## A Background: CountSketch and TensorSketch

We start by describing the CountSketch transform Charikar et al. (2004). Let $m$ be the target dimension. When applied to $n$-dimensional vectors, the transform is specified by a 2 -wise independent hash function $h:[n] \rightarrow[m]$ and a 2 -wise independent sign function $s:[n] \rightarrow\{-1,+1\}$. When applied to $v$, the value at coordinate $i$ of the output, $i=1,2, \ldots, m$ is $\sum_{j \mid h(j)=i} s(j) v_{j}$. Note that CountSketch can be represented as an $m \times n$ matrix in which the $j$-th column contains a single non-zero entry $s(j)$ in the $h(j)$-th row.
We now describe the TensorSketch transform Pagh (2013). Suppose we are given points $v_{i} \in \mathbb{R}^{n_{i}}$, where $i=1, \ldots, q$ and so $\phi\left(v_{1}, \ldots, v_{q}\right)=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{q} \in \mathbb{R}^{n_{1} n_{2} \cdots n_{q}}$, and the target dimension is again $m$. The transform is specified using $q 3$-wise independent hash functions $h_{i}:\left[n_{i}\right] \rightarrow[m]$, and $q 4$-wise independent sign functions $s_{i}:\left[n_{i}\right] \rightarrow\{+1,-1\}$, where $i=1, \ldots, q$. TensorSketch applied to $v_{1}, \ldots \otimes v_{q}$ is then CountSketch applied to $\phi\left(v_{1}, \ldots, v_{q}\right)$ with hash function $H:\left[n_{1} n_{2} \cdots n_{q}\right] \rightarrow[m]$ and sign function $S:\left[n_{1} n_{2} \cdots n_{q}\right] \rightarrow\{+1,-1\}$ defined as follows:

$$
H\left(i_{1}, \ldots, i_{q}\right)=h_{1}\left(i_{1}\right)+h_{2}\left(i_{2}\right)+\cdots+h_{q}\left(i_{q}\right) \bmod m,
$$

and

$$
S\left(i_{1}, \ldots, i_{q}\right)=s_{1}\left(i_{1}\right) \cdot s_{2}\left(i_{2}\right) \cdots s_{q}\left(i_{q}\right),
$$

where $i_{j} \in\left[n_{j}\right]$. It is well-known that if $H$ is constructed this way, then it is 3 -wise independent Carter and Wegman (1979); Patrascu and Thorup (2012). Unlike the work of Pham and Pagh Pham and Pagh (2013), which only used that $H$ was 2 -wise independent, our analysis needs this stronger property of $H$.
The TensorSketch transform can be applied to $v_{1}, \ldots, v_{q}$ without computing $\phi\left(v_{1}, \ldots, v_{q}\right)$ as follows. Let $v_{j}=\left(v_{j_{e}}\right) \in \mathbb{R}^{n_{j}}$. First, compute the polynomials

$$
p_{\ell}(x)=\sum_{i=0}^{B-1} x^{i} \sum_{j_{\ell} \mid h_{\ell}\left(j_{\ell}\right)=i} v_{j_{\ell}} \cdot s_{\ell}\left(j_{\ell}\right),
$$

for $\ell=1,2, \ldots, q$. A calculation Pagh (2013) shows

$$
\prod_{\ell=1}^{q} p_{\ell}(x) \bmod \left(x^{B}-1\right)=\sum_{i=0}^{B-1} x^{i} \sum_{\left(j_{1}, \ldots, j_{q}\right) \mid H\left(j_{1}, \ldots, j_{q}\right)=i} v_{j_{1}} \cdots v_{j_{q}} S\left(j_{1}, \ldots, j_{q}\right),
$$

that is, the coefficients of the product of the $q$ polynomials $\bmod \left(x^{m}-1\right)$ form the value of TensorSketch $\left(v_{1}, \ldots, v_{q}\right)$. Pagh observed that this product of polynomials can be computed in $O(q m \log m)$ time using the Fast Fourier Transform. As it takes $O\left(q \max \left(\operatorname{nnz}\left(v_{i}\right)\right)\right)$ time to form the $q$ polynomials, the overall time to compute TensorSketch $(v)$ is $O\left(q\left(\max \left(\operatorname{nnz}\left(v_{i}\right)\right)+m \log m\right)\right)$.

## B TensorSketch is an Oblivious Subspace Embedding (OSE)

Let $S$ be the $m \times\left(n_{1} n_{2} \cdots n_{q}\right)$ matrix such that TensorSketch $\left(v_{1}, \ldots, v_{q}\right)$ is $S \cdot \phi\left(v_{1}, \ldots, v_{q}\right)$ for a randomly selected TensorSketch. Notice that $S$ is a random matrix. In the rest of the paper, we refer to such a matrix as a TensorSketch matrix with an appropriate number of rows, i.e., the number of hash buckets. We will show that $S$ is an oblivious subspace embedding for subspaces in $\mathbb{R}^{n_{1} n_{2} \cdots n_{q}}$ for appropriate values of $m$. Notice that $S$ has exactly one non-zero entry per column. The index of the non-zero in the column $\left(i_{1}, \ldots, i_{q}\right)$ is $H\left(i_{1}, \ldots, i_{q}\right)=\sum_{j=1}^{q} h_{j}\left(i_{j}\right) \bmod m$. Let $\delta_{a, b}$ be the indicator random variable of whether $S_{a, b}$ is non-zero. The sign of the non-zero entry in column $\left(i_{1}, \ldots, i_{q}\right)$ is $S\left(i_{1}, \ldots, i_{q}\right)=\prod_{j=1}^{q} s_{j}\left(i_{j}\right)$. We show that the embedding matrix $S$ of TensorSketch can be used to approximate matrix product and is an oblivious subspace embedding (OSE).
Theorem B.1. Let $S$ be the $m \times\left(n_{1} n_{2} \cdots n_{q}\right)$ matrix such that

$$
\operatorname{TensorSketch}\left(v_{1}, \ldots, v_{q}\right)
$$

is $S \cdot \phi\left(v_{1}, \ldots, v_{q}\right)$ for a randomly selected TensorSketch. The matrix $S$ satisfies the following two properties.

