A Background: COUNTSKETCH and TENSORSKETCH

We start by describing the COUNTSKETCH transform Charikar et al. (2004). Let m be the target dimension. When applied to n-dimensional vectors, the transform is specified by a 2-wise independent hash function $h : [n] \to [m]$ and a 2-wise independent sign function $s : [n] \to \{-1, +1\}$. When applied to v, the value at coordinate i of the output, $i = 1, 2, \ldots, m$ is $\sum_{j|h(j)=i} s(j)v_j$. Note that COUNTSKETCH can be represented as an $m \times n$ matrix in which the j-th column contains a single non-zero entry s(j) in the h(j)-th row.

We now describe the TENSORSKETCH transform Pagh (2013). Suppose we are given points $v_i \in \mathbb{R}^{n_i}$, where $i = 1, \ldots, q$ and so $\phi(v_1, \ldots, v_q) = v_1 \otimes v_2 \otimes \cdots \otimes v_q \in \mathbb{R}^{n_1 n_2 \cdots n_q}$, and the target dimension is again m. The transform is specified using q 3-wise independent hash functions $h_i : [n_i] \to [m]$, and q 4-wise independent sign functions $s_i : [n_i] \to \{+1, -1\}$, where $i = 1, \ldots, q$. TENSORSKETCH applied to $v_1, \ldots \otimes v_q$ is then COUNTSKETCH applied to $\phi(v_1, \ldots, v_q)$ with hash function $H : [n_1 n_2 \cdots n_q] \to [m]$ and sign function $S : [n_1 n_2 \cdots n_q] \to \{+1, -1\}$ defined as follows:

$$H(i_1, \ldots, i_q) = h_1(i_1) + h_2(i_2) + \cdots + h_q(i_q) \mod m,$$

and

$$S(i_1,\ldots,i_q) = s_1(i_1) \cdot s_2(i_2) \cdots s_q(i_q),$$

where $i_j \in [n_j]$. It is well-known that if H is constructed this way, then it is 3-wise independent Carter and Wegman (1979); Patrascu and Thorup (2012). Unlike the work of Pham and Pagh Pham and Pagh (2013), which only used that H was 2-wise independent, our analysis needs this stronger property of H.

The TENSORSKETCH transform can be applied to v_1, \ldots, v_q without computing $\phi(v_1, \ldots, v_q)$ as follows. Let $v_j = (v_{j_\ell}) \in \mathbb{R}^{n_j}$. First, compute the polynomials

$$p_{\ell}(x) = \sum_{i=0}^{B-1} x^{i} \sum_{j_{\ell} \mid h_{\ell}(j_{\ell})=i} v_{j_{\ell}} \cdot s_{\ell}(j_{\ell}),$$

for $\ell = 1, 2, \dots, q$. A calculation Pagh (2013) shows

$$\prod_{\ell=1}^{q} p_{\ell}(x) \mod (x^{B} - 1) = \sum_{i=0}^{B-1} x^{i} \sum_{(j_{1}, \dots, j_{q}) \mid H(j_{1}, \dots, j_{q}) = i} v_{j_{1}} \cdots v_{j_{q}} S(j_{1}, \dots, j_{q}),$$

that is, the coefficients of the product of the q polynomials mod $(x^m - 1)$ form the value of TENSORSKETCH (v_1, \ldots, v_q) . Pagh observed that this product of polynomials can be computed in $O(qm \log m)$ time using the Fast Fourier Transform. As it takes $O(q \max(\operatorname{nnz}(v_i)))$ time to form the q polynomials, the overall time to compute TENSORSKETCH(v) is $O(q(\max(\operatorname{nnz}(v_i)) + m \log m))$.

B TENSORSKETCH is an Oblivious Subspace Embedding (OSE)

Let S be the $m \times (n_1 n_2 \cdots n_q)$ matrix such that TENSORSKETCH (v_1, \ldots, v_q) is $S \cdot \phi(v_1, \ldots, v_q)$ for a randomly selected TENSORSKETCH. Notice that S is a random matrix. In the rest of the paper, we refer to such a matrix as a TENSORSKETCH matrix with an appropriate number of rows, i.e., the number of hash buckets. We will show that S is an oblivious subspace embedding for subspaces in $\mathbb{R}^{n_1 n_2 \cdots n_q}$ for appropriate values of m. Notice that S has exactly one non-zero entry per column. The index of the non-zero in the column (i_1, \ldots, i_q) is $H(i_1, \ldots, i_q) = \sum_{j=1}^q h_j(i_j) \mod m$. Let $\delta_{a,b}$ be the indicator random variable of whether $S_{a,b}$ is non-zero. The sign of the non-zero entry in column (i_1, \ldots, i_q) is $S(i_1, \ldots, i_q) = \prod_{j=1}^q s_j(i_j)$. We show that the embedding matrix S of TENSORSKETCH can be used to approximate matrix product and is an oblivious subspace embedding (OSE).

Theorem B.1. Let S be the $m \times (n_1 n_2 \cdots n_q)$ matrix such that

TENSORSKETCH (v_1, \ldots, v_q)

is $S \cdot \phi(v_1, \ldots, v_q)$ for a randomly selected TENSORSKETCH. The matrix S satisfies the following two properties.

