}+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
& \quad+\langle\mathbf{v}, \mathbf{x}-\operatorname{prox}(\mathbf{x})\rangle-L\|\mathbf{x}-\operatorname{prox}(\mathbf{x})\|_{2}^{2}
\end{aligned}
$$

Now from L-Lipschitz continuity of ∇f as well as convexity of f and h, we get

$$
\begin{aligned}
F & (\mathbf{p r o x}(\mathbf{x})) \\
= & f(\mathbf{p r o x}(\mathbf{x}))+h(\mathbf{p r o x}(\mathbf{x})) \\
\leq & f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \operatorname{prox}(\mathbf{x})-\mathbf{x}\rangle \\
& +\frac{L}{2}\|\operatorname{prox}(\mathbf{x})-\mathbf{x}\|_{2}^{2}+h(\mathbf{p r o x}(\mathbf{x})) \\
\leq & f(\mathbf{x})+\langle\nabla f(\mathbf{x})+\mathbf{v}+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
& +\langle\mathbf{v}, \mathbf{x}-\operatorname{prox}(\mathbf{x})\rangle-\frac{L}{2}\|\mathbf{x}-\operatorname{prox}(\mathbf{x})\|_{2}^{2} \\
& +h(\mathbf{p r o x}(\mathbf{x})) \\
\leq & f(\mathbf{y})+\langle\mathbf{v}+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
& +\langle\mathbf{v}, \mathbf{x}-\operatorname{prox}(\mathbf{x})\rangle-\frac{L}{2}\|\mathbf{x}-\mathbf{p r o x}(\mathbf{x})\|_{2}^{2} \\
& +h(\mathbf{p r o x}(\mathbf{x})) \\
= & f(\mathbf{y})+\langle L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
& +\langle\mathbf{v}, \mathbf{y}-\operatorname{prox}(\mathbf{x})\rangle-\frac{L}{2}\|\mathbf{x}-\mathbf{p r o x}(\mathbf{x})\|_{2}^{2} \\
& +h(\mathbf{p r o x}(\mathbf{x})) \\
\leq & F(\mathbf{y})+\langle L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \\
& -\frac{L}{2}\|\mathbf{x}-\operatorname{prox}(\mathbf{x})\|_{2}^{2} .
\end{aligned}
$$

The following lemma establishes the Lipschitz continuity of the prox operator.

Lemma 2 (Prox Operator Continuity)

prox $: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a 2-Lipschitz continuous, that is, for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, we have

$$
\|\boldsymbol{p r o x}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\|_{2} \leq 2\|\mathrm{x}-\mathbf{y}\|_{2} .
$$

Proof of Lemma 2 By Definition (3), for any $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{z}^{\prime} \in \mathcal{C}, \mathbf{v} \in \partial h(\mathbf{p r o x}(\mathbf{x}))$, and $\mathbf{w} \in$ $\partial h(\operatorname{prox}(\mathbf{y}))$, we have

$$
\begin{aligned}
& \langle\mathbf{v}, \mathbf{z}-\operatorname{prox}(\mathbf{x})\rangle \\
& \quad \geq-\langle\nabla f(\mathbf{x})+L(\operatorname{prox}(\mathbf{x})-\mathbf{x}), \mathbf{z}-\operatorname{prox}(\mathbf{x})\rangle \\
& \left\langle\mathbf{w}, \mathbf{z}^{\prime}-\operatorname{prox}(\mathbf{y})\right\rangle \\
& \quad \geq-\left\langle\nabla f(\mathbf{y})+L(\operatorname{prox}(\mathbf{y})-\mathbf{y}), \mathbf{z}^{\prime}-\operatorname{prox}(\mathbf{y})\right\rangle .
\end{aligned}
$$

In particular, for $\mathbf{z}=\operatorname{prox}(\mathbf{y})$ and $\mathbf{z}^{\prime}=\operatorname{prox}(\mathbf{z})$, we get

```
\(\langle\mathbf{v}, \operatorname{prox}(\mathbf{y})-\operatorname{prox}(\mathbf{x})\rangle\)
    \(\geq-\langle\nabla f(\mathbf{x})+L(\mathbf{p r o x}(\mathbf{x})-\mathbf{x}), \operatorname{prox}(\mathbf{y})-\operatorname{prox}(\mathbf{x})\rangle\),
\(\langle\mathbf{w}, \operatorname{prox}(\mathbf{y})-\operatorname{prox}(\mathbf{x})\rangle\)
    \(\leq\langle\nabla f(\mathbf{y})+L(\operatorname{prox}(\mathbf{y})-\mathbf{y}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle\).
```

By monotonicity of sub-gradient, we get
$\langle\mathbf{v}, \operatorname{prox}(\mathbf{y})-\operatorname{prox}(\mathbf{x})\rangle \leq\langle\mathbf{w}, \operatorname{prox}(\mathbf{y})-\operatorname{prox}(\mathbf{x})\rangle$. So

$$
\begin{aligned}
& \langle\nabla f(\mathbf{x})+L(\operatorname{prox}(\mathbf{x})-\mathbf{x}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle \\
& \leq\langle\nabla f(\mathbf{y})+L(\operatorname{prox}(\mathbf{y})-\mathbf{y}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle
\end{aligned}
$$

and as a result

$$
\begin{aligned}
&\langle\nabla f(\mathbf{x})+L(\operatorname{prox}(\mathbf{x})-\mathbf{x}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle \\
&=\langle\nabla f(\mathbf{x})+L(\operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})+\operatorname{prox}(\mathbf{y})-\mathbf{x}) \\
&, \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle \\
&= L\|\operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\|_{2}^{2} \\
&+\langle\nabla f(\mathbf{x})+L(\operatorname{prox}(\mathbf{y})-\mathbf{x}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle \\
& \leq\langle\nabla f(\mathbf{y})+L(\operatorname{prox}(\mathbf{y})-\mathbf{y}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle
\end{aligned}
$$