1. (Approximate Matrix Product :) Let $A$ and $B$ be matrices with $n_{1} n_{2} \cdots n_{q}$ rows. For $m \geq\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$, we have

$$
\operatorname{Pr}_{S}\left[\left\|A^{\top} S^{\top} S B-A^{\top} B\right\|_{F}^{2} \leq \epsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}\right] \geq 1-\delta .
$$

2. (Subspace Embedding :) Consider a fixed $k$-dimensional subspace V. If $m \geq k^{2}\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$, then with probability at least $1-\delta,\|S x\|=(1 \pm \epsilon)\|x\|$ simultaneously for all $x \in V$.

We establish the theorem via two lemmas as in Avron et al. (2016). The first lemma proves the approximate matrix product property via a careful second moment analysis.
Lemma B. 2 (Approximate matrix product). Let $A$ and $B$ be matrices with $n_{1} n_{2} \cdots n_{q}$ rows. For $m \geq$ $\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$, we have

$$
\operatorname{Pr}_{S}\left[\left\|A^{\top} S^{\top} S B-A^{\top} B\right\|_{F}^{2} \leq \epsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}\right] \geq 1-\delta
$$

Proof. The proof follows that in Avron et al. (2016). Let $C=A^{\top} S^{\top} S B$. We have

$$
C_{u, u^{\prime}}=\sum_{t=1}^{m} \sum_{i, j \in\left[n_{1} n_{2} \cdots n_{q}\right]} S(i) S(j) \delta_{t, i} \delta_{t, j} A_{i, u} B_{j, u^{\prime}}=\sum_{t=1}^{m} \sum_{i \neq j \in\left[n_{1} n_{2} \cdots n_{q}\right]} S(i) S(j) \delta_{t, i} \delta_{t, i} A_{i, u} B_{j, u^{\prime}}+\left(A^{\top} B\right)_{u, u^{\prime}}
$$

Thus, $\mathbf{E}\left[C_{u, u^{\prime}}\right]=\left(A^{\top} B\right)_{u, u^{\prime}}$.
Next, we analyze $\mathbf{E}\left[\left(\left(C-A^{\top} B\right)_{u, u^{\prime}}\right)^{2}\right]$. We have

$$
\left(\left(C-A^{\top} B\right)_{u, u^{\prime}}\right)^{2}=\sum_{t_{1}, t_{2}=1}^{m} \sum_{i_{1} \neq j_{1}, i_{2} \neq j_{2} \in\left[n_{1} n_{2} \cdots n_{q}\right]} S\left(i_{1}\right) S\left(i_{2}\right) S\left(j_{1}\right) S\left(j_{2}\right) \cdot \delta_{t_{1}, i_{1}} \delta_{t_{1}, j_{1}} \delta_{t_{2}, i_{2}} \delta_{t_{2}, j_{2}} \cdot A_{i_{1}, u} A_{i_{2}, u} B_{j_{1}, u^{\prime}} B_{j_{2}, u^{\prime}}
$$

For a term in the summation on the right hand side to have a non-zero expectation, it must be the case that $\mathbf{E}\left[S\left(i_{1}\right) S\left(i_{2}\right) S\left(j_{1}\right) S\left(j_{2}\right)\right] \neq 0$. Note that $S\left(i_{1}\right) S\left(i_{2}\right) S\left(j_{1}\right) S\left(j_{2}\right)$ is a product of random signs (possibly with multiplicities) where the random signs in different coordinates in $\{1, \ldots, q\}$ are independent and they are 4 -wise independent within each coordinate. Thus, $\mathbf{E}\left[S\left(i_{1}\right) S\left(i_{2}\right) S\left(j_{1}\right) S\left(j_{2}\right)\right]$ is either 1 or 0 . For the expectation to be 1 , all random signs must appear with even multiplicities. In other words, in each of the $q$ coordinates, the 4 coordinates of $i_{1}, i_{2}, j_{1}, j_{2}$ must be the same number appearing 4 times or 2 distinct numbers, each appearing twice. All the subsequent claims in the proof regarding $i_{1}, i_{2}, j_{1}, j_{2}$ agreeing on some coordinates follow from this property.