1. (Approximate Matrix Product :) Let A and B be matrices with $n_1 n_2 \cdots n_q$ rows. For $m \ge (2+3^q)/(\epsilon^2 \delta)$, we have

$$\Pr_{S} \left[\|A^{\top} S^{\top} S B - A^{\top} B\|_{F}^{2} \le \epsilon^{2} \|A\|_{F}^{2} \|B\|_{F}^{2} \right] \ge 1 - \delta.$$

2. (Subspace Embedding :) Consider a fixed k-dimensional subspace V. If $m \ge k^2(2+3^q)/(\epsilon^2\delta)$, then with probability at least $1-\delta$, $||Sx|| = (1 \pm \epsilon)||x||$ simultaneously for all $x \in V$.

We establish the theorem via two lemmas as in Avron et al. (2016). The first lemma proves the approximate matrix product property via a careful second moment analysis.

Lemma B.2 (Approximate matrix product). Let A and B be matrices with $n_1n_2\cdots n_q$ rows. For $m \geq (2+3^q)/(\epsilon^2\delta)$, we have

$$\Pr_{S}\left[\|A^{\top}S^{\top}SB - A^{\top}B\|_{F}^{2} \le \epsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}\right] \ge 1 - \delta.$$

Proof. The proof follows that in Avron et al. (2016). Let $C = A^{\top}S^{\top}SB$. We have

$$C_{u,u'} = \sum_{t=1}^{m} \sum_{i,j \in [n_1 n_2 \cdots n_q]} S(i)S(j)\delta_{t,i}\delta_{t,j}A_{i,u}B_{j,u'} = \sum_{t=1}^{m} \sum_{i \neq j \in [n_1 n_2 \cdots n_q]} S(i)S(j)\delta_{t,i}\delta_{t,i}A_{i,u}B_{j,u'} + (A^{\top}B)_{u,u'}$$

Thus, $\mathbf{E}[C_{u,u'}] = (A^{\top}B)_{u,u'}$.

Next, we analyze $\mathbf{E}[((C - A^{\top}B)_{u,u'})^2]$. We have

$$((C - A^{\top}B)_{u,u'})^2 = \sum_{t_1, t_2=1}^m \sum_{i_1 \neq j_1, i_2 \neq j_2 \in [n_1 n_2 \cdots n_q]} S(i_1)S(i_2)S(j_1)S(j_2) \cdot \delta_{t_1,i_1}\delta_{t_1,j_1}\delta_{t_2,i_2}\delta_{t_2,j_2} \cdot A_{i_1,u}A_{i_2,u}B_{j_1,u'}B_{j_2,u'}$$

For a term in the summation on the right hand side to have a non-zero expectation, it must be the case that $\mathbf{E}[S(i_1)S(i_2)S(j_1)S(j_2)] \neq 0$. Note that $S(i_1)S(i_2)S(j_1)S(j_2)$ is a product of random signs (possibly with multiplicities) where the random signs in different coordinates in $\{1, \ldots, q\}$ are independent and they are 4-wise independent within each coordinate. Thus, $\mathbf{E}[S(i_1)S(i_2)S(j_1)S(j_2)]$ is either 1 or 0. For the expectation to be 1, all random signs must appear with even multiplicities. In other words, in each of the q coordinates, the 4 coordinates of i_1, i_2, j_1, j_2 must be the same number appearing 4 times or 2 distinct numbers, each appearing twice. All the subsequent claims in the proof regarding i_1, i_2, j_1, j_2 agreeing on some coordinates follow from this property.

Let S_1 be the set of coordinates where i_1 and i_2 agree. Note that j_1 and j_2 must also agree in all coordinates in S_1 by the above argument. Let $S_2 \subset [q] \setminus S_1$ be the coordinates among the remaining where i_1 and j_1 agree. Finally, let $S_3 = [q] \setminus (S_1 \cup S_2)$. All coordinates in S_3 of i_1 and j_2 must agree. Similarly as before, note that i_2 and j_2 agree on all coordinates in S_2 and i_2 and j_1 agree on all coordinates in S_3 . We can rewrite $i_1 = (a, b, c), i_2 = (a, e, f), j_1 = (g, b, f), j_2 = (g, e, c)$ where $a = (a_\ell), g = (g_\ell)$ with $\ell \in S_1, b = (b_\ell), e = (e_\ell)$ with $\ell \in S_2$ and $c = (c_\ell), f = (f_\ell)$ with $\ell \in S_3$.

First we show that the contribution of the terms where $i_1 = i_2$ or $i_1 = j_2$ is bounded by $\frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m}$, where A_u is the *u*th column of *A* and $B_{u'}$ is the *u*th column of *B*. Indeed, consider the case $i_1 = i_2$. As observed before, we must have $j_1 = j_2$ to get a non-zero contribution. Note that if $t_1 \neq t_2$, we always have $\delta_{t_1,i_1}\delta_{t_2,i_2} = 0$ as $H(i_1)$ cannot be equal to both t_1 and t_2 . Thus, for fixed $i_1 = i_2, j_1 = j_2$,

$$\begin{split} & \mathbf{E}\left[\sum_{t_1,t_2=1}^m S(i_1)S(i_2)S(j_1)S(j_2)\cdot\delta_{t_1,i_1}\delta_{t_1,j_1}\delta_{t_2,i_2}\delta_{t_2,j_2}\cdot A_{i_1,u}A_{i_2,u}B_{j_1,u'}B_{j_2,u'}\right] \\ &= \mathbf{E}\left[\sum_{t_1=1}^m \delta_{i_1,t_1}^2\delta_{j_1,t_1}^2A_{i_1,u}^2B_{j_1,u'}^2\right] \\ &= \frac{A_{i_1,u}^2B_{j_1,u'}^2}{m} \end{split}$$

