A Proofs

We now give the details for the proof of our main re-
sults, i.e., Theorems 1 and 2. Below, we outline the
steps for the proof of FLAG’s Theorem 1. The proof
of Theorem 2 for FLARE follows the same line of
reasoning. Also, we note that, in what follows, lem-
mas/corollaries required for the proof of Theorem 2,
are given immediately after those of FLAG.

1. FLAG is essentially a combination of mirror de-
scent and proximal gradient descent steps (Lem-
mas 1 and 4).

2. Ly in Algorithm 1 plays the role of an ”effec-
tive gradient Lipschitz constant” in each iteration.
The convergence rate of FLAG ultimately depends
on Zf:l Ly = ngzl gl S 'gr. (Lemma 8 and
Corollary 3)

3. By picking Si adaptively like in AdaGrad, we
achieve a non-trivial upper bound for Zle L.
(Lemma 5)

4. FLAG relies on picking an x; at each iteration
that satisfies an inequality involving L (Corollary
1). However, because Ly, is not known prior to pick-
ing xj, we must choose an xj, to roughly satisfy the
inequality for all possible values of L. We do this
by picking xj, using binary search. (Lemmas 2 and 3
and Corollary 1)

5. Finally, we need to pick the right stepsize for each
iteration. Our scheme is very similar to the one used
in [1], but generalized to handle a different Lj each
iteration. (Lemmas 6 and 8 as well as Corollary 3).
6. Theorem 3 combines items 1, 2 and 4, above.
Finally, to prove Theorem 1, we combine Theorem 3
with items 3 and 5 above.

A.1 Proof of Theorem 1 and Theo-
rem 2

First, we obtain the following key result (simi-
lar to [4, Lemma 2.3]) regarding the vector p
—L(prox(x) — x), as in Step 3 of FLAG, which is
known as the Gradient Mapping of F on C.

Lemma 1 (Gradient Mapping)
For any x,y € C, we have

F(proz(x)) < F(y) + (L(proa(x) - x),y — X)
L 2
— S lx — proa(x)l,

where prox(x) is defined as in (3). In particu-
lar, F(proz(x)) < F(x) — £||x — prox(x)||3.
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Proof of Lemma 1 This result is the same as
Lemma 2.3 in [4]. We bring its proof here for com-
pleteness.

For any y € C, any sub-gradient, v, of h at prox(x),
i.e., v € Oh(prox(x)), and by optimality of prox(x)
in (3), we have

0 < (Vf(x)+ v+ L(prox(x) — x),y — prox(x))
= (Vf(x) + v + L(prox(x) — x),y — x) + (Vf(x)
+ v + L(prox(x) — x), x — prox(x)),
and so
(Vf(x), prox(x) — x)
< (VF() + v + L{prox(x) - %),y - x)
+ (v, x — prox(x)) — L||x — prox(x)||3,

Now from L-Lipschitz continuity of Vf as well as
convexity of f and h, we get

F(prox(x))

— J(prox(x)) + h(prox(x))

< /() + (V/(x), prox(x) - x)
+ 5 Iprox(x) — x| + h(prox(x))

< J(X) + (VS(x) + v + L{prox(x) — x),y - X)
+ (v prox(x) - 5 x - prox(x)|3
+ h(prox(x))

< Jy) + (v + L(prox(x) - x),y - X)
+ (v,x — prox(x)) — gHX — prox(x)”%
+ h(prox(x))

= f(y) + (L(prox(x) — x),y — x)
+{v,y — prox(x)) — £ |lx — prox(x)|3
+ h(prox(x))

< F(y) + {L(prox(x) - x),y - x)

L
— 5 lx— prox(x)3.

The following lemma establishes the Lipschitz con-
tinuity of the prox operator.

Lemma 2 (Prox Operator Continuity)
prox : R* — R? is a 2-Lipschitz continuous,
that is, for any x,y € C, we have

[proz(x) — proa(y)|2 < 2|x — y|l2.