which gives

$$
\begin{aligned}
& L\|\operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\|_{2}^{2} \\
& \begin{array}{c}
\leq\langle\nabla f(\mathbf{y})-\nabla f(\mathbf{x})+L(\mathbf{x}-\mathbf{y}), \operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\rangle \\
\leq \\
\leq
\end{array}\|\nabla f(\mathbf{y})-\nabla f(\mathbf{x})\|_{2} \\
& \left.\quad+L\|\mathbf{x}-\mathbf{y}\|_{2}\right)\|\operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\|_{2} \\
& \leq 2 L\|\mathbf{x}-\mathbf{y}\|_{2}\|\operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{y})\|_{2},
\end{aligned}
$$

and the result follows.
Using prox operator continuity Lemma 2, we can conclude that given any $\mathbf{y}, \mathbf{z} \in \mathcal{C}$, if $\langle\boldsymbol{p r o x}(\mathbf{y})-\mathbf{y}, \mathbf{y}-$ $\mathbf{z}\rangle<0$ and $\langle\boldsymbol{p r o x}(\mathbf{z})-\mathbf{z}, \mathbf{y}-\mathbf{z}\rangle>0$, then there must be a $t^{*} \in(0,1)$ for which $\mathbf{w}=t^{*} \mathbf{y}+\left(1-t^{*}\right) \mathbf{z}$ gives $\langle\mathbf{p r o x}(\mathbf{w})-\mathbf{w}, \mathbf{y}-\mathbf{z}\rangle=0$. Algorithm 2 finds an approximation to \mathbf{w} in $\mathcal{O}(\log L / \epsilon)$ iterations.

Lemma 3 (Binary Search Lemma)

Let $\mathbf{x}=$ BinarySearch $(\mathbf{z}, \mathbf{y}, \epsilon)$ defined as in Algorithm 2. Then one of 3 cases happen:
(i) $\mathbf{x}=\mathbf{y}$ and $\langle\boldsymbol{\operatorname { p r o x }}(\mathbf{x})-\mathbf{x}, \mathbf{x}-\mathbf{z}\rangle \geq 0$,
(ii) $\mathbf{x}=\mathbf{z}$ and $\langle\boldsymbol{p r o x}(\mathbf{x})-\mathbf{x}, \mathbf{y}-\mathbf{x}\rangle \leq 0$, or (iii) $\mathbf{x}=t \mathbf{y}+(1-t) \mathbf{z}$ for some $t \in(0,1)$ and $|\langle\boldsymbol{\operatorname { p r o x }}(\mathbf{x})-\mathbf{x}, \mathbf{y}-\mathbf{z}\rangle| \leq 3\|\mathbf{y}-\mathbf{z}\|_{2}^{2} \epsilon$.

Proof of Lemma 3 Items (i) and (ii), are simply Steps 2 and 5, respectively. For item (iii), we have

$$
\begin{aligned}
& \|\mathbf{x}-\mathbf{w}\|_{2} \\
& =\left\|t \mathbf{y}+(1-t) \mathbf{z}-t^{*} \mathbf{y}-\left(1-t^{*}\right) \mathbf{z}\right\|_{2} \\
& =\left\|\left(t-t^{*}\right) \mathbf{y}-\left(t-t^{*}\right) \mathbf{z}\right\|_{2} \\
& \leq \epsilon\|\mathbf{y}-\mathbf{z}\|_{2} .
\end{aligned}
$$

Now it follows that

$$
\begin{aligned}
& |\langle\mathbf{p r o x}(\mathbf{x})-\mathbf{x}, \mathbf{y}-\mathbf{z}\rangle| \\
& =|\langle\mathbf{p r o x}(\mathbf{x})-\mathbf{x}, \mathbf{y}-\mathbf{z}\rangle-\langle\mathbf{p r o x}(\mathbf{w})-\mathbf{w}, \mathbf{y}-\mathbf{z}\rangle| \\
& \leq\|\langle\mathbf{p r o x}(\mathbf{x})-\operatorname{prox}(\mathbf{w}), \mathbf{y}-\mathbf{z}\rangle\|_{2}+|\langle\mathbf{x}-\mathbf{w}, \mathbf{y}-\mathbf{z}\rangle| \\
& \leq\|\operatorname{prox}(\mathbf{x})-\operatorname{prox}(\mathbf{w})\|_{2}\|\mathbf{y}-\mathbf{z}\|_{2} \\
& \quad+\|\mathbf{x}-\mathbf{w}\|_{2}\|\mathbf{y}-\mathbf{z}\|_{2} \\
& \leq 2\|\mathbf{x}-\mathbf{w}\|_{2}\|\mathbf{y}-\mathbf{z}\|_{2} \\
& \quad+\|\mathbf{x}-\mathbf{w}\|_{2}\|\mathbf{y}-\mathbf{z}\|_{2} \\
& =3\|\mathbf{x}-\mathbf{w}\|_{2}\|\mathbf{y}-\mathbf{z}\|_{2} \\
& \leq 3 \epsilon\|\mathbf{y}-\mathbf{z}\|_{2}^{2} .
\end{aligned}
$$

Where the third inequality follows by Lemma 2
Using the above result, we can prove the following:

Corollary 1

Let $\mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$ and ϵ_{k} be defined as in Algorithm
1 and $\eta_{k} L_{k} \geq 1$. Then for all $k \geq 1$,
$\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \leq\left(\eta_{k} L_{k}-1\right)\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle+\frac{D L \eta_{k} L_{k}}{T^{3}}$.