Summing over all possible values of i_1, j_1 , we get the desired bound of $\frac{\|A_u\|_2^2 \|B_{u'}\|_2^2}{m}$. The case $i_1 = j_2$ is analogous. Next we compute the contribution of the terms where $i_1 \neq i_2, j_1, j_2$ i.e., there are at least 3 distinct numbers among i_1, i_2, j_1, j_2 . Notice that $\mathbf{E}[\delta_{t_1,i_1}\delta_{t_1,j_1}\delta_{t_2,i_2}\delta_{t_2,j_2}] \leq \frac{1}{m^3}$ because the $\delta_{t,i}$'s are 3-wise independent. For fixed i_1, j_1, i_2, j_2 , there are m^2 choices of t_1, t_2 so the total contribution to the expectation from terms with the same i_1, j_1, i_2, j_2 is bounded by $m^2 \cdot \frac{1}{m^3} \cdot |A_{i_1,u}A_{i_2,u}B_{j_1,u'}B_{j_2,u'}| = \frac{1}{m}|A_{i_1,u}A_{i_2,u}B_{j_1,u'}B_{j_2,u'}|$.

Therefore,

$$\begin{split} & \mathbf{E}[((C - A^{\top}B)_{u,u'})^2] \\ &\leq \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{1}{m} \sum_{\text{partition } S_1, S_2, S_3} \sum_{a,g,b,e,c,f} |A_{(a,b,c),u}B_{(g,b,f),u'}A_{(a,e,f),u}B_{(g,e,c),u'}| \\ &\leq \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{3^q}{m} \sum_{a,b,c,g,e,f} |A_{(a,b,c),u}B_{(g,b,f),u'}A_{(a,e,f),u}B_{(g,e,c),u'}| \\ &\leq \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{3^q}{m} \sum_{g,e,f} \left(\sum_{a,b,c} A_{(a,b,c),u}^2\right)^{1/2} \left(\sum_{a,b,c} B_{(g,b,f),u'}^2 A_{(a,e,f),u}^2 B_{(g,e,c),u'}^2\right)^{1/2} \\ &= \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{3^q\|A_u\|}{m} \sum_{g,e,f} \left(\sum_{b} B_{(g,b,f),u'}^2\right)^{1/2} \left(\sum_{a,c} A_{(a,e,f),u}^2 B_{(g,e,c),u'}^2\right)^{1/2} \\ &\leq \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{3^q\|A_u\|}{m} \sum_{e} \left(\sum_{b,g,f} B_{(g,b,f),u'}^2\right)^{1/2} \left(\sum_{a,c,g,f} A_{(a,e,f),u}^2 B_{(g,e,c),u'}^2\right)^{1/2} \\ &= \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{3^q\|A_u\| \cdot \|B_{u'}\|}{m} \sum_{e} \left(\sum_{a,f} A_{(a,e,f),u}^2\right)^{1/2} \left(\sum_{g,c} B_{(g,e,c),u'}^2\right)^{1/2} \\ &\leq \frac{2\|A_u\|_2^2\|B_{u'}\|_2^2}{m} + \frac{3^q\|A_u\| \cdot \|B_{u'}\|}{m} \left(\sum_{a,e,f} A_{(a,e,f),u}^2\right)^{1/2} \left(\sum_{g,e,c} B_{(g,e,c),u'}^2\right)^{1/2} \\ &= \frac{(2+3^q)\|A_u\|_2^2\|B_{u'}\|_2^2}{m}, \end{split}$$

where the second inequality follows from the fact that there are at most 3^q partitions of [q] into 3 sets. The other inequalities are from Cauchy-Schwarz.

Combining the above bounds, we have $\mathbf{E}[((C - A^{\top}B)_{u,u'})^2] \leq \frac{(2+3^q)\|A_u\|_2^2\|B_{u'}\|_2^2}{m}$. For $m \geq (2+3^q)/(\epsilon^2\delta)$, by the Markov inequality, $\|A^{\top}S^{\top}SB - A^{\top}B\|_F^2 \leq \epsilon^2 \|A\|_F^2 \|B\|_F^2$ with probability $1 - \delta$. \Box \Box

The second lemma proves that the subspace embedding property follows from the approximate matrix product property.

Lemma B.3 (Oblivious subspace embeddings). Consider a fixed k-dimensional subspace $V \subset \mathbb{R}^{n_1 n_2 \cdots n_q}$. If $m \geq k^2(2+3^q)/(\epsilon^2\delta)$, then with probability at least $1-\delta$, $||Sx||_2 = (1 \pm \epsilon)||x||_2$ simultaneously for all $x \in V$.