Proof of Lemma 2 By Definition (3), for any
x,y,z,z € C, v € Oh(prox(x)), and w €
Oh(prox(y)), we have

<V z — prox(x))

—(V/f(x) + L(prox(x)
<W z’ — prox(y))

—(V/f(y) + L(prox(y)

—X),z — prox(x)),

—y).z' — prox(y)).

In particular, for z = prox(y) and z’ = prox(z), we
get

(v, prOX( ) — prox(x))
—(Vf(x) + L(prox(x) —

(w ,prOX( ) — prox(x))
< (Vf(y) + L(prox(y)

x), prox(y)

—¥), prox(x) — prox(y)).

By monotonicity of sub-gradient, we get

(v, prox(y) — prox(x)) < (w,prox(y) — prox(x)).

So

(Vf(x)+ L(prox(x) — x), prox(x) —
<(Vf(y) + L(prox(y)

and as a result

prox(y))
—¥),prox(x) — prox(y)),

(Vf(x) + L(prox(x) — x), prox(x) — prox(y))

— prox(x)),

Lemma 3 (Binary Search Lemma)
Let x = BinarySearch(z,y,€) defined as in Al-
gorithm 2. Then one of 3 cases happen:

(i) x =y and (prox(x) — x,x —z) > 0,

(ii) x =z and (prox(x) —x,y —x) <0, or
(i) x =ty + (1 — t)z for some t € (0,1) and
[(proz(x) — x,y — )| < 3|ly — z|3e.

Proof of Lemma 3 Items (i) and (ii), are simply
Steps 2 and 5, respectively. For item (iii), we have

[ — wl|2
=ty + (1 -t)z =ty — (1 = t")z||2
= ||t =)y — (t —t")z[2
<elly — zll2-
Now it follows that
|(prox(x) — x,y — z)|
= [(prox(x) — x,y — z) — (prox(w) — w,y — z)|

< ||{prox(x)
< ||prox(x)

—prox(w),y —z)[2 + |(x —w,y — 2)|
— prox(w)|2[ly -zl
+x = wll2lly — 22
< 2|x — wllally — 2l

= (Vf(x) + L (prox(x) — prox(y) + prox(y) — x) + [[x = wll2[ly — 2|2

,prox(x) — prox(y)) =3|x — wll2[ly — 2|2

2

= L|[prox(x) - prox(y)|} < Selly ==z

+ (Vf(x) + L(prox(y) — x), prox(x) — prox(y)) ~ Where the third inequality follows by Lemma 2 |}
< (Vf(y) + L(prox(y) — y), prox(x) — prox(y)), . .

Using the above result, we can prove the following:
which gives
L||prox(x) — prox(y)|3 Corollary 1
<(Vf(y) = Vf(x)+ L(x —y),prox(x) — prox(y))| Letxg, yi, Zr and ¢; be defined as in Algorithm
< (IVf(y) = V)2 1 and nLy > 1. Then for all k > 1,
+L|Ix — y|l2) [lprox(x) — prox(y)|l2 DL Ly,

< 2L|jx — ya lprox(x) - prox(y)|z, i,k = k) < (L = 1)k, b =) + ==pg—
and the result follows. |

Using prox operator continuity Lemma 2, we can
conclude that given any y, z € C, if (prox(y)—y,y—
z) < 0 and (prox(z) —z,y —z) > 0, then there must
be a t* € (0,1) for which w = t*y + (1 — t*)z gives
(prox(w) — w,y — z) = 0. Algorithm 2 finds an
approximation to w in O(log L/¢) iterations.
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Proof of Corollary 1 Note that by Step 3 of Al-
gorithm 1), pr = —L(prox(xy) — xi). For k = 1,
since x; = y1 = 21, the inequality is trivially true.
For k > 2, we consider the three cases of Lemma 3:
(i) if xx = yx, the right hand side is 1/T" > 0 and
the left hand side is (pg, xx —2zx) = (—L(prox(xx)—
Xk), X — 2g) < 0, (ii) if xx = 2z, the left hand side




is 0 and (P, Yk — Xk) = (=L (Prox(xx) — x), Yk —
Xk) > 0, so the inequality holds trivially, and (iii) in
this last case, for some t € (0,1), we have