Proof of Corollary 1 Note that by Step 3 of Algorithm 1), $\mathbf{p}_{k}=-L\left(\operatorname{prox}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right)$. For $k=1$, since $\mathbf{x}_{1}=\mathbf{y}_{1}=\mathbf{z}_{1}$, the inequality is trivially true. For $k \geq 2$, we consider the three cases of Lemma 3: (i) if $\mathbf{x}_{k}=\mathbf{y}_{k}$, the right hand side is $1 / T \geq 0$ and the left hand side is $\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle=\left\langle-L\left(\mathbf{p r o x}\left(\mathbf{x}_{k}\right)-\right.\right.$ 13
is 0 and $\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle=\left\langle-L\left(\mathbf{p r o x}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right), \mathbf{y}_{k}-\right.$ $\left.\mathbf{x}_{k}\right\rangle \geq 0$, so the inequality holds trivially, and (iii) in this last case, for some $t \in(0,1)$, we have

$$
\begin{aligned}
& \left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \\
& =\left\langle-L\left(\operatorname{prox}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right), t \mathbf{y}_{k}+(1-t) \mathbf{z}_{k}-\mathbf{z}_{k}\right\rangle \\
& =-L t\left\langle\left(\operatorname{prox}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right), \mathbf{y}_{k}-\mathbf{z}_{k}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle \\
& =\left\langle-L\left(\mathbf{p r o x}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right), \mathbf{y}_{k}-t \mathbf{y}_{k}-(1-t) \mathbf{z}_{k}\right\rangle \\
& =-L(1-t)\left\langle\left(\operatorname{prox}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right),\left(\mathbf{y}_{k}-\mathbf{z}_{k}\right)\right\rangle
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle-\left(\eta_{k} L_{k}-1\right)\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle \\
& \leq\left|\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle-\left(\eta_{k} L_{k}-1\right)\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle\right| \\
& =\mid\left(-L t+\left(\eta_{k} L_{k}-1\right) L(1-t)\right) \\
& \quad\left\langle\left(\mathbf{p r o x}\left(\mathbf{x}_{k}\right)-\mathbf{x}_{k}\right),\left(\mathbf{y}_{k}-\mathbf{z}_{k}\right)\right\rangle \mid \\
& \leq 3\left|\left(-L t+\left(\eta_{k} L_{k}-1\right) L(1-t)\right)\right|\left\|\mathbf{y}_{k}-\mathbf{z}_{k}\right\|_{2}^{2} \epsilon_{k} \\
& =3\left|\eta_{k} L_{k}(1-t)+1\right| L\left\|\mathbf{y}_{k}-\mathbf{z}_{k}\right\|_{2}^{2} \epsilon_{k} \\
& =3\left(\eta_{k} L_{k}+1\right) L\left\|\mathbf{y}_{k}-\mathbf{z}_{k}\right\|_{2}^{2} \epsilon_{k} \\
& =6 \eta_{k} L_{k} L\left\|\mathbf{y}_{k}-\mathbf{z}_{k}\right\|_{2}^{2} \epsilon_{k} \\
& =\frac{6 D \eta_{k} L_{k} L\left\|\mathbf{y}_{k}-\mathbf{z}_{k}\right\|_{2}^{2}}{D} \frac{1}{6 d T^{3}} \\
& \leq \frac{D L \eta_{k} L_{k}}{T^{3}}
\end{aligned}
$$

where in the last line we used the fact that $\| y_{k}-$ $z_{k} \|_{2}^{2} \leq D d$

Similar to 1 for Algorithm 1, the following Lemma proves an analogous result for Algorithm 3.

Corollary 2

Let $\mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}$ and ϵ_{k} be defined as in Algorithm 3 and $\eta_{k} \tilde{L}_{k} \geq 1$. Then for all $k \geq 1$,
$\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \leq\left(\eta_{k} \tilde{L}_{k}-1\right)\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle+\frac{D L \eta_{k} \tilde{L}_{k}}{T^{3}}$.

Proof of Corollary 2 We consider two cases:

1. If \mathbf{x}_{k} is generated through Algorithm 5, then $\mathbf{x}_{k}=\operatorname{BinarySearch}\left(\mathbf{y}_{k}, \mathbf{z}_{k}, \epsilon\right)$ and $\tilde{L}_{k}=L_{k}$, so the statement follows from Corollary 1.
2. If x_{k} is generated through Algorithm 4, then $\mathbf{x}_{k}=$ $\left(1-\frac{1}{\eta_{k} \tilde{L}_{k}}\right) \mathbf{y}_{k}+\frac{1}{\eta_{k} \tilde{L}_{k}} \mathbf{z}_{k}$, and so satisfies

$$
\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle=\left(\eta_{k} \tilde{L}_{k}-1\right)\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle
$$

Next, we state a result regarding the mirror descent step. Similar results can be found in most texts on online optimization, e.g. [1].

Lemma 4 (Mirror Descent Inequality)

Let $\mathbf{z}_{k+1}=\arg \min _{\mathbf{z} \in \mathcal{C}}\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}-\mathbf{z}_{k}\right\rangle+\frac{1}{2} \| \mathbf{z}-$ $\mathbf{z}_{k} \|_{S_{k}}^{2}$ and $D:=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|_{\infty}^{2}$ be the diameter of \mathcal{C} measured by infinity norm. Then for any $\mathbf{u} \in \mathcal{C}$, we have

$$
\sum_{k=1}^{T}\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k}-u\right\rangle \leq \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}
$$