Proof. Let B be a $(n_1n_2\cdots n_q) \times k$ matrix whose columns form an orthonormal basis of V. Thus, we have $B^{\top}B = I_k$ and $\|B\|_F^2 = k$. The condition that $\|Sx\|_2 = (1 \pm \epsilon)\|x\|_2$ simultaneously for all $x \in V$ is equivalent to the condition that the singular values of SB are bounded by $1 \pm \epsilon$. By Lemma B.2, for $m \ge (2 + 3^q)/((\epsilon/k)^2\delta)$, with probability at least $1 - \delta$, we have

$$||B^{\top}S^{\top}SB - B^{\top}B||_{F}^{2} \le (\epsilon/k)^{2}||B||_{F}^{4} = \epsilon^{2}$$

Thus, we have $||B^{\top}S^{\top}SB - I_k||_2 \leq ||B^{\top}S^{\top}SB - I_k||_F \leq \epsilon$. In other words, the squared singular values of SB are bounded by $1 \pm \epsilon$, implying that the singular values of SB are also bounded by $1 \pm \epsilon$. Note that $||A||_2$ for a matrix A denotes its operator norm.

C Missing Proofs

C.1 Proofs for Tensor Product Least Square Regression

Theorem 3.1. (Tensor regression) Suppose \widetilde{x} is the output of Algorithm 1 with TENSORSKETCH $S \in \mathbb{R}^{m \times n}$, where $m = 8(d_1d_2\cdots d_q+1)^2(2+3^q)/(\epsilon^2\delta)$. Then the following approximation $||(A_1\otimes A_2\otimes\cdots\otimes A_q)\widetilde{x}-b||_2 \leq (1+\epsilon)$ OPT, holds with probability at least $1-\delta$.

Proof. It is easy to see that

$$\|(A_1 \otimes A_2 \otimes \cdots \otimes A_q)x - b\|_2 = \left\| \begin{bmatrix} (A_1 \otimes A_2 \otimes \cdots \otimes A_q) & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} \right\|_2,$$

and identifying

$$y = \begin{bmatrix} (A_1 \otimes A_2 \otimes \cdots \otimes A_q) & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} \in \mathbb{R}^{n_1 n_2 \cdots n_q}$$

and y is a vector of a subspace $V \subset \mathbb{R}^{n_1 n_2 \cdots n_q}$ with dimension at most $d_1 d_2 \cdots d_q + 1$, we can use Lemma B.3 to conclude that

$$\Pr\left[|||Sy||_2 - ||y||_2 | \le \epsilon ||y||_2 \right] \ge 1 - \delta$$

when $m = (d_1 d_2 \cdots d_q + 1)^2 (2 + 3^q) / (\epsilon^2 \delta).$

Thus we have

$$\|(A_1 \otimes A_2 \otimes \dots \otimes A_q)\widetilde{x} - b\|_2 \le \frac{1}{1 - \epsilon} \|S(A_1 \otimes A_2 \otimes \dots \otimes A_q)\widetilde{x} - Sb\|_2$$

and

$$\|S(A_1 \otimes A_2 \otimes \cdots \otimes A_q)x - Sb\|_2 \le (1+\epsilon)\|(A_1 \otimes A_2 \otimes \cdots \otimes A_q)x - b\|_2$$

hold with probability at least $1 - \delta$. Then using a union bound, we have

$$\begin{aligned} \|(A_1 \otimes A_2 \otimes \cdots \otimes A_q)\widetilde{x} - b\|_2 \\ &\leq \frac{1}{1 - \epsilon} \|S(A_1 \otimes A_2 \otimes \cdots \otimes A_q)\widetilde{x} - Sb\|_2 \\ &\leq \frac{1}{1 - \epsilon} \|S(A_1 \otimes A_2 \otimes \cdots \otimes A_q)x - Sb\|_2 \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \|(A_1 \otimes A_2 \otimes \cdots \otimes A_q)x - b\|_2 \end{aligned}$$

holds with probability at least $1 - 2\delta$.

Corollary 3.2. (Sketch for tensor nonnegative regression) Suppose $\tilde{x} = \min_{x\geq 0} \|S\mathcal{A}x - Sb\|_2$ with TENSORSKETCH $S \in \mathbb{R}^{m \times n}$, where $m = 8(d_1d_2\cdots d_q+1)^2(2+3^q)/(\epsilon^2\delta)$. Then the following approximation $\|(A_1\otimes A_2\otimes\cdots\otimes A_q)\tilde{x} - b\|_2 \leq (1+\epsilon)$ OPT holds with probability at least $1-\delta$, where $OPT = \min_{x\geq 0} \|(A_1\otimes A_2\otimes\cdots\otimes A_q)x - b\|_2$.

Proof. The proof of Theorem. 3.2 is similar to the proof of theorem 3.1. Denote $\tilde{x} = \min_{x\geq 0} \|SAx - Sb\|_2$ and $x^* = \min_{x\geq 0} \|Ax - b\|_2$. Using Lemma. B.3, we have:

$$\|\mathcal{A}\tilde{x} - b\|_2 \le \frac{1}{1 - \epsilon} \|S\mathcal{A}\tilde{x} - Sb\|_2,\tag{6}$$

with probability at least $1 - \delta$, and

$$\|S\mathcal{A}x^* - Sb\|_2 \le (1+\epsilon)\|\mathcal{A}x^* - b\|_2,\tag{7}$$

with probability at least $1 - \delta$. Hence applying a union bound we have:

$$\|\mathcal{A}\tilde{x} - b\|_{2}$$

$$\leq \frac{1}{1 - \epsilon} \|S\mathcal{A}\tilde{x} - Sb\|_{2}$$

$$\leq \frac{1}{1 - \epsilon} \|S\mathcal{A}x^{*} - Sb\|_{2}$$

$$\leq \frac{1 + \epsilon}{1 - \epsilon} \|\mathcal{A}x^{*} - b\|_{2},$$
(9)

with probability at least $1 - 2\delta$.