(P> Xk — k)
= (—L(prox(xx) — Xx),tykx + (1 —t)zx — zx)
= —Lt ((prox(Xx) — X« ), Yk — Zx),
and
(Pxs Yk — Xk)

= (=L (prox(Xx) — X«), Yk —tyk — (1 —t)z)
= —L (1 = t)((prox(xx) — X« ), (Yk — Z«))-

Hence

(P, Xk — zx) — ("kLk — 1)(Pk, Yk — Xk)

< [Pk, Xk — zk) — (YkLk — 1){Pxs Yk — X))

=|(—Lt + 'Lk —1)L(1 —1))

((Prox(xx) — Xx), (Yk — z«))|

< 3|(—Lt + (Tkbk — DL —t)|[lyk — z«]13"

= 3|kl (1 —t) + 1L [lyk — z«[[3"x

= 3("kLk + DL[lyk — z«l[3"%

=6 LicL [y — zull3"x

_6D!kLkL||yk—ZkH2 1

N D 6dT3

DL! Lk

~ ?1
where in the last line we used the fact that |lyx —
z|3<Dd 1

Similar to 1 for Algorithm 1, the following Lemma
proves an analogous result for Algorithm 3.

Corollary 2
Let Xy, Yk, Zk and "k be defined as in Algorithm

3 and 'Ly > 1. Then forallk > 1,

(P Xk — zk) < ("L — 1)(Pi, Y — %) +

T3

DL! Ly

Proof of Corollary 2 We consider two cases:

1. If X¢ is generated through Algorithm 5, then
Xy = BinarySearch(yk, zx,") and Ly = Ly, so the
statement follows from Corollary 1.

2. If xg is generated through Algorithm 4, then Xy =

O

T 2k and so satisfies

(P Xk — zk) = ("kL = 1)(Pi, Yk — Xx)

Next, we state a result regarding the mirror descent
step. Similar results can be found in most texts on
online optimization, e.g. [1].

Lemma 4 (Mirror Descent Inequality)
Let zy 41 = argmingec (! kPk,Z — zk) + %HZ —
z||3, and D = sup, yec X — Y2, be the di-
ameter of C measured by infinity norm. Then
for any u € C, we have

N
> (kP zx — ) <Z kakHs*

k=1 k=1

HSTlll

Proof of Lemma 4 For any u € C and by optimal-
ity of Zk41, We have <! kPk»Zk+1 — U> < <Sk (Zk+1 —
Zx),U—2Zx11) . Hence, using (5) and (4), it follows
that

("'kPk,zk — U)
= ('kPksZk — Zk+1) + ("' kPk> Zk41 — U)
= Zky1) — (Sk(Zk+1 — Zk)s Zk 41 — U)

< (1 Px, Zk
1 2
= (1 «Pk, Zk — Zk41) — §||Zk+1 - z||s,
1 1
= 5l — ull3, + Slu= |3,
1
< sup {14pz) - el |
zER?
1 1
= 5l — ull3, + Slu= |3,

1 1
— S lu=zcsal, + Slu -z,

Now recalling from Steps 5- 7 of Algorithm 1 that
Sk = diag(sk) +# and sk > sk_1, we sum over K to
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Finally, we state a similar result to that of [ 17] that
captures the benebts of usingy in FLAG.

Lemma 5 (AdaGrad Inequalities)
Debneq, = &, %1 (i, )%, where G is as
in Step 5 of Algorithm 1. We have

() ke OK Sk '06S 20,

(i) @ =minsss 4, o1 S' gk, where S :=
{S & R¥d | S s diagonal S; > 0, trace(S) $
1}, and o

@iy T$q $ dT.

Proof of Lemma 5 To prove part (i), we use

the following inequality introduced in the proof of

Lemma 4 in [17]: for any arbitrary real-valued se-

quence of{a}[; and its vector representation as
ap.t =[ag,ap,...,ar], we have

I a2

07TV

oy k%

$ 2%u.7%.