Proof of Lemma 4 For any $\mathbf{u} \in \mathcal{C}$ and by optimality of \mathbf{z}_{k+1}, we have $\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k+1}-\mathbf{u}\right\rangle \leq\left\langle S_{k}\left(\mathbf{z}_{k+1}-\right.\right.$ \mathbf{z}_{k}), $\left.\mathbf{u}-\mathbf{z}_{k+1}\right\rangle$. Hence, using (5) and (4), it follows that

$$
\begin{aligned}
&\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k}-\mathbf{u}\right\rangle \\
&=\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k}-\mathbf{z}_{k+1}\right\rangle+\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k+1}-\mathbf{u}\right\rangle \\
& \leq\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k}-\mathbf{z}_{k+1}\right\rangle-\left\langle S_{k}\left(\mathbf{z}_{k+1}-\mathbf{z}_{k}\right), \mathbf{z}_{k+1}-\mathbf{u}\right\rangle \\
&=\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k}-\mathbf{z}_{k+1}\right\rangle-\frac{1}{2}\left\|\mathbf{z}_{k+1}-\mathbf{z}_{k}\right\|_{S_{k}}^{2} \\
&-\frac{1}{2}\left\|\mathbf{z}_{k+1}-\mathbf{u}\right\|_{S_{k}}^{2}+\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{k}\right\|_{S_{k}}^{2} \\
& \leq \sup _{\mathbf{z} \in \mathbb{R}^{d}}\left\{\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}\right\rangle-\frac{1}{2}\|\mathbf{z}\|_{S_{k}}^{2}\right\} \\
&-\frac{1}{2}\left\|\mathbf{z}_{k+1}-\mathbf{u}\right\|_{S_{k}}^{2}+\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{k}\right\|_{S_{k}}^{2} \\
&= \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}-\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{k+1}\right\|_{S_{k}}^{2}+\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{k}\right\|_{S_{k}}^{2} .
\end{aligned}
$$

Now recalling from Steps 5-7 of Algorithm 1 that 14

$$
\begin{aligned}
& \sum_{k=1}^{T}\left\langle\eta_{k} \mathbf{p}_{k}, \mathbf{z}_{k}-u\right\rangle \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}+\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{1}\right\|_{S_{1}}^{2} \\
&+\sum_{k=2}^{T} \frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{k}\right\|_{S_{k}}^{2}-\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{k}\right\|_{S_{k-1}}^{2} \\
&= \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}+\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{1}\right\|_{S_{1}}^{2} \\
&+\frac{1}{2} \sum_{k=2}^{T}\left\langle\left(S_{k}-S_{k-1}\right)\left(\mathbf{u}-\mathbf{z}_{k}\right), \mathbf{u}-\mathbf{z}_{k}\right\rangle \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}+\frac{1}{2}\left\|\mathbf{u}-\mathbf{z}_{1}\right\|_{\infty}^{2}\left\langle\mathbf{s}_{1}, \mathbf{1}\right\rangle \\
&+\frac{1}{2} \sum_{k=2}^{T}\left\|\mathbf{u}-\mathbf{z}_{k}\right\|_{\infty}^{2}\left\langle\mathbf{s}_{k}-\mathbf{s}_{k-1}, \mathbf{1}\right\rangle \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}+\frac{D}{2}\left\langle s_{1}, \mathbf{1}\right\rangle+\frac{D}{2} \sum_{k=2}^{T}\left\langle\mathbf{s}_{k}-\mathbf{s}_{k-1}, \mathbf{1}\right\rangle \\
&= \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{*}}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}
\end{aligned}
$$

Finally, we state a similar result to that of [17] that captures the benefits of using S_{k} in FLAG.

Lemma 5 (AdaGrad Inequalities)

Define $q_{T}:=\sum_{i=1}^{d}\left\|G_{T}(i,:)\right\|_{2}$, where G_{k} is as in Step 5 of Algorithm 1. We have
(i) $\sum_{k=1}^{T} \mathbf{g}_{k}^{T} S_{k}^{-1} \mathbf{g}_{k} \leq 2 q_{T}$,
(ii) $q_{T}^{2}=\min _{S \in \mathcal{S}} \sum_{k=1}^{T} \mathbf{g}_{k}^{T} S^{-1} \mathbf{g}_{k}$, where $\mathcal{S}:=$ $\left\{S \in \mathbb{R}^{d \times d} \mid S\right.$ is diagonal, $S_{i i}>0, \operatorname{trace}(S) \leq$ 1\}, and
(iii) $\sqrt{T} \leq q_{T} \leq \sqrt{d T}$.

Proof of Lemma 5 To prove part (i), we use the following inequality introduced in the proof of Lemma 4 in [17]: for any arbitrary real-valued sequence of $\left\{a_{i}\right\}_{i=1}^{T}$ and its vector representation as $a_{1: T}=\left[a_{1}, a_{2}, \ldots, a_{T}\right]$, we have

$$
\sum_{k=1}^{T} \frac{a_{k}^{2}}{\left\|a_{1: k}\right\|_{2}} \leq 2\left\|a_{1: T}\right\|_{2}
$$

So it follows that

$$
\begin{aligned}
& \sum_{k=1}^{T} \mathbf{g}_{k}^{T} S_{k}^{-1} \mathbf{g}_{k} \\
& =\sum_{k=1}^{T} \sum_{i=1}^{d} \frac{\mathbf{g}_{k}^{2}(i)}{\mathbf{s}_{k}^{2}(i)} \\
& =\sum_{i=1}^{d} \sum_{k=1}^{T} \frac{\mathbf{g}_{k}^{2}(i)}{\mathbf{s}_{k}(i)} \\
& =\sum_{i=1}^{d} \sum_{k=1}^{T} \frac{\mathbf{g}_{k}^{2}(i)}{\left\|G_{k}(i,:)\right\|_{2}} \\
& \leq 2 q_{T}
\end{aligned}
$$

where the last equality follows from the definition of \mathbf{s}_{k} in Step 6 of Algorithm 1.