Let $S_{1}$ be the set of coordinates where $i_{1}$ and $i_{2}$ agree. Note that $j_{1}$ and $j_{2}$ must also agree in all coordinates in $S_{1}$ by the above argument. Let $S_{2} \subset[q] \backslash S_{1}$ be the coordinates among the remaining where $i_{1}$ and $j_{1}$ agree. Finally, let $S_{3}=[q] \backslash\left(S_{1} \cup S_{2}\right)$. All coordinates in $S_{3}$ of $i_{1}$ and $j_{2}$ must agree. Similarly as before, note that $i_{2}$ and $j_{2}$ agree on all coordinates in $S_{2}$ and $i_{2}$ and $j_{1}$ agree on all coordinates in $S_{3}$. We can rewrite $i_{1}=(a, b, c), i_{2}=(a, e, f), j_{1}=(g, b, f), j_{2}=(g, e, c)$ where $a=\left(a_{\ell}\right), g=\left(g_{\ell}\right)$ with $\ell \in S_{1}, b=\left(b_{\ell}\right), e=\left(e_{\ell}\right)$ with $\ell \in S_{2}$ and $c=\left(c_{\ell}\right), f=\left(f_{\ell}\right)$ with $\ell \in S_{3}$.
First we show that the contribution of the terms where $i_{1}=i_{2}$ or $i_{1}=j_{2}$ is bounded by $\frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}$, where $A_{u}$ is the $u$ th column of $A$ and $B_{u^{\prime}}$ is the $u^{\prime}$ th column of $B$. Indeed, consider the case $i_{1}=i_{2}$. As observed before, we must have $j_{1}=j_{2}$ to get a non-zero contribution. Note that if $t_{1} \neq t_{2}$, we always have $\delta_{t_{1}, i_{1}} \delta_{t_{2}, i_{2}}=0$ as $H\left(i_{1}\right)$ cannot be equal to both $t_{1}$ and $t_{2}$. Thus, for fixed $i_{1}=i_{2}, j_{1}=j_{2}$,

$$
\begin{aligned}
& \mathbf{E}\left[\sum_{t_{1}, t_{2}=1}^{m} S\left(i_{1}\right) S\left(i_{2}\right) S\left(j_{1}\right) S\left(j_{2}\right) \cdot \delta_{t_{1}, i_{1}} \delta_{t_{1}, j_{1}} \delta_{t_{2}, i_{2}} \delta_{t_{2}, j_{2}} \cdot A_{i_{1}, u} A_{i_{2}, u} B_{j_{1}, u^{\prime}} B_{j_{2}, u^{\prime}}\right] \\
= & \mathbf{E}\left[\sum_{t_{1}=1}^{m} \delta_{i_{1}, t_{1}}^{2} \delta_{j_{1}, t_{1}}^{2} A_{i_{1}, u}^{2} B_{j_{1}, u^{\prime}}^{2}\right] \\
= & \frac{A_{i_{1}, u}^{2} B_{j_{1}, u^{\prime}}^{2}}{m}
\end{aligned}
$$

Summing over all possible values of $i_{1}, j_{1}$, we get the desired bound of $\frac{\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}$. The case $i_{1}=j_{2}$ is analogous.
Next we compute the contribution of the terms where $i_{1} \neq i_{2}, j_{1}, j_{2}$ i.e., there are at least 3 distinct numbers among $i_{1}, i_{2}, j_{1}, j_{2}$. Notice that $\mathbf{E}\left[\delta_{t_{1}, i_{1}} \delta_{t_{1}, j_{1}} \delta_{t_{2}, i_{2}} \delta_{t_{2}, j_{2}}\right] \leq \frac{1}{m^{3}}$ because the $\delta_{t, i}$ 's are 3 -wise independent. For fixed $i_{1}, j_{1}, i_{2}, j_{2}$, there are $m^{2}$ choices of $t_{1}, t_{2}$ so the total contribution to the expectation from terms with the same $i_{1}, j_{1}, i_{2}, j_{2}$ is bounded by $m^{2} \cdot \frac{1}{m^{3}} \cdot\left|A_{i_{1}, u} A_{i_{2}, u} B_{j_{1}, u^{\prime}} B_{j_{2}, u^{\prime}}\right|=\frac{1}{m}\left|A_{i_{1}, u} A_{i_{2}, u} B_{j_{1}, u^{\prime}} B_{j_{2}, u^{\prime}}\right|$.
Therefore,

$$
\begin{aligned}
& \mathbf{E}\left[\left(\left(C-A^{\top} B\right)_{u, u^{\prime}}\right)^{2}\right] \\
\leq & \frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{1}{m} \sum_{\text {partition } S_{1}, S_{2}, S_{3}} \sum_{a, g, b, e, c, f}\left|A_{(a, b, c), u} B_{(g, b, f), u^{\prime}} A_{(a, e, f), u} B_{(g, e, c), u^{\prime}}\right| \\
\leq & \left.\frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{3^{q}}{m} \sum_{a, b, c, g, e, f} \right\rvert\, A_{(a, b, c), u} B_{(g, b, f), u^{\prime}} A_{(a, e, f), u} B_{(g, e, c), u^{\prime} \mid} \\
\leq & \frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{3^{q}}{m} \sum_{g, e, f}\left(\sum_{a, b, c} A_{(a, b, c), u}^{2}\right)^{1 / 2}\left(\sum_{a, b, c} B_{(g, b, f), u^{\prime}}^{2} A_{(a, e, f), u}^{2} B_{(g, e, c), u^{\prime}}^{2}\right)^{1 / 2} \\
= & \frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{3^{q}\left\|A_{u}\right\|}{m} \sum_{g, e, f}\left(\sum_{b} B_{(g, b, f), u^{\prime}}^{2}\right)^{1 / 2}\left(\sum_{a, c} A_{(a, e, f), u}^{2} B_{(g, e, c), u^{\prime}}^{2}\right)^{1 / 2} \\
\leq & \frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{3^{q}\left\|A_{u}\right\|}{m} \sum_{e}\left(\sum_{b, g, f} B_{(g, b, f), u^{\prime}}^{2}\right)^{1 / 2}\left(\sum_{a, c, g, f} A_{(a, e, f), u}^{2} B_{(g, e, c), u^{\prime}}^{2}\right)^{1 / 2} \\
= & \frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{3^{q}\left\|A_{u}\right\| \cdot\left\|B_{u^{\prime}}\right\|}{m} \sum_{e}\left(\sum_{a, f} A_{(a, e, f), u}^{2}\right)^{1 / 2}\left(\sum_{g, c} B_{(g, e, c), u^{\prime}}^{2}\right)^{1 / 2} \\
\leq & \frac{2\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}+\frac{3^{q}\left\|A_{u}\right\| \cdot\left\|B_{u^{\prime}}\right\|}{m}\left(\sum_{a, e, f} A_{(a, e, f), u}^{2}\right)^{1 / 2}\left(\sum_{g, e, c} B_{(g, e, c), u^{\prime}}^{2}\right)^{1 / 2} \\
= & \frac{\left(2+3^{q}\right)\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m},
\end{aligned}
$$