15

So it follows that
!T
]
Ok Sk 0k
k=1
1T 1d

gz (i)
sz (i)

gz (i)
sk (i)

gz (i)
0/ﬁz'k(i! )%

k=1 i=1
rd T

i=1 k=1
1d T

i=1 k=1
$ 2q,,

where the last equality follows from the dePnition of
sk in Step 6 of Algorithm 1.

For the rest of the proof, one can easily see that

gi() _'° a()
1 iz SO s

-1 92(i) and s = diag( S). Now the
( Oand! ( 0, can be written as
. #Id $
i.l)+" s(i)" 1 + 1!l st
o () =1
Since the strong duality holds, for any primal-dual
optimal solutions, S% "% and ! % it follows from
complementary slackness that = 0 (sinces”> 0).
Now requiring that #L(s%" %! %/# s(i) = 0 gives
"%%i) = @ > 0, which sinces’{i) > 0, implies
that "% > 0. As a result, by using complemen-
tary slackness again, we must have idzl sKi) =
1. Naw simple algebraic calculations gives®Xi) =
al( ) and part (ii) follows.

For part (iii) , recall that %x% = 1. Now, since
"min (S°1) (1, one has 1$ g} S' gk, and soq, (
1. One the other hand, consider the optimization
problem

1T 1T !d d

o S' tok =
k=1

wherea(i) :=
Lagrangian for "
1d

T
k

L(s,", !)=

d
i=1

%
1d 1d
max %1 (i, )% =
i=1 i=1

IT
g7 (k)
k=1
st.w%=1,k=1,2,...,T.
The Lagrangian can be written as
%
1 d

L{dghia " Ha) =

i=1

1T

g?(k)
k=1
#o

T

$
g7 (k)



By KKT necessary condition,
OL({gk} =1 7{)‘}59:1 )/0gi(k) =

we require that
0, which implies

that \p = 1/(2 [ g2(k), i = 1,2,....d.
Hence,,I' = ?:1 kT.:l g2(k) = d/(4)\2), and so
2\, = d/T, which gives ¢, < VdT. |

We can now prove the central theorems of which is
used to obtain FLAG’s main result.

Theorem 3
Let D := supy yic [|x — yl|? . Forany u € C,
after T iterations of Algorithm 1, we get

$r %& ! (
Now 1 Lis 1 — ma Ly + i Fyr) — meF(0)
k=1
+ 05 LrF(yTe1)
< $ DLpiLy

= 2”3

+ S .
TI1
k=1

Proof of Theorem 3 Noting that pyg

—L(yr+1 — xXg) is the gradient mapping of F 16

on C, it follows that

&
Ne(F(yre1) — F(u))
k=1
$r
= m(F(prox(xx)) — F(u))
k=1
$r
< 77k<pk7xk—u>—g%||PkH§
k=1
$r $r M )
= Pk, (Zk —w) +  (Pk, Xk — Zk) — EHPkHz
k=1 k=1
$ 2 D $r
M 2 Tk 2
< ?HPkHSxk L+ 5||STH1 + Pk Xk — Zk) — ﬁHPkHz
k=1 k=1
& Li—1 D &
=T bl Dy e D+ eonxe — )
2L 2
k=1 k=1
$r _
Me(Me Ly — 1) » D
< LAt R =
< 5T Ikll2 + = llsz 1
k=1
¥ ) DL??;%Lk-*
+ (L = 1) Pk, ¥ = Xk) + 3
k=1
$" pLp2L, D
= T + 5||ST||1
k=1
$
+  me(eLe — 1) (F(yr) — F(yr+1)). (Lemma 1)
k=1

Where the first inequality is by Lemma 1, the second
inequality is by Lemma 4, the third equality is by
Step 8 of Algorithm 1, and the second last inequality
is by Corollary 1. Now we have

$
Nk (F(yrer) — F(u)) — me(me Ly — 1) (F(yr) — F(yg+1))
k=1
$
= F(yeea) —meF () — (e Ly — 1) F(yr)
k=1

+ k(ML — 1) F (Yie )

= LpF(yre) — neF () — ne(meLi — 1)F(yy)
k=1

= 5L F(yre1)

+ 1L 1 F(yr) — meF(w) — ne(neLy — 1) F(yy)
k=1

=5 LrF(yre1)
$ & :

+ ns1Liw1 — niLi +me Flyr) — meF(u),
k=1



and the result follows. |}

Once again, we present the analog of Theorem 3 for

Algorithm 3.