For the rest of the proof, one can easily see that

$$
\sum_{k=1}^{T} \mathbf{g}_{k}^{T} S^{-1} \mathbf{g}_{k}=\sum_{k=1}^{T} \sum_{i=1}^{d} \frac{\mathbf{g}_{k}^{2}(i)}{\mathbf{s}(i)}=\sum_{i=1}^{d} \frac{a(i)}{\mathbf{s}(i)}
$$

where $a(i):=\sum_{k=1}^{T} \mathbf{g}_{k}^{2}(i)$ and $\mathbf{s}=\operatorname{diag}(S)$. Now the Lagrangian for $\lambda \geq 0$ and $\boldsymbol{\nu} \geq \mathbf{0}$, can be written as

$$
\mathcal{L}(\mathbf{s}, \lambda, \boldsymbol{\nu})=\sum_{i=1}^{d} \frac{a(i)}{\mathbf{s}(i)}+\lambda\left(\sum_{i=1}^{d} \mathbf{s}(i)-1\right)+\langle\boldsymbol{\nu}, \mathbf{s}\rangle .
$$

Since the strong duality holds, for any primal-dual optimal solutions, S^{*}, λ^{*} and $\boldsymbol{\nu}^{*}$, it follows from complementary slackness that $\boldsymbol{\nu}^{*}=\mathbf{0}$ (since $\left.\mathbf{s}^{*}>\mathbf{0}\right)$. Now requiring that $\partial \mathcal{L}\left(\mathbf{s}^{*}, \lambda^{*}, \boldsymbol{\nu}^{*}\right) / \partial \mathbf{s}(i)=0$ gives $\lambda^{*} \mathbf{s}^{*}(i)=\sqrt{a_{i}}>0$, which since $\mathbf{s}^{*}(i)>0$, implies that $\lambda^{*}>0$. As a result, by using complementary slackness again, we must have $\sum_{i=1}^{d} \mathbf{s}^{*}(i)=$ 1. Now simple algebraic calculations gives $\mathbf{s}^{*}(i)=$ $\sqrt{a_{i}} /\left(\sum_{i=1}^{d} \sqrt{a_{i}}\right)$ and part (ii) follows.

For part (iii), recall that $\left\|\mathbf{g}_{k}\right\|_{2}=1$. Now, since $\lambda_{\min }\left(S^{01}\right) \geq 1$, one has $1 \leq \mathbf{g}_{k}^{T} S^{-1} \mathbf{g}_{k}$, and so $q_{T} \geq$ 1. One the other hand, consider the optimization problem

$$
\begin{aligned}
\max & \sum_{i=1}^{d}\left\|G_{T}(i,:)\right\|_{2}=\sum_{i=1}^{d} \sqrt{\sum_{k=1}^{T} \mathbf{g}_{i}^{2}(k)} \\
\text { s.t. } & \left\|\mathbf{g}_{k}\right\|_{2}^{2}=1, k=1,2, \ldots, T .
\end{aligned}
$$

The Lagrangian can be written as

$$
\begin{aligned}
\mathcal{L}\left(\left\{\mathbf{g}_{k}\right\}_{k=1}^{T},\{\lambda\}_{k=1}^{T}\right)= & \sum_{i=1}^{d} \sqrt{\sum_{k=1}^{T} \mathbf{g}_{i}^{2}(k)} \\
& +\sum_{k=1}^{T} \lambda_{k}\left(1-\sum_{i=1}^{d} \mathbf{g}_{i}^{2}(k)\right)
\end{aligned}
$$

By KKT necessary condition, we require that $\partial \mathcal{L}\left(\left\{\mathbf{g}_{k}\right\}_{k=1}^{T},\{\lambda\}_{k=1}^{T}\right) / \partial \mathbf{g}_{i}(k)=0$, which implies
 Hence, $T=\sum_{i=1}^{d} \sum_{k=1}^{T} \mathbf{g}_{i}^{2}(k)=d /\left(4 \lambda_{k}^{2}\right)$, and so $2 \lambda_{k}=\sqrt{d / T}$, which gives $q_{T} \leq \sqrt{d T}$.

We can now prove the central theorems of which is used to obtain FLAG's main result.

Theorem 3

Let $D:=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|_{\infty}^{2}$. For any $\mathbf{u} \in \mathcal{C}$, after T iterations of Algorithm 1, we get

$$
\begin{aligned}
& \sum_{k=1}^{T}\left\{\left(\eta_{k-1}^{2} L_{k-1}-\eta_{k}^{2} L_{k}+\eta_{k}\right) F\left(\mathbf{y}_{k}\right)-\eta_{k} F(\mathbf{u})\right\} \\
& \quad+\eta_{T}^{2} L_{T} F\left(\mathbf{y}_{T+1}\right) \\
& \leq \sum_{k=1}^{T} \frac{D L \eta_{k}^{2} L_{k}}{T^{3}}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}
\end{aligned}
$$

Proof of Theorem 3 Noting that $\mathbf{p}_{k}=$ $-L\left(\mathbf{y}_{k+1}-\mathbf{x}_{k}\right)$ is the gradient mapping of F_{16}
on \mathcal{C}, it follows that

$$
\begin{aligned}
& \sum_{k=1}^{T} \eta_{k}\left(F\left(\mathbf{y}_{k+1}\right)-F(\mathbf{u})\right) \\
& =\sum_{k=1}^{T} \eta_{k}\left(F\left(\mathbf{p r o x}\left(\mathbf{x}_{k}\right)\right)-F(\mathbf{u})\right) \\
& \leq \sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{u}\right\rangle-\frac{\eta_{k}}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2} \\
& =\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k},\left(\mathbf{z}_{k}-\mathbf{u}\right)\right\rangle+\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle-\frac{\eta_{k}}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2} \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{-1}}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}+\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle-\frac{\eta_{k}}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2} \\
& =\sum_{k=1}^{T} \frac{\eta_{k}\left(\eta_{k} L_{k}-1\right)}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}+\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}\left(\eta_{k} L_{k}-1\right)}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1} \\
& +\sum_{k=1}^{T}\left(\eta_{k}\left(\eta_{k} L_{k}-1\right)\left\langle\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle+\frac{D L \eta_{k}^{2} L_{k}}{T^{3}}\right) \\
& \leq \sum_{k=1}^{T} \frac{D L \eta_{k}^{2} L_{k}}{T^{3}}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1} \\
& +\sum_{k=1}^{T} \eta_{k}\left(\eta_{k} L_{k}-1\right)\left(F\left(\mathbf{y}_{k}\right)-F\left(\mathbf{y}_{k+1}\right)\right) . \quad(\text { Lemma } 1)
\end{aligned}
$$