where the second inequality follows from the fact that there are at most $3^{q}$ partitions of $[q]$ into 3 sets. The other inequalities are from Cauchy-Schwarz.

Combining the above bounds, we have $\mathbf{E}\left[\left(\left(C-A^{\top} B\right)_{u, u^{\prime}}\right)^{2}\right] \leq \frac{\left(2+3^{q}\right)\left\|A_{u}\right\|_{2}^{2}\left\|B_{u^{\prime}}\right\|_{2}^{2}}{m}$. For $m \geq\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$, by the Markov inequality, $\left\|A^{\top} S^{\top} S B-A^{\top} B\right\|_{F}^{2} \leq \epsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}$ with probability $1-\delta$.

The second lemma proves that the subspace embedding property follows from the approximate matrix product property.

Lemma B. 3 (Oblivious subspace embeddings). Consider a fixed $k$-dimensional subspace $V \subset \mathbb{R}^{n_{1} n_{2} \cdots n_{q}}$. If $m \geq k^{2}\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$, then with probability at least $1-\delta,\|S x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ simultaneously for all $x \in V$.

Proof. Let $B$ be a $\left(n_{1} n_{2} \cdots n_{q}\right) \times k$ matrix whose columns form an orthonormal basis of $V$. Thus, we have $B^{\top} B=I_{k}$ and $\|B\|_{F}^{2}=k$. The condition that $\|S x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ simultaneously for all $x \in V$ is equivalent to the condition that the singular values of $S B$ are bounded by $1 \pm \epsilon$. By Lemma B. 2 , for $m \geq\left(2+3^{q}\right) /\left((\epsilon / k)^{2} \delta\right)$, with probability at least $1-\delta$, we have

$$
\left\|B^{\top} S^{\top} S B-B^{\top} B\right\|_{F}^{2} \leq(\epsilon / k)^{2}\|B\|_{F}^{4}=\epsilon^{2}
$$

Thus, we have $\left\|B^{\top} S^{\top} S B-I_{k}\right\|_{2} \leq\left\|B^{\top} S^{\top} S B-I_{k}\right\|_{F} \leq \epsilon$. In other words, the squared singular values of $S B$ are bounded by $1 \pm \epsilon$, implying that the singular values of $S B$ are also bounded by $1 \pm \epsilon$. Note that $\|A\|_{2}$ for a matrix $A$ denotes its operator norm.

## C Missing Proofs

## C. 1 Proofs for Tensor Product Least Square Regression

Theorem 3.1. (Tensor regression) Suppose $\widetilde{x}$ is the output of Algorithm 1 with TENSORSKETCH $S \in \mathbb{R}^{m \times n}$, where $m=8\left(d_{1} d_{2} \cdots d_{q}+1\right)^{2}\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$. Then the following approximation $\left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \widetilde{x}-b\right\|_{2} \leq(1+\epsilon)$ OPT, holds with probability at least $1-\delta$.

Proof. It is easy to see that

$$
\left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) x-b\right\|_{2}=\left\|\left[\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \quad b\right]\left[\begin{array}{c}
x \\
-1
\end{array}\right]\right\|_{2}
$$

and identifying

$$
y=\left[\begin{array}{ll}
\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) & b
\end{array}\right]\left[\begin{array}{c}
x \\
-1
\end{array}\right] \in \mathbb{R}^{n_{1} n_{2} \cdots n_{q}}
$$

and $y$ is a vector of a subspace $V \subset \mathbb{R}^{n_{1} n_{2} \cdots n_{q}}$ with dimension at most $d_{1} d_{2} \cdots d_{q}+1$, we can use Lemma B. 3 to conclude that

$$
\operatorname{Pr}\left[\left|\|S y\|_{2}-\|y\|_{2}\right| \leq \epsilon\|y\|_{2}\right] \geq 1-\delta
$$

when $m=\left(d_{1} d_{2} \cdots d_{q}+1\right)^{2}\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$.
Thus we have

$$
\left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \widetilde{x}-b\right\|_{2} \leq \frac{1}{1-\epsilon}\left\|S\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \widetilde{x}-S b\right\|_{2}
$$

and

$$
\left\|S\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) x-S b\right\|_{2} \leq(1+\epsilon)\left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) x-b\right\|_{2}
$$

hold with probability at least $1-\delta$. Then using a union bound, we have

$$
\begin{aligned}
& \left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \widetilde{x}-b\right\|_{2} \\
\leq & \frac{1}{1-\epsilon}\left\|S\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \widetilde{x}-S b\right\|_{2} \\
\leq & \frac{1}{1-\epsilon}\left\|S\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) x-S b\right\|_{2} \\
\leq & \frac{1+\epsilon}{1-\epsilon}\left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) x-b\right\|_{2}
\end{aligned}
$$