Theorem 4
Let D := sup, yecllx —yl2,. For any u € C,
after T iterations of Algorithm 1, we get

i { (nifl‘ik;fl —niLy, + 77k> F(yx) — UkF(u)}

=1
+ W%ETF(YTJA)

DLn2L D
<Z Bt 4 szl

Proof of Theorem 4 Parts of this proof which
differ from the proof of Theorem 3 are bolded. Not-
ing that py = —L(yr+1 — X) is the gradient map-
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ping of F' on C, it follows that

- an(F(prox(Xk)) — F(u))

T
Nk
< ZUMPka —u) — ﬁ”pkﬂg

k=1
T T
= an<pk7 (zx —u)) + anﬁ)k,xk - zp)
k=1 k=1
_ Nk 2
2LHPk||2

D T
+ 5 llszlle + > P Xn — z)

IA
(]~
NS
o
;

k=1 k=1
— 2 pel3
2L 2
(L — 1) D
o (MLl — 9
= ZTHPICHQ + S lsrl
k=1
+Z"7k<Pk7Xk_Zk>
k=1
T
ﬂkLk D
Z ||p 13+ 5 llszlh

T .
DL2L
+ E (nk MeLi — 1)(Pr, Y1 — Xk) + i k)
k=1

T3
~ DLn?Ly, D szl
= T3 g P
k=1
T ~
+ > (L — 1) (F(yk) = F(Yis1)) -
k=1

Where the first inequality follows from Lemma 1,
the second inequality follows from Lemma 4, the last
equality follows from Steps 9 and 11 of Alg 4, Steps 8
and 9 of Alg 5, and the second last inequality follows
from Corollary 2, and the last equality follows from
Lemma 1.



Now we have

I
'(F(yk+1)! F(u))
k=1
Phe(eE ! 1) (F(yk) ! F(Yke))
I
= PeF (Vi) !
k=1
+ !k(!kL:_k! 1)F(yk+1)
T
= ILkF(Yien) ! TR (U) T (Pt DF (yi)
k=1
= 1FE7F(yT41)
IT
+ !|§! 1'—+k! 1F(yk)! !kF(U)
k=1
P (kB ! DF (yk)
= 1FE7F(yT41)
1T #
!EEk"' Ik

!kF(U)! !k(!kEk! 1)F(yk)

+ !E! 1E:k! 1! F(yk)! !kF(u),

k=1
and the result follows. |}
We now set out to put the Pnal piece of the proof in

place: choosing the stepsizéy for the mirror descent
step.

Lemma 6
For the choice of !¢ in Algorithm 1 and k " 1,
we have

. $

(i) 'Le=" 1 L,

(II) !I%! 1Lk! 1! !|%Lk+ Iy =0, and
(i) 'kLy " 1.

Proof We prove (i) by induction. For k =1, is is
easy to verify that !; = 1/L 4, and so!2L; = !,

and the bas§ case follows trivially. Now suppose

Lk = i:l . Re-arranging (i) for k gives

) ' — 12 2
O=1TgLy! Iy! Vo=l ! NP Te 1k 1.

Now, it is easy to verify that the choice of ! in Al-
gorithm 1 is a solution of the above quadratic equa-
tion. The rest of the items follow immediately from

part (i) . |

Once again, the FLARE analog of Lemmas is

Lemma 7
For the choice of! in Algorithm 3 and k" 1,
we have

. . $

i) '2Ec=" 15,

(II) !E! 1L:_k11! !EL:‘k+!k=O,and
(i) kB " 1.

Proof of Lemma 7 Completely identical to proof
of Lemma 6.