Where the first inequality is by Lemma 1 , the second inequality is by Lemma 4, the third equality is by Step 8 of Algorithm 1, and the second last inequality is by Corollary 1. Now we have

$$
\begin{aligned}
& \sum_{k=1}^{T} \eta_{k}\left(F\left(\mathbf{y}_{k+1}\right)-F(\mathbf{u})\right)-\eta_{k}\left(\eta_{k} L_{k}-1\right)\left(F\left(\mathbf{y}_{k}\right)-F\left(\mathbf{y}_{k+1}\right)\right) \\
& =\sum_{k=1}^{T} \eta_{k} F\left(\mathbf{y}_{k+1}\right)-\eta_{k} F(\mathbf{u})-\eta_{k}\left(\eta_{k} L_{k}-1\right) F\left(\mathbf{y}_{k}\right) \\
& \quad+\eta_{k}\left(\eta_{k} L_{k}-1\right) F\left(\mathbf{y}_{k+1}\right) \\
& =\sum_{k=1}^{T} \eta_{k}^{2} L_{k} F\left(\mathbf{y}_{k+1}\right)-\eta_{k} F(\mathbf{u})-\eta_{k}\left(\eta_{k} L_{k}-1\right) F\left(\mathbf{y}_{k}\right) \\
& =\eta_{T}^{2} L_{T} F\left(\mathbf{y}_{T+1}\right) \\
& \quad+\sum_{k=1}^{T} \eta_{k-1}^{2} L_{k-1} F\left(\mathbf{y}_{k}\right)-\eta_{k} F(\mathbf{u})-\eta_{k}\left(\eta_{k} L_{k}-1\right) F\left(\mathbf{y}_{k}\right) \\
& =\eta_{T}^{2} L_{T} F\left(\mathbf{y}_{T+1}\right) \\
& \quad+\sum_{k=1}^{T}\left(\eta_{k-1}^{2} L_{k-1}-\eta_{k}^{2} L_{k}+\eta_{k}\right) F\left(\mathbf{y}_{k}\right)-\eta_{k} F(\mathbf{u})
\end{aligned}
$$

and the result follows.
\square
ping of F on \mathcal{C}, it follows that

Once again, we present the analog of Theorem 3 for Algorithm 3.

Theorem 4

Let $D:=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|_{\infty}^{2}$. For any $\mathbf{u} \in \mathcal{C}$, after T iterations of Algorithm 1, we get

$$
\begin{aligned}
& \sum_{k=1}^{T}\left\{\left(\eta_{k-1}^{2} \tilde{L}_{k-1}-\eta_{k}^{2} \tilde{L}_{k}+\eta_{k}\right) F\left(\mathbf{y}_{k}\right)-\eta_{k} F(\mathbf{u})\right\} \\
& \quad+\eta_{T}^{2} \tilde{L}_{T} F\left(\mathbf{y}_{T+1}\right) \\
& \leq \sum_{k=1}^{T} \frac{D \tilde{L} \eta_{k}^{2} \tilde{L}_{k}}{T^{3}}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{T} \eta_{k}\left(F\left(\mathbf{y}_{k+1}\right)-F(\mathbf{u})\right) \\
&= \sum_{k=1}^{T} \eta_{k}\left(F\left(\mathbf{p r o x}\left(\mathbf{x}_{k}\right)\right)-F(\mathbf{u})\right) \\
& \leq \sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{u}\right\rangle-\frac{\eta_{k}}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2} \\
&= \sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k},\left(\mathbf{z}_{k}-\mathbf{u}\right)\right\rangle+\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \\
&-\frac{\eta_{k}}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2} \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}^{2}}{2}\left\|\mathbf{p}_{k}\right\|_{S_{k}^{-1}}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1}+\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \\
&-\frac{\eta_{k}}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2} \\
&= \sum_{k=1}^{T} \frac{\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right)}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1} \\
&+\sum_{k=1}^{T} \eta_{k}\left\langle\mathbf{p}_{k}, \mathbf{x}_{k}-\mathbf{z}_{k}\right\rangle \\
& \leq \sum_{k=1}^{T} \frac{\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right)}{2 L}\left\|\mathbf{p}_{k}\right\|_{2}^{2}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1} \\
&+\sum_{k=1}^{T} \eta_{k=1}^{T}\left(\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right)\left(F\left(\mathbf{y}_{k}\right)-F\left(\mathbf{y}_{k+1}\right)\right)\right. \\
& \leq \sum_{k=1}^{T} \frac{D L \eta_{k}^{2} \tilde{L}_{k}}{T^{3}}+\frac{D}{2}\left\|\mathbf{s}_{T}\right\|_{1} \\
&\left.\left.+\mathbf{p}_{k}, \mathbf{y}_{k}-\mathbf{x}_{k}\right\rangle+\frac{D L \eta_{k}^{2} \tilde{L}_{k}}{T^{3}}\right)
\end{aligned}
$$

Where the first inequality follows from Lemma 1 , the second inequality follows from Lemma 4, the last equality follows from Steps 9 and 11 of Alg 4 , Steps 8 and 9 of $\operatorname{Alg} 5$, and the second last inequality follows from Corollary 2, and the last equality follows from Lemma 1.