C.2 Proofs for P-Splines

Lemma 4.1. Let $x^* \in \mathbb{R}^d$, $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$ as above. Let $U_1 \in \mathbb{R}^{n \times d}$ denote the first n rows of an orthogonal basis for $\begin{bmatrix} A \\ \sqrt{\lambda}L \end{bmatrix} \in \mathbb{R}^{(n+p) \times d}$. Let sketching matrix $S \in \mathbb{R}^{m \times n}$ have a distribution such that with constant probability

(I)
$$||U_1^\top S^\top S U_1 - U_1^\top U_1||_2 \le 1/4,$$

and

(II)
$$||U_1^{\top}(S^{\top}S - I)(b - Ax^*)||_2 \leq \sqrt{\epsilon \operatorname{OPT}/2}.$$

Let \widetilde{x} denote $\operatorname{argmin}_{x \in \mathbb{R}^d} \|S(Ax - b)\|_2^2 + \lambda \|Lx\|_2^2$. Then with probability at least 9/10,

$$||A\widetilde{x} - b||_2^2 + \lambda ||L\widetilde{x}||_2^2 \le (1 + \epsilon) \text{ OPT}$$

Proof. Let $\hat{A} \in \mathbb{R}^{(n+d) \times d}$ have orthonormal columns with range $(\hat{A}) = \text{range}(\begin{bmatrix} A \\ \sqrt{\lambda}L \end{bmatrix})$. (An explicit expression for one such \hat{A} is given below.) Let $\hat{b} \equiv \begin{bmatrix} b \\ 0_d \end{bmatrix}$. We have

$$\min_{y \in \mathbb{R}^d} \|\hat{A}y - \hat{b}\|_2 \tag{10}$$

equivalent to $\|b - Ax\|_2^2 + \lambda \|Lx\|_2^2$, in the sense that for any $\hat{A}y \in \operatorname{range}(\hat{A})$, there is $x \in \mathbb{R}^d$ with $\hat{A}y = \begin{bmatrix} A \\ \sqrt{\lambda}L \end{bmatrix} x$, so that $\|\hat{A}y - \hat{b}\|_2^2 = \|\begin{bmatrix} A \\ \sqrt{\lambda}L \end{bmatrix} x - \hat{b}\|_2^2 = \|b - Ax\|_2^2 + \lambda \|Lx\|_2^2$. Let $y^* = \operatorname{argmin}_{y \in \mathbb{R}^d} \|\hat{A}y - \hat{b}\|_2$, so that $\hat{A}y^* = \begin{bmatrix} Ax^* \\ \sqrt{\lambda}Lx^* \end{bmatrix}$. Let $\hat{A} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$, where $U_1 \in \mathbb{R}^{n \times d}$ and $U_2 \in \mathbb{R}^{d \times d}$, so that U_1 is as in the lemma statement. We define \hat{S} to be $\begin{bmatrix} S \\ 0_{d \times n} \end{bmatrix}$ and \hat{S} satisfies Property (I) and (II) of Lemma 4.1. Using $\|U_1^\top S^\top SU_1 - U_1^\top U_1\|_2 \le 1/4$, with constant probability

$$\|\hat{A}^{\top}\hat{S}^{\top}\hat{S}\hat{A} - I_d\|_2 = \|U_1^{\top}S^{\top}SU_1 + U_2^{\top}U_2 - I_d\|_2 = \|U_1^{\top}S^{\top}SU_1 - U_1^{\top}U_1\|_2 \le 1/4.$$
(11)

Using the normal equations for Eq. (10), we have

$$0 = \hat{A}^{\top}(\hat{b} - \hat{A}y^{*}) = U_{1}^{\top}(b - Ax^{*}) - \sqrt{\lambda}U_{2}^{\top}x^{*},$$

and so

$$\hat{A}^{\top}\hat{S}^{\top}\hat{S}(\hat{b}-\hat{A}y^{*}) = U_{1}^{\top}S^{\top}S(b-Ax^{*}) - \sqrt{\lambda}U_{2}^{\top}x^{*} = U_{1}^{\top}S^{\top}S(b-Ax^{*}) - U_{1}^{\top}(b-Ax^{*}).$$

Using Property (II) of Lemma 4.1, with constant probability

$$\begin{aligned} \|\hat{A}^{\top}\hat{S}^{\top}\hat{S}(\hat{b} - \hat{A}y^{*})\|_{2} \\ &= \|U_{1}^{\top}S^{\top}S(b - Ax^{*}) - U_{1}^{\top}(b - Ax^{*})\|_{2} \\ &\leq \sqrt{\epsilon \text{ OPT }/2} \\ &= \sqrt{\epsilon/2}\|\hat{b} - \hat{A}y^{*}\|_{2}. \end{aligned}$$
(12)

It follows by a standard result from (11) and (12) that the solution $\tilde{y} \equiv \operatorname{argmin}_{y \in \mathbb{R}^d} \|\hat{S}(\hat{A}y - \hat{b})\|_2$ has $\|\hat{A}\tilde{y} - \hat{b}\|_2 \le (1 + \epsilon) \min_{y \in \mathbb{R}^d} \|\hat{A}y - \hat{b}\|_2$, and therefore that \tilde{x} satisfies the claim of the theorem.