holds with probability at least $1-2 \delta$.
Corollary 3.2. (Sketch for tensor nonnegative regression) Suppose $\tilde{x}=\min _{x \geq 0}\|S \mathcal{A} x-S b\|_{2}$ with TENSORSKETCH $S \in \mathbb{R}^{m \times n}$, where $m=8\left(d_{1} d_{2} \cdots d_{q}+1\right)^{2}\left(2+3^{q}\right) /\left(\epsilon^{2} \delta\right)$. Then the following approximation $\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) \widetilde{x}-$ $b \|_{2} \leq(1+\epsilon)$ OPT holds with probability at least $1-\delta$, where $\mathrm{OPT}=\min _{x \geq 0}\left\|\left(A_{1} \otimes A_{2} \otimes \cdots \otimes A_{q}\right) x-b\right\|_{2}$.

Proof. The proof of Theorem. 3.2 is similar to the proof of theorem 3.1. Denote $\tilde{x}=\min _{x \geq 0}\|S \mathcal{A} x-S b\|_{2}$ and $x^{*}=\min _{x \geq 0}\|\mathcal{A} x-b\|_{2}$. Using Lemma. B.3, we have:

$$
\begin{equation*}
\|\mathcal{A} \tilde{x}-b\|_{2} \leq \frac{1}{1-\epsilon}\|S \mathcal{A} \tilde{x}-S b\|_{2} \tag{6}
\end{equation*}
$$

with probability at least $1-\delta$, and

$$
\begin{equation*}
\left\|S \mathcal{A} x^{*}-S b\right\|_{2} \leq(1+\epsilon)\left\|\mathcal{A} x^{*}-b\right\|_{2} \tag{7}
\end{equation*}
$$

with probability at least $1-\delta$. Hence applying a union bound we have:

$$
\begin{align*}
& \|\mathcal{A} \tilde{x}-b\|_{2}  \tag{8}\\
\leq & \frac{1}{1-\epsilon}\|S \mathcal{A} \tilde{x}-S b\|_{2} \\
\leq & \frac{1}{1-\epsilon}\left\|S \mathcal{A} x^{*}-S b\right\|_{2} \\
\leq & \frac{1+\epsilon}{1-\epsilon}\left\|\mathcal{A} x^{*}-b\right\|_{2}, \tag{9}
\end{align*}
$$

with probability at least $1-2 \delta$.

## C. 2 Proofs for P-Splines

Lemma 4.1. Let $x^{*} \in \mathbb{R}^{d}$, $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$ as above. Let $U_{1} \in \mathbb{R}^{n \times d}$ denote the first $n$ rows of an orthogonal basis for $\left[\begin{array}{c}A \\ \sqrt{\lambda} L\end{array}\right] \in \mathbb{R}^{(n+p) \times d}$. Let sketching matrix $S \in \mathbb{R}^{m \times n}$ have a distribution such that with constant probability

$$
\text { (I) }\left\|U_{1}^{\top} S^{\top} S U_{1}-U_{1}^{\top} U_{1}\right\|_{2} \leq 1 / 4
$$

and

$$
\text { (II) }\left\|U_{1}^{\top}\left(S^{\top} S-I\right)\left(b-A x^{*}\right)\right\|_{2} \leq \sqrt{\epsilon \mathrm{OPT} / 2}
$$

Let $\widetilde{x}$ denote $\operatorname{argmin}_{x \in \mathbb{R}^{d}}\|S(A x-b)\|_{2}^{2}+\lambda\|L x\|_{2}^{2}$. Then with probability at least $9 / 10$,

$$
\|A \widetilde{x}-b\|_{2}^{2}+\lambda\|L \widetilde{x}\|_{2}^{2} \leq(1+\epsilon) \mathrm{OPT}
$$

Proof. Let $\hat{A} \in \mathbb{R}^{(n+d) \times d}$ have orthonormal columns with range $(\hat{A})=\operatorname{range}\left(\left[\begin{array}{c}A \\ \sqrt{\lambda} L\end{array}\right]\right.$ ). (An explicit expression for one such $\hat{A}$ is given below.) Let $\hat{b} \equiv\left[\begin{array}{c}b \\ 0_{d}\end{array}\right]$. We have

$$
\begin{equation*}
\min _{y \in \mathbb{R}^{d}}\|\hat{A} y-\hat{b}\|_{2} \tag{10}
\end{equation*}
$$

equivalent to $\|b-A x\|_{2}^{2}+\lambda\|L x\|_{2}^{2}$, in the sense that for any $\hat{A} y \in \operatorname{range}(\hat{A})$, there is $x \in \mathbb{R}^{d}$ with $\hat{A} y=\left[\begin{array}{c}A \\ \sqrt{\lambda} L\end{array}\right] x$, so that $\|\hat{A} y-\hat{b}\|_{2}^{2}=\left\|\left[\begin{array}{c}A \\ \sqrt{\lambda} L\end{array}\right] x-\hat{b}\right\|_{2}^{2}=\|b-A x\|_{2}^{2}+\lambda\|L x\|_{2}^{2}$. Let $y^{*}=\operatorname{argmin}_{y \in \mathbb{R}^{d}}\|\hat{A} y-\hat{b}\|_{2}$, so that $\hat{A} y^{*}=\left[\begin{array}{c}A x^{*} \\ \sqrt{\lambda} L x^{*}\end{array}\right]$. Let $\hat{A}=\left[\begin{array}{c}U_{1} \\ U_{2}\end{array}\right]$, where $U_{1} \in \mathbb{R}^{n \times d}$ and $U_{2} \in \mathbb{R}^{d \times d}$, so that $U_{1}$ is as in the lemma statement.
We define $\hat{S}$ to be $\left[\begin{array}{cc}S & 0_{m \times d} \\ 0_{d \times n} & I_{d}\end{array}\right]$ and $\hat{S}$ satisfies Property (I) and (II) of Lemma 4.1.
Using $\left\|U_{1}^{\top} S^{\top} S U_{1}-U_{1}^{\top} U_{1}\right\|_{2} \leq 1 / 4$, with constant probability