Now we have

$$
\begin{aligned}
& \sum_{k=1}^{T} \eta_{k}\left(F\left(\mathbf{y}_{k+1}\right)-F(\mathbf{u})\right) \\
& \quad-\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right)\left(F\left(\mathbf{y}_{k}\right)-F\left(\mathbf{y}_{k+1}\right)\right) \\
& =\sum_{k=1}^{T} \eta_{k} F\left(\mathbf{y}_{k+1}\right)-\eta_{k} F(\mathbf{u})-\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right) F\left(\mathbf{y}_{k}\right) \\
& \quad+\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right) F\left(\mathbf{y}_{k+1}\right) \\
& =\sum_{k=1}^{T} \eta_{k}^{2} L_{k} F\left(\mathbf{y}_{k+1}\right)-\eta_{k} F(\mathbf{u})-\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right) F\left(\mathbf{y}_{k}\right) \\
& =\eta_{T}^{2} \tilde{L}_{T} F\left(\mathbf{y}_{T+1}\right) \\
& \quad+\sum_{k=1}^{T} \eta_{k-1}^{2} \tilde{L}_{k-1} F\left(\mathbf{y}_{k}\right)-\eta_{k} F(\mathbf{u}) \\
& \quad-\eta_{k}\left(\eta_{k} \tilde{L}_{k}-1\right) F\left(\mathbf{y}_{k}\right) \\
& =\eta_{T}^{2} \tilde{L}_{T} F\left(\mathbf{y}_{T+1}\right) \\
& \quad+\sum_{k=1}^{T}\left(\eta_{k-1}^{2} \tilde{L}_{k-1}-\eta_{k}^{2} \tilde{L}_{k}+\eta_{k}\right) F\left(\mathbf{y}_{k}\right)-\eta_{k} F(\mathbf{u})
\end{aligned}
$$

and the result follows.
We now set out to put the final piece of the proof in place: choosing the stepsize η_{k} for the mirror descent step.

Lemma 6

For the choice of η_{k} in Algorithm 1 and $k \geq 1$, we have
(i) $\eta_{k}^{2} L_{k}=\sum_{i=1}^{k} \eta_{i}$,
(ii) $\eta_{k-1}^{2} L_{k-1}-\eta_{k}^{2} L_{k}+\eta_{k}=0$, and
(iii) $\eta_{k} L_{k} \geq 1$.

Proof We prove (i) by induction. For $k=1$, is is easy to verify that $\eta_{1}=1 / L_{1}$, and so $\eta_{1}^{2} L_{1}=\eta_{1}$ and the base case follows trivially. Now suppose $\eta_{k-1}^{2} L_{k-1}=\sum_{i=1}^{k-1} \eta_{i}$. Re-arranging (i) for k gives

$$
0=\eta_{k}^{2} L_{k}-\eta_{k}-\sum_{i=1}^{k-1} \eta_{i}=\eta_{k}^{2} L_{k}-\eta_{k}-\eta_{k-1}^{2} L_{k-1}
$$

Now, it is easy to verify that the choice of η_{k} in Algorithm 1 is a solution of the above quadratic equation. The rest of the items follow immediately from part (i).

Once again, the FLARE analog of Lemma 6 is

Lemma 7

For the choice of η_{k} in Algorithm 3 and $k \geq 1$, we have
(i) $\eta_{k}^{2} \tilde{L}_{k} \underset{\sim}{=} \sum_{i=1}^{k} \eta_{i}$,
(ii) $\eta_{k-1}^{2} \tilde{L}_{k-1}-\eta_{k}^{2} \tilde{L}_{k}+\eta_{k}=0$, and
(iii) $\eta_{k} \tilde{L}_{k} \geq 1$.

Proof of Lemma 7 Completely identical to proof of Lemma 6.

Corollary 3

Let $D:=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|_{\infty}^{2}$. For any $\mathbf{u} \in \mathcal{C}$, after T iterations of Algorithm 1, we get

$$
F\left(\mathbf{y}_{T+1}\right)-F(\mathbf{u}) \leq \frac{L D}{T^{2}}+\frac{D\left\|\mathbf{s}_{T}\right\|_{1}}{2 \sum_{k=1}^{T} \eta_{k}}
$$

Proof of corollary 3 The result follows from Theorem 3 and Lemma 6 as well as noting that $\eta_{k}^{2} L_{k}=$ $\sum_{i=1}^{k} \eta_{i} \leq \sum_{i=1}^{T} \eta_{i}=\eta_{T}^{2} L_{T}$.

The FLARE analog:

Corollary 4

Let $D:=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|_{\infty}^{2}$. For any $\mathbf{u} \in \mathcal{C}$, after T iterations of Algorithm 3, we get

$$
F\left(\mathbf{y}_{T+1}\right)-F(\mathbf{u}) \leq \frac{L D}{T^{2}}+\frac{D\left\|\mathbf{s}_{T}\right\|_{1}}{2 \sum_{k=1}^{T} \eta_{k}}
$$

Proof of corollary 4 The result follows from Theorem 4 and Lemma 7 as well as noting that $\eta_{k}^{2} L_{k}=$ $\sum_{i=1}^{k} \eta_{i} \leq \sum_{i=1}^{T} \eta_{i}=\eta_{T}^{2} \tilde{L}_{T}$.

Finally, it only remains to lower bound $\sum_{k=1}^{T} \eta_{k}$, which is done in the following Lemma.