For convenience we give the proof of the standard result: (11) implies that $\hat{A}^{\top}\hat{S}^{\top}\hat{S}\hat{A}$ has smallest singular value at least 3/4. The normal equations for the unsketched and sketched problems are

$$\hat{A}^{\top}(\hat{b} - \hat{A}y^{*}) = 0 = \hat{A}^{\top}\hat{S}^{\top}\hat{S}(\hat{b} - \hat{A}\tilde{y}).$$

The normal equations for the unsketched case imply $\|\hat{A}\tilde{y} - \hat{b}\|_2^2 = \|\hat{A}(\tilde{y} - y^*)\|_2^2 + \|\hat{b} - \hat{A}y^*\|_2^2$, so it is enough to show that $\|\hat{A}(\tilde{y} - y^*)\|_2^2 = \|\tilde{y} - y^*\|_2^2 \le \epsilon \text{ OPT}$. We have

$$\begin{aligned} (3/4) \|\tilde{y} - y^*\|_2 &\leq \|\hat{A}^{\top} \hat{S}^{\top} \hat{S} \hat{A} (\tilde{y} - y^*)\|_2 & \text{by Eq. (11)} \\ &= \|\hat{A}^{\top} \hat{S}^{\top} \hat{S} \hat{A} (\tilde{y} - y^*) - \hat{A}^{\top} \hat{S}^{\top} \hat{S} (\hat{b} - \hat{A} \tilde{y})\|_2 & \text{by Normal Equation} \\ &= \|\hat{A}^{\top} \hat{S}^{\top} \hat{S} (\hat{b} - \hat{A} y^*)\|_2 \\ &\leq \sqrt{\epsilon \text{ OPT} / 2} & \text{by Eq. (12),} \end{aligned}$$

so that $\|\tilde{y} - y^*\|_2^2 \leq (4/3)^2 \epsilon \text{ OPT } / 2 \leq \epsilon \text{ OPT}$. The lemma follows.

The following lemma computes the statistical dimension $sd_{\lambda}(A, L)$ that will be used for computing the number of rows of sketching matrix S.

Lemma C.1. For U_1 as in Lemma 4.1, $||U_1||_F^2 = \operatorname{sd}_{\lambda}(A, L) = \sum_i 1/(1 + \lambda/\gamma_i^2) + d - p$, where A has singular values σ_i . Also $||U_1||_2 = \max\{1/\sqrt{1 + \lambda/\gamma_1^2}, 1\}$.

Proof. Suppose we have the GSVD of (A, L). Let

$$D \equiv \begin{bmatrix} \Sigma^{\top} \Sigma + \lambda \Omega^{\top} \Omega & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & I_{d-p} \end{bmatrix}^{-1/2}.$$

Then

$$\hat{A} = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{0}_{p \times (n-p)} \\ \boldsymbol{0}_{(n-p) \times p} & \boldsymbol{I}_{d-p} \\ \sqrt{\lambda} \boldsymbol{V} \begin{bmatrix} \boldsymbol{\Omega} & \boldsymbol{0}_{p \times (n-p)} \end{bmatrix} \boldsymbol{D} \end{bmatrix}$$

has $\hat{A}^{\top}\hat{A} = I_d$, and for given x, there is $y = D^{-1}RQ^{\top}x$ with $\hat{A}y = \begin{bmatrix} A\\ \sqrt{\lambda}L \end{bmatrix} x$. We have $\|U_1\|_F^2 = \|\begin{bmatrix} \Sigma & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & I_{d-p} \end{bmatrix} D\|_F^2 = \|\begin{bmatrix} \Sigma & 0_{p \times (n-p)} \\ 0_{(n-p) \times p} & I_{d-p} \end{bmatrix} D\|_F^2 = \sum_{i=1}^p 1/(1+\lambda/\gamma_i^2) + d - p$ as claimed. \Box

Theorem 4.3. (P-Spline regression) There is a constant K > 0 such that for $m \ge K(\epsilon^{-1} \operatorname{sd}_{\lambda}(A, L) + \operatorname{sd}_{\lambda}(A, L)^2)$ and $S \in \mathbb{R}^{m \times n}$ a sparse embedding matrix (e.g., COUNTSKETCH) with SA computable in $O(\operatorname{nnz}(A))$ time, Property (I) and (II) of Lemma 4.1 apply, and with constant probability the corresponding $\tilde{x} = \operatorname{argmin}_{x \in \mathbb{R}^d} \|S(Ax - b)\|_2 + \lambda \|Lx\|_2^2$ is an ϵ -approximate solution to $\min_{x \in \mathbb{R}^d} \|b - Ax\|_2^2 + \lambda \|Lx\|_2^2$.

Proof. Recall that $\mathfrak{sd}_{\lambda}(A, L) = \|U_1\|_F^2$. Sparse embedding distributions satisfy the bound for approximate matrix multiplication

$$||W^{\top}S^{\top}SH - W^{\top}H||_{F} \leq C||W||_{F}||H||_{F}/\sqrt{m},$$

for a constant C (Clarkson and Woodruff, 2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013); this is also true of OSE matrices. We set $W = H = U_1$ and use $||X||_2 \leq ||X||_F$ for all X and $m \geq K ||U_1||_F^4$ to obtain Property (I) of Lemma 4.1, and set $W = U_1$, $H = b - Ax^*$ and use $m \geq K ||U_1||_F^2/\epsilon$ to obtain Property (II) of Lemma 4.1. (Here the bound is slightly stronger than Property (II), holding for $\lambda = 0$.) With Property (I) and Property (II), the claim for \tilde{x} from a sparse embedding follows using Lemma 4.1.