$$
\begin{equation*}
\left\|\hat{A}^{\top} \hat{S}^{\top} \hat{S} \hat{A}-I_{d}\right\|_{2}=\left\|U_{1}^{\top} S^{\top} S U_{1}+U_{2}^{\top} U_{2}-I_{d}\right\|_{2}=\left\|U_{1}^{\top} S^{\top} S U_{1}-U_{1}^{\top} U_{1}\right\|_{2} \leq 1 / 4 \tag{11}
\end{equation*}
$$

Using the normal equations for Eq. (10), we have

$$
0=\hat{A}^{\top}\left(\hat{b}-\hat{A} y^{*}\right)=U_{1}^{\top}\left(b-A x^{*}\right)-\sqrt{\lambda} U_{2}^{\top} x^{*}
$$

and so

$$
\hat{A}^{\top} \hat{S}^{\top} \hat{S}\left(\hat{b}-\hat{A} y^{*}\right)=U_{1}^{\top} S^{\top} S\left(b-A x^{*}\right)-\sqrt{\lambda} U_{2}^{\top} x^{*}=U_{1}^{\top} S^{\top} S\left(b-A x^{*}\right)-U_{1}^{\top}\left(b-A x^{*}\right)
$$

Using Property (II) of Lemma 4.1, with constant probability

$$
\begin{align*}
& \left\|\hat{A}^{\top} \hat{S}^{\top} \hat{S}\left(\hat{b}-\hat{A} y^{*}\right)\right\|_{2} \\
= & \left\|U_{1}^{\top} S^{\top} S\left(b-A x^{*}\right)-U_{1}^{\top}\left(b-A x^{*}\right)\right\|_{2} \\
\leq & \sqrt{\epsilon \mathrm{OPT} / 2} \\
= & \sqrt{\epsilon / 2}\left\|\hat{b}-\hat{A} y^{*}\right\|_{2} . \tag{12}
\end{align*}
$$

It follows by a standard result from (11) and (12) that the solution $\tilde{y} \equiv \operatorname{argmin}_{y \in \mathbb{R}^{d}}\|\hat{S}(\hat{A} y-\hat{b})\|_{2}$ has $\|\hat{A} \tilde{y}-\hat{b}\|_{2} \leq$ $(1+\epsilon) \min _{y \in \mathbb{R}^{d}}\|\hat{A} y-\hat{b}\|_{2}$, and therefore that $\tilde{x}$ satisfies the claim of the theorem.

For convenience we give the proof of the standard result: (11) implies that $\hat{A}^{\top} \hat{S}^{\top} \hat{S} \hat{A}$ has smallest singular value at least $3 / 4$. The normal equations for the unsketched and sketched problems are

$$
\hat{A}^{\top}\left(\hat{b}-\hat{A} y^{*}\right)=0=\hat{A}^{\top} \hat{S}^{\top} \hat{S}(\hat{b}-\hat{A} \tilde{y})
$$

The normal equations for the unsketched case imply $\|\hat{A} \tilde{y}-\hat{b}\|_{2}^{2}=\left\|\hat{A}\left(\tilde{y}-y^{*}\right)\right\|_{2}^{2}+\left\|\hat{b}-\hat{A} y^{*}\right\|_{2}^{2}$, so it is enough to show that $\left\|\hat{A}\left(\tilde{y}-y^{*}\right)\right\|_{2}^{2}=\left\|\tilde{y}-y^{*}\right\|_{2}^{2} \leq \epsilon \mathrm{OPT}$. We have

$$
\begin{array}{rlr}
(3 / 4)\left\|\tilde{y}-y^{*}\right\|_{2} & \leq\left\|\hat{A}^{\top} \hat{S}^{\top} \hat{S} \hat{A}\left(\tilde{y}-y^{*}\right)\right\|_{2} & \text { by Eq. (11) } \\
& =\left\|\hat{A}^{\top} \hat{S}^{\top} \hat{S} \hat{A}\left(\tilde{y}-y^{*}\right)-\hat{A}^{\top} \hat{S}^{\top} \hat{S}(\hat{b}-\hat{A} \tilde{y})\right\|_{2} & \text { by Normal Equation } \\
& =\left\|\hat{A}^{\top} \hat{S}^{\top} \hat{S}\left(\hat{b}-\hat{A} y^{*}\right)\right\|_{2} & \\
& \leq \sqrt{\epsilon \text { OPT } / 2} & \text { by Eq. (12) }
\end{array}
$$

so that $\left\|\tilde{y}-y^{*}\right\|_{2}^{2} \leq(4 / 3)^{2} \epsilon \mathrm{OPT} / 2 \leq \epsilon \mathrm{OPT}$. The lemma follows.