Lemma 8

For the choice of η_{k} in Algorithm 1, we have

$$
\sum_{k=1}^{T} \eta_{k} \geq \frac{T^{3}}{1000 \sum_{k=1}^{T} L_{k}}
$$

Proof of Lemma 8 We prove by induction on T. For $T=1$, we have $\eta_{1}=1 / L_{1}$, and the base case holds trivially. Suppose the desired relation holds for $T-1$. We have

$$
\begin{aligned}
\sum_{k=1}^{T} \eta_{k} & =\sum_{k=1}^{T-1} \eta_{k}+\eta_{T} \\
& \geq \frac{(T-1)^{3}}{1000 \sum_{k=1}^{T-1} L_{k}}+\frac{1}{2 L_{T}} \\
& +\sqrt{\frac{1}{4 L_{T}^{2}}+\frac{(T-1)^{3}}{1000 L_{T} \sum_{k=1}^{T-1} L_{k}}} \\
& \geq \frac{(T-1)^{3}}{1000 \sum_{k=1}^{T-1} L_{k}}+\sqrt{\frac{(T-1)^{3}}{1000 L_{T} \sum_{k=1}^{T-1} L_{k}}} \\
& \geq \frac{(T-1)^{3}}{1000 \sum_{k=1}^{T-1} L_{k}}+\sqrt{\frac{T^{3}}{8000 L_{T} \sum_{k=1}^{T-1} L_{k}}}
\end{aligned}
$$

Where the first inequality is by the induction hypothesis on η_{k}. Now if

$$
\frac{(T-1)^{3}}{1000 \sum_{k=1}^{T-1} L_{k}} \geq \frac{T^{3}}{1000 \sum_{k=1}^{T} L_{k}}
$$

then we are done. Otherwise denoting $\alpha:=$ $\sum_{k=1}^{T} L_{k}$, we must have that

$$
\begin{aligned}
L_{T} & \leq \frac{\alpha T^{3}-\alpha(T-1)^{3}}{T^{3}} \\
& =\frac{\alpha T^{3}-\alpha\left(T^{3}-3 T^{2}+3 T-1\right)}{T^{3}} \\
& =\frac{\alpha\left(3 T^{2}-3 T+1\right)}{T^{3}} \\
& \leq \frac{4 \sum_{k=1}^{T} L_{k}}{T}
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
\sum_{k=1}^{T} \eta_{k} & \geq \frac{(T-1)^{3}}{1000 \sum_{k=1}^{T-1} L_{k}}+\sqrt{\frac{T^{4}}{32000 L_{T}\left(\sum_{k=1}^{T} L_{k}\right)^{2}}} \\
& \geq \frac{(T-1)^{3}}{1000 \sum_{k=1}^{T} L_{k}}+\frac{4 T^{2}}{1000 \sum_{k=1}^{T} L_{k}} \\
& \geq \frac{T^{3}}{1000 \sum_{k=1}^{T} L_{k}}
\end{aligned}
$$

Remark: We note here that we made little effort to minimize constants, and that we used rather sloppy bounds such as $T-1 \geq T / 2$. As a result, the constant appearing above is very conservative and a mere by product of our proof technique.

Lemma 9

For the choice of η_{k} in Algorithm 3, we have

$$
\sum_{k=1}^{T} \eta_{k} \geq \frac{T^{3}}{\lambda \cdot 1000 \sum_{k=1}^{T} L_{k}}
$$

Proof of Lemma 9 Once again, exactly identical to the proof of Lemma 8, we have

$$
\sum_{k=1}^{T} \eta_{k} \geq \frac{T^{3}}{1000 \sum_{k=1}^{T} \tilde{L}_{k}}
$$

Finally, using the guarantee that $\tilde{L}_{k} \leq \lambda L_{k}$ from Step 11 of Algorithm 4 and Step 9 from Algorithm 5 , we get the conclusion.

The proof of FLAG's main result, Theorem 1, follows rather immediately.

Proof of Theorem 1 The result follows immediately from Lemma 8 and Corollary 3 and noting that $\sum_{k=1}^{T} L_{k}=L \sum_{k=1}^{T} \mathbf{g}_{k}^{T} S_{k}^{-1} \mathbf{g}_{k} \leq 2 L q_{T}$ by Lemma 5 and $\left\|\mathbf{s}_{T}\right\|_{1}=q_{T}$ by Step 6 of Algorithm 1 and definition of q_{T} in Lemma 5. This gives
$F\left(\mathbf{y}_{T+1}\right)-F(\mathbf{u}) \leq \frac{L D}{T^{2}}+\frac{q_{T}^{2}}{T} \frac{1000 L D}{T^{2}} \leq \frac{q_{T}^{2}}{T} \frac{1001 L D}{T^{2}}$.
Now from Lemma 5 , we see that $\beta:=q_{T}^{2} / T \in[1, d]$. Finally, the run-time per iteration follows from having to do $\log _{2}(1 / \epsilon)$ calls to bisection, each taking $\mathcal{O}\left(\mathcal{T}_{\text {prox }}\right)$ time.

The proof of FLARE's main result, Theorem 2, is obtained similarly to that of Theorem 1.

Proof of Theorem 2 The result follows immediately from Lemma 9 and Corollary 4 and noting that $\sum_{k=1}^{T} L_{k}=L \sum_{k=1}^{T} \mathbf{g}_{k}^{T} S_{k}^{-1} \mathbf{g}_{k} \leq 2 L q_{T}$ by Lemma 5 and $\left\|\mathbf{s}_{T}\right\|_{1}=q_{T}$ by Step 6 of Algorithm 4 and Step 5 of Algorithm 5 and definition of q_{T} in Lemma 5. This gives

$$
\begin{aligned}
F\left(\mathbf{y}_{T+1}\right)-F(\mathbf{u}) & \leq \frac{L D}{T^{2}}+\frac{q_{T}^{2}}{T} \frac{1000 \lambda L D}{T^{2}} \\
& \leq \frac{q_{T}^{2}}{T} \frac{1001 \lambda L D}{T^{2}}
\end{aligned}
$$

Now from Lemma 5 , we see that $\beta:=q_{T}^{2} / T \in[1, d]$. Finally, we try to guess a suitable \tilde{L}_{k} for $\log (d / \epsilon)$ times, and resort to BinarySearch after. If we resort
to algorithm 5 (essentially BinarySeaerch), we make $\log (1 / \epsilon)$ calls to bisection, so overall the number of inner iterations per outer iteration is same as Algorithm 1. Each inner iteration takes $\mathcal{O}\left(\mathcal{T}_{\text {prox }}\right)$ time in the worst case (if we have to resort to algorithm 5 each time).