C.3 Proofs for Tensor Product ℓ_1 Regression

Lemma 5.3. For any $p \ge 1$. Condition(\mathcal{A}) computes $\mathcal{A}U/(d\gamma_p)$ which is an $(\alpha, \beta\sqrt{3}d(tw)^{|1/p-1/2|}, p)$ -well-conditioned basis of \mathcal{A} , with probability at least $1 - \prod_{i=1}^{q} (n_i/w_i)\delta$.

Proof. This lemma is similar to arguments in Clarkson et al. (2013), we simply adjust notation and parameters for completeness. Applying Theorem 5.2, we have that with probability at least $1 - \prod_{i=1}^{q} (n_i/w_i)\delta$, for all $x \in \mathbb{R}^r$, if we consider $y = \mathcal{A}x$ and write $y^{\top} = [z_1^{\top}, z_2^{\top}, \ldots, z_{\prod_{i=1}^{q} n_i/w_i}]^{\top}$, then for all $i \in [\prod_{i=1}^{q} n_i/w_i]$,

$$\sqrt{\frac{1}{2}} \|z_i\|_2 \le \|S_i z_i\|_2 \le \sqrt{\frac{3}{2}} \|z_i\|_2$$

where $S_i \in \mathbb{R}^{m_i \times \prod_{i=1}^q w_i}$. In the following, suppose $m_i = t$. By relating the 2-norm and the *p*-norm, for $1 \le p \le 2$, we have

$$||S_i z_i||_p \le t^{1/p-1/2} ||S z_i||_2 \le t^{1/p-1/2} \sqrt{\frac{3}{2}} ||z_i||_2 \le t^{1/p-1/2} \sqrt{\frac{3}{2}} ||z_i||_p,$$

and similarly,

$$||S_i z_i||_p \ge ||S_i z_i||_2 \ge \sqrt{\frac{1}{2}} ||z_i||_2 \ge \sqrt{\frac{1}{2}} w^{1/2 - 1/p} ||z_i||_p, w = \prod_{j=1}^q w_j.$$

If p > 2, then

$$||S_i z_i||_p \le ||S_i z_i||_2 \le \sqrt{\frac{3}{2}} ||z_i||_2 \le \sqrt{\frac{3}{2}} w^{1/2 - 1/p} ||z_i||_p$$

and similarly,

$$||S_i z_i||_p \ge t^{1/p - 1/2} ||S_i z_i||_2 \ge t^{1/p - 1/2} \sqrt{\frac{1}{2}} ||z_i||_2 \ge t^{1/p - 1/2} \sqrt{\frac{1}{2}} ||z_i||_p.$$

Since $\|\mathcal{A}x\|_p^p = \|y\|_p^p = \sum_i \|z_i\|_p^p$ and $\|S\mathcal{A}x\|_p^p = \sum_i \|S_i z_i\|_p^p$, for $p \in [1, 2]$ we have with probability $1 - \prod_{i=1}^q (n_i/w_i)\delta$

$$\sqrt{\frac{1}{2}}w^{1/2-1/p}\|\mathcal{A}x\|_{p} \le \|S\mathcal{A}x\|_{p} \le \sqrt{\frac{3}{2}}t^{1/p-1/2}\|\mathcal{A}x\|_{p},$$

and for $p \in [2, \infty)$ with probability $1 - \prod_{i=1}^{q} (n_i/w_i) \delta$

$$\sqrt{\frac{1}{2}}t^{1/p-1/2}\|\mathcal{A}x\|_{p} \le \|S\mathcal{A}x\|_{p} \le \sqrt{\frac{3}{2}}w^{1/2-1/p}\|\mathcal{A}x\|_{p}$$

In either case,

$$\|\mathcal{A}x\|_{p} \leq \gamma_{p} \|S\mathcal{A}x\|_{p} \leq \sqrt{3} (tw)^{|1/p-1/2|} \|\mathcal{A}x\|_{p}.$$
(13)

We have, from the definition of an (α, β, p) -well-conditioned basis, that

$$\|S\mathcal{A}U\|_p \le \alpha \tag{14}$$

and for all $x \in \mathbb{R}^d$,

$$\|x\|_q \le \beta \|S\mathcal{A}Ux\|_p. \tag{15}$$

Combining (13) and (14), we have that with probability at least $1 - \prod_{i=1}^{q} (n_i/w_i)\delta$,

$$\|\mathcal{A}U/(r\gamma_p)\|_p \le \sum_i \|\mathcal{A}U_i/r\gamma_p\|_p \le \sum_i \|S\mathcal{A}U_i/r\|_p \le \alpha.$$

Combining (13) and (15), we have that with probability at least $1 - \prod_{i=1}^{q} (n_i/w_i)\delta$, for all $x \in \mathbb{R}^r$,

$$\|x\|_q \le \beta \|S\mathcal{A}Ux\|_p \le \beta \sqrt{3}r(tw)^{|1/p-1/2|} \|\mathcal{A}U\frac{1}{r\gamma_p}x\|_p$$

Hence $\mathcal{A}U/(r\gamma_p)$ is an $(\alpha, \beta\sqrt{3}r(tw)^{|1/p-1/2|}, p)$ -well-conditioned basis.