The following lemma computes the statistical dimension $\operatorname{sd}_{\lambda}(A, L)$ that will be used for computing the number of rows of sketching matrix $S$.
Lemma C.1. For $U_{1}$ as in Lemma 4.1, $\left\|U_{1}\right\|_{F}^{2}=\operatorname{sd}_{\lambda}(A, L)=\sum_{i} 1 /\left(1+\lambda / \gamma_{i}^{2}\right)+d-p$, where $A$ has singular values $\sigma_{i}$. Also $\left\|U_{1}\right\|_{2}=\max \left\{1 / \sqrt{1+\lambda / \gamma_{1}^{2}}, 1\right\}$.

Proof. Suppose we have the GSVD of $(A, L)$. Let

$$
D \equiv\left[\begin{array}{cc}
\Sigma^{\top} \Sigma+\lambda \Omega^{\top} \Omega & 0_{p \times(n-p)} \\
0_{(n-p) \times p} & I_{d-p}
\end{array}\right]^{-1 / 2}
$$

Then

$$
\hat{A}=\left[\begin{array}{c}
U\left[\begin{array}{cc}
\Sigma & 0_{p \times(n-p)} \\
0_{(n-p) \times p} & I_{d-p}
\end{array}\right] \\
\left.\sqrt{\lambda} V\left[\begin{array}{ll}
\Omega & \left.0_{p \times(n-p)}\right] D
\end{array}\right] .\right] .
\end{array}\right.
$$

has $\hat{A}^{\top} \hat{A}=I_{d}$, and for given $x$, there is $y=D^{-1} R Q^{\top} x$ with $\hat{A} y=\left[\begin{array}{c}A \\ \sqrt{\lambda} L\end{array}\right] x$. We have $\left\|U_{1}\right\|_{F}^{2}=$ $\left\|U\left[\begin{array}{cc}\Sigma & 0_{p \times(n-p)} \\ 0_{(n-p) \times p} & I_{d-p}\end{array}\right]\right\|_{F}^{2}=\left\|\left[\begin{array}{cc}\Sigma & 0_{p \times(n-p)} \\ 0_{(n-p) \times p} & I_{d-p}\end{array}\right] D\right\|_{F}^{2}=\sum_{i=1}^{p} 1 /\left(1+\lambda / \gamma_{i}^{2}\right)+d-p$ as claimed.

Theorem 4.3. (P-Spline regression) There is a constant $K>0$ such that for $m \geq K\left(\epsilon^{-1} \operatorname{sd}_{\lambda}(A, L)+\operatorname{sd}_{\lambda}(A, L)^{2}\right)$ and $S \in \mathbb{R}^{m \times n}$ a sparse embedding matrix (e.g., Countsketch) with $S A$ computable in $O(\mathrm{nnz}(A))$ time, Property (I) and (II) of Lemma 4.1 apply, and with constant probability the corresponding $\widetilde{x}=\operatorname{argmin} x_{x \in \mathbb{R}^{d}}\|S(A x-b)\|_{2}+$ $\lambda\|L x\|_{2}^{2}$ is an $\epsilon$-approximate solution to $\min _{x \in \mathbb{R}^{d}}\|b-A x\|_{2}^{2}+\lambda\|L x\|_{2}^{2}$.

Proof. Recall that $\operatorname{sd}_{\lambda}(A, L)=\left\|U_{1}\right\|_{F}^{2}$. Sparse embedding distributions satisfy the bound for approximate matrix multiplication

$$
\left\|W^{\top} S^{\top} S H-W^{\top} H\right\|_{F} \leq C\|W\|_{F}\|H\|_{F} / \sqrt{m}
$$

for a constant $C$ (Clarkson and Woodruff, 2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013); this is also true of OSE matrices. We set $W=H=U_{1}$ and use $\|X\|_{2} \leq\|X\|_{F}$ for all $X$ and $m \geq K\left\|U_{1}\right\|_{F}^{4}$ to obtain Property (I) of Lemma 4.1, and set $W=U_{1}, H=b-A x^{*}$ and use $m \geq K\left\|U_{1}\right\|_{F}^{2} / \epsilon$ to obtain Property (II) of Lemma 4.1. (Here the bound is slightly stronger than Property (II), holding for $\lambda=0$.) With Property (I) and Property (II), the claim for $\tilde{x}$ from a sparse embedding follows using Lemma 4.1.

## C. 3 Proofs for Tensor Product $\ell_{1}$ Regression

Lemma 5.3. For any $p \geq 1$. Condition $(\mathcal{A})$ computes $\mathcal{A} U /\left(d \gamma_{p}\right)$ which is an $\left(\alpha, \beta \sqrt{3} d(t w)^{|1 / p-1 / 2|}, p\right)$-wellconditioned basis of $\mathcal{A}$, with probability at least $1-\prod_{i=1}^{q}\left(n_{i} / w_{i}\right) \delta$.

Proof. This lemma is similar to arguments in Clarkson et al. (2013), we simply adjust notation and parameters for completeness. Applying Theorem 5.2, we have that with probability at least $1-\prod_{i=1}^{q}\left(n_{i} / w_{i}\right) \delta$, for all $x \in \mathbb{R}^{r}$, if we consider $y=\mathcal{A} x$ and write $y^{\top}=\left[z_{1}^{\top}, z_{2}^{\top}, \ldots, z_{\prod_{i=1}^{q} n_{i} / w_{i}}\right]^{\top}$, then for all $i \in\left[\prod_{i=1}^{q} n_{i} / w_{i}\right]$,

$$
\sqrt{\frac{1}{2}}\left\|z_{i}\right\|_{2} \leq\left\|S_{i} z_{i}\right\|_{2} \leq \sqrt{\frac{3}{2}}\left\|z_{i}\right\|_{2}
$$