Corollary 3
Let D :=sup, ,.c #x ! y# . Forany u $ C,
after T iterations of Algorithm 1, we get

LD D#sr#1
4557

F(yt+1)! F(u) %
k1|k

Proof of corollary 3 The result follows from The-
grem 3 and$Lemma6 as well as noting that! 2Ly =

/0 |1-i_|2|—T I

The FLARE analog:

Corollary 4
Let D := sup, ,.c # ! y# . Forany u $ C,
after T iterations of Algorithm 3, we get

LD D#st #
Fiyra)! FU) % =5 + S§r—
2 otk

Proof of corollary 4 The result follows from The-
grem 4 an%Lemma? as well as noting that ! 2Lk =

L% L ti=E

: : . $
Finally, it only remains to lower bound ~ |_, !y,
which is done in the following Lemma.

Lemma 8
For the choice of! ¢ in Algorithm 1, we have

W' —$7——
k=1 1000 - L«




Proof of Lemma 8 We prove by induction on T.
For T =1, we have!; = 1/L 1, and the base case
holds trivially. Suppose the desired relation holds
for T! 1. We have

T T 1
I = I+ 11
k=1 k=1
Lo (Trap 1
1000 Ml 2t

1 (T! 1)3
7+ T
ALt 1000t ., L

#

.o (T3 (T! 13
1000 ;" Lk , 1000t Lk
. (T 1) T3
1000 ,!'Ly 800t ;. Lk

Where the Prst inequality is by the induction hy-
pothesis on! . Now if
T3

1000 ., Ly’

(Tt 1°

1000 ;" Lk

then we are done. Otherwise denoting” :=
1:1 Lk, we must have that

T3 | 3
Log TOLNTE Y
T %
_'T 3173 3T243T1 1
= =
_ "(3T21 3T +1)
==
;
44k L
— =,
Hence, we get
&
T (T 1B ! T4
% 2000 TLIL AT
k=1 k=1 Lk 32000t 4., Lk
L (T 13 472
1000 ., Ly 1000 ,_, Ly
T3
"71__
1000 |_, L
i

Remark: We note here that we made little elort to

minimize constants, and that we used rather sloppy
bounds such asT! 1 " T/2. As a result, the
constant appearing above is very conservative and
a mere by product of our proof technique.
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Lemma 9
For the choice of! ¢ in Algorithm 3, we have

1T T3
P

4 . T
- #41000 4, Lk

Proof of Lemma 9 Once again, exactly identical
to the proof of Lemma 8, we have

1T T3

he "
k=1 1000 ., Lk
Finally, using the guarantee that [y # #Ly from
Step 11 of Algorithm 4 and Step 9 from Algorithm
5, we get the conclusion.

The proof of FLAGOs main result, Theoremi, fol-
lows rather immediately.

Proof of Theorem 1 The result follows immedi-
ately from Lemma 8 and Corollary 3 and noting that

v Le=L 7., ofSttok # 2Lg, by Lemma5
and $st$, = g, by Step 6 of Algorithm 1 and deb-
nition of g, in Lemma 5. This gives

LD

2 2
100a.D 1001LD
F(yr+1)! F(u)# T2t & i

T T2 7T T2

Now from Lemma 5, we see that$ := ¢?/T %[1,d].
Finally, the run-time per iteration follows from hav-

ing to do log,(1/% calls to bisection, each taking
Oo(T,, ) time. |

prox

The proof of FLAREOs main result, Theoren?, is
obtained similarly to that of Theorem 1.

Proof of Theorem 2 The result follows immedi-
ately from Lemma 9 and Corollary 4 and noting that

v Le=L 7, ofSttok # 2Lg, by Lemma5
and $st$, = g, by Step 6 of Algorithm 4 and Step
5 of Algorithm 5 and debpnition of g, in Lemma 5.
This gives

LD , ¢ 100GAD
T2 T T2
o 100#LD

T T2

Flyr«1)! F(u)#

Now from Lemma 5, we see that$ := ¢?/T %[1,d].

Finally, we try to guess a suitable [y for log(d/%9
times, and resort to BinarySearch after. If we resort



to algorithm 5 (essentially BinarySeaerch), we make
log(1!) calls to bisection, so overall the number of
inner iterations per outer iteration is same as Algo-
rithm 1. Each inner iteration takes O(T,,, ) time in

the worst case (if we have to resort to algorithm5
each time). |
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