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A Proof Details for Theorem 4.1

A.1 Proof of Lemma 1

First, we formulate a uniform-convergence bound, which
closely resembles Theorem 1 from [25]. The only differ-
ence is that they consider PAC setting: sampling an i.i.d.
dataset Z from a fixed distribution, and comparing the finite-
sample objective f̂ computed using Z with the true objec-
tive f , which is an expectation over the distribution. On the
other hand, we consider an increasing sequence of datasets
Zt = {zi}nt

i=1, selected by a uniformly random permutation
of the full dataset Z. Note, that we assume the algorithm
never observes the full dataset, only loading as much data
as needed. Taking the limit of N ! 1, the relationship
between any subset Zt and the full dataset Z becomes sta-
tistically equivalent to i.i.d. sampling from any fixed un-
derlying distribution. Given that our goal is generalization
to predicting on new data, that simplification is reasonable,
although the analysis does go through in the strict optimiza-
tion setting, where N is finite. However, even with this
assumption, we still need to describe the relationship be-
tween two consecutive subsets in the sequence, which does
not fit the i.i.d. sampling model. To that end, we can view
Zt as a fraction of elements from Zt+1, selected uniformly
at random without replacement. We now describe the rela-
tionship between the two consecutive loss estimates in this
sequence. Note, that in this section the big-O notation hides
only fixed numeric constants.

Lemma 2 With probability 1��, for all w and all 0  t 
T we have

ĝt+1(w)  2 ĝt(w) +O
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Proof The proof is very similar to [25], except we re-
place standard Rademacher Complexity with Permutational
Rademacher Complexity (PRC), proposed in [26]. Let us
fix t, and consider a specific set of instances Zt+1, from
which a random subset Zt is sampled (without replacement).
Following [25], for any r > 0 we define
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where

kt,r(w) , min{k0 2 Z+ : f̂t+1(w)  r4k
0
}

and
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t+1).

Our aim is to analyze the empirical average of the function
values from Ht,r evaluated on a given instance set Z:
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We can translate the task of comparing ĝt+1 and ĝt to de-

scribe it in terms of the function class Ht,r:
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To compare h̄t,r
Zt

with h̄t,r
Zt+1

we use Theorem 5 [26], which
provides transductive risk bounds through expected PRC of
function class Ht,r, conditioned on set Zt+1:
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i
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Here, the randomness only comes from selecting Zt as a
subset of Zt+1. For any � > 0, with probability at least
1� �,
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Note, that Q(Ht,r,Zt+1) = O(Rnt(Ht,r)) (see [26]),
where Rnt is the standard Rademacher Complexity. The
remainder of the proof proceeds identically as in [25] (up to
numerical constants), i.e. by bounding both terms Y1 and
Y2 by
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Note, that since the bound is obtained for every possible
Zt+1, it will still hold with probability at least 1� � without
conditioning on Zt+1.

Finally, as shown in [25], by setting r appropriately we
obtain that w.p. 1� �, for all w

ĝt+1(w)  2 ĝt(w) +O
✓
L2B2 log(1/�)

�nt

◆
.

Applying union bound to account for all values of t simulta-
neously, we obtain the desired result. 2

We return to the proof of Lemma 1. Using Lipschitz and
boundedness assumptions for the loss ` and mapping �, as
well as strong convexity of the regularized objective, we
obtain initial tolerance of the loss estimate:
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Figure 6: Comparing BET, Batch and Parallel SGD for HIGGS (left) and url (right) datasets, running on 16 cores. BET is as
good as the best method in each case.

We used the fact that w0 is set to zero only for applying
inequality kw0 k  k bw⇤

0k to drop the regularization terms
(any initialization satisfying that requirement is acceptable).

Finally, Condition (7) regards the relationship between ap-
proximation error estimate ĝT and full approximation error
ĝ. This bound can be obtained by repeating the same argu-
ment as in Lemma 2. We can either assume N ! 1 and
use standard Rademacher complexity, as in Theorem 1, [25],
or stay with the finite optimization model and apply PRC.
Thus, we can set ✏0 to satisfy the conditions of Lemma 1. 2

A.2 Deriving Log Terms in Theorem 4.1

The number of iterations, T = O(log(✏0/✏)), depends on
✏0. But in Lemma 1 we defined ✏0 using T . To address this,
we have to find ✏0 satisfying:

✏0 � K log

✓
log(✏0/✏)
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,

with K = O(L2B2/�). It is easy to show that for small
enough ✏ it suffices to set

✏0 , 2K log
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Thus, setting n0 = 1, we obtain the final complexity bound
in Theorem 4.1 as

O
⇣ 

�✏
· L2B2 · (log log(1/✏) + log(1/�))

⌘
.

B Additional Experiments

Dataset, size Train/Test Dim. �
HIGGS, 8GB 10.5M/0.5M 28 1e-10

url, 1GB 1.8M/0.5M 3.2M 1e-8

Table 2: A list of additional datasets and regularization used
for the experiments.

In this section we look at two datasets with very different
properties. First one, HIGGS, is large, but extremely low
dimensional. In this case, given an overabundance of data,
if we look at the accuracy plot (see Figure 6), the Batch
algorithm takes much longer to converge than Parallel SGD.
This follows from the fact that the task has low sample
complexity, and a Batch method is wasting resources by
training on too much data. The second dataset, url, is very
high-dimensional, and in this case Batch has clear advantage
over SGD. BET does as well as the best method on each
dataset. In the case of HIGGS, BET simply converges to the
optimum accuracy before it even reaches full dataset, thus
saving on expensive iterations. For url, the batch expansion
happens relatively early on in the optimization, and from
that point on the algorithm is simply running full L-BFGS.
Those two extreme cases show the versatility and robustness
of our proposed meta-algorithm.