Theorem 5.4. (Main result) Given $\epsilon \in (0, 1)$, $\mathcal{A} \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$, Alg. 3 computes \hat{x} such that with probability at least 1/2, $\|\mathcal{A}\hat{x} - b\|_1 \leq (1 + \epsilon) \min_{x \in \mathbb{R}^d} \|\mathcal{A}x - b\|_1$. For the special case when q = 2, $n_1 = n_2$, the algorithm's running time is $O(n_1^{3/2} \operatorname{poly}(\prod_{i=1}^2 d_i/\epsilon))$.

Proof. For notational simplicity, let us denote $n_{[q_1]} = \prod_{i=1}^{q_1} n_i$, $n_{[q]\setminus[q_1]} = \prod_{i=q_1+1}^{q} n_1$, $d_{[q_1]} = \prod_{i=1}^{q_1} d_i$, and $d_{[q]\setminus[q_1]} = \prod_{i=q_1+1}^{q} d_i$. For any row-block $A_{i_1}^1 \otimes \ldots \otimes A_{i_q}^{(q)}$, computing $S_{i_1i_2\ldots i_q}(A_{i_1}^1 \otimes \ldots \otimes A_{i_q}^{(q-1)})$ takes $O(d(\sum_{k=1}^{q} nnz(A_{i_k}^{(k)})) + dqm\log(m))$ (see Sec 2). Hence for $S\mathcal{A}$, it takes:

$$\left(d\sum_{k=1}^q \mathtt{nnz}(A_k)\prod_{i\in[q]\backslash\{k\}}^q n_i/w_i\right) + \left(dqm\log(m)\prod_{i=1}^q n_i/w_i\right)$$

where $S \in \mathbb{R}^{(m\prod_{i=1}^{q}(n_i/w_i)) \times \prod_{i=1}^{q} w_i}$ and $m \geq 100 \prod_{i=1}^{q} d_i^2 (2+3^q)/\epsilon^2 = O(\text{poly}(d/\epsilon))$. We need to compute an orthogonal factorization $S\mathcal{A} = QR_{\mathcal{A}}$ in $O(qmd^2)$ and then compute $U = R_{\mathcal{A}}^{-1}$ in $O(d^3)$ time. Hence the total running time of Algorithm Condition(\mathcal{A}) is $O(qmd^2 + d^3)$. Thus the total running time of computing $S\mathcal{A}$ and Condition(A) is

$$O\left(\left(\sum_{k=1}^{q} \operatorname{nnz}(A_k) \prod_{i \in [q] \setminus \{k\}}^{q} n_i / w_i\right) + \left(\prod_{i=1}^{q} n_i / w_i\right) \operatorname{poly}(d/\epsilon) + qmd^2 + d^3\right),$$

We will compute UG in $O(d^2 \log n)$ time. We compute $\widetilde{E} = E(A_{q_1+1} \otimes \ldots \otimes A_q)^T$ in $O(dn_{[q] \setminus [q_1]})$ time.

Then we can compute $R(A_1 \otimes \cdots \otimes A_{q_1})\widetilde{E}_j$ in $O(n_{[q_1]}d_{[q_1]}\log n + d_{[q_1]}n_{[q]\setminus[q_1]}\log n)$ time.

Since computation of the median λ_i takes $O(\log n)$ time, computing all λ_i and then λ_e takes $O(n_{[q]\setminus [q_1]} \log n)$ time.

As $\mathcal{A}UG$ has $O(\log n)$ columns, we need to compute λ_e for each $\mathcal{A}UG$ using the above procedure and hence it takes in total $O(d(n_{[q_1]} + n_{[q]\setminus[q_1]})\log^2 n)$ time.

Sampling a column of $\mathcal{A}UG$ using λ_e takes $O(\log n)$ time, sampling an entry in M takes in total $O(n_{[q_1]} + n_{[q] \setminus [q_1]})$ time.

Since we need $\sqrt{\prod_{k=1}^{q} w_k} \operatorname{poly}(r)$ samples to select rows, the running time is $d(n_{[q_1]} + n_{[q]\setminus[q_1]}) \log^2 n \cdot \sqrt{\prod_{k=1}^{q} w_k} \operatorname{poly}(r)$.

Now for simplicity, we set q = 2, $n_i = n_0$ for $i \in [2]$. Note that it is optimal to choose $w_i = w$ for $i \in [2]$. Substituting q = 2, $n_i = n_0$ and $w_i = w$, we that the total running time of Alg. 3:

$$O\left(dw^{-1}n_0(nnz(A_1) + nnz(A_2)) + w^{-2}n_0^2 \operatorname{poly}(d/\epsilon) + wn_0 \operatorname{poly}(d) \log(n)\right).$$

For dense A_1 and A_2 , $nnz(A_1) + nnz(A_2) = O(n_0)$ time, and so ignoring poly and log terms that do not depend on n_0 , the total running time can be simplified to:

$$O(w^{-1}n_0^2 + wn_0).$$

Setting $w = \sqrt{n_0}$, we can minimize the above running time to $O(n_0^{3/2})$, which is faster than the n_0^2 time for solving the problem by forming $A_1 \otimes A_2$.