where $S_{i} \in \mathbb{R}^{m_{i} \times \prod_{i=1}^{q} w_{i}}$. In the following, suppose $m_{i}=t$. By relating the 2 -norm and the $p$-norm, for $1 \leq p \leq 2$, we have

$$
\left\|S_{i} z_{i}\right\|_{p} \leq t^{1 / p-1 / 2}\left\|S z_{i}\right\|_{2} \leq t^{1 / p-1 / 2} \sqrt{\frac{3}{2}}\left\|z_{i}\right\|_{2} \leq t^{1 / p-1 / 2} \sqrt{\frac{3}{2}}\left\|z_{i}\right\|_{p}
$$

and similarly,

$$
\left\|S_{i} z_{i}\right\|_{p} \geq\left\|S_{i} z_{i}\right\|_{2} \geq \sqrt{\frac{1}{2}}\left\|z_{i}\right\|_{2} \geq \sqrt{\frac{1}{2}} w^{1 / 2-1 / p}\left\|z_{i}\right\|_{p}, w=\prod_{j=1}^{q} w_{j}
$$

If $p>2$, then

$$
\left\|S_{i} z_{i}\right\|_{p} \leq\left\|S_{i} z_{i}\right\|_{2} \leq \sqrt{\frac{3}{2}}\left\|z_{i}\right\|_{2} \leq \sqrt{\frac{3}{2}} w^{1 / 2-1 / p}\left\|z_{i}\right\|_{p}
$$

and similarly,

$$
\left\|S_{i} z_{i}\right\|_{p} \geq t^{1 / p-1 / 2}\left\|S_{i} z_{i}\right\|_{2} \geq t^{1 / p-1 / 2} \sqrt{\frac{1}{2}}\left\|z_{i}\right\|_{2} \geq t^{1 / p-1 / 2} \sqrt{\frac{1}{2}}\left\|z_{i}\right\|_{p}
$$

Since $\|\mathcal{A} x\|_{p}^{p}=\|y\|_{p}^{p}=\sum_{i}\left\|z_{i}\right\|_{p}^{p}$ and $\|S \mathcal{A} x\|_{p}^{p}=\sum_{i}\left\|S_{i} z_{i}\right\|_{p}^{p}$, for $p \in[1,2]$ we have with probability $1-$ $\prod_{i=1}^{q}\left(n_{i} / w_{i}\right) \delta$

$$
\sqrt{\frac{1}{2}} w^{1 / 2-1 / p}\|\mathcal{A} x\|_{p} \leq\|S \mathcal{A} x\|_{p} \leq \sqrt{\frac{3}{2}} t^{1 / p-1 / 2}\|\mathcal{A} x\|_{p}
$$

and for $p \in[2, \infty)$ with probability $1-\prod_{i=1}^{q}\left(n_{i} / w_{i}\right) \delta$

$$
\sqrt{\frac{1}{2}} t^{1 / p-1 / 2}\|\mathcal{A} x\|_{p} \leq\|S \mathcal{A} x\|_{p} \leq \sqrt{\frac{3}{2}} w^{1 / 2-1 / p}\|\mathcal{A} x\|_{p}
$$

In either case,

$$
\begin{equation*}
\|\mathcal{A} x\|_{p} \leq \gamma_{p}\|S \mathcal{A} x\|_{p} \leq \sqrt{3}(t w)^{|1 / p-1 / 2|}\|\mathcal{A} x\|_{p} \tag{13}
\end{equation*}
$$

We have, from the definition of an $(\alpha, \beta, p)$-well-conditioned basis, that

$$
\begin{equation*}
\|S \mathcal{A} U\|_{p} \leq \alpha \tag{14}
\end{equation*}
$$

and for all $x \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\|x\|_{q} \leq \beta\|S \mathcal{A} U x\|_{p} \tag{15}
\end{equation*}
$$

Combining (13) and (14), we have that with probability at least $1-\prod_{i=1}^{q}\left(n_{i} / w_{i}\right) \delta$,

$$
\left\|\mathcal{A} U /\left(r \gamma_{p}\right)\right\|_{p} \leq \sum_{i}\left\|\mathcal{A} U_{i} / r \gamma_{p}\right\|_{p} \leq \sum_{i}\left\|S \mathcal{A} U_{i} / r\right\|_{p} \leq \alpha
$$

Combining (13) and (15), we have that with probability at least $1-\prod_{i=1}^{q}\left(n_{i} / w_{i}\right) \delta$, for all $x \in \mathbb{R}^{r}$,

$$
\|x\|_{q} \leq \beta\|S \mathcal{A} U x\|_{p} \leq \beta \sqrt{3} r(t w)^{|1 / p-1 / 2|}\left\|\mathcal{A} U \frac{1}{r \gamma_{p}} x\right\|_{p} .
$$

Hence $\mathcal{A} U /\left(r \gamma_{p}\right)$ is an $\left(\alpha, \beta \sqrt{3} r(t w)^{|1 / p-1 / 2|}, p\right)$-well-conditioned basis.

Theorem 5.4. (Main result) Given $\epsilon \in(0,1), \mathcal{A} \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$, Alg. 3 computes $\widehat{x}$ such that with probability at least $1 / 2,\|\mathcal{A} \hat{x}-b\|_{1} \leq(1+\epsilon) \min _{x \in \mathbb{R}^{d}}\|\mathcal{A} x-b\|_{1}$. For the special case when $q=2, n_{1}=n_{2}$, the algorithm's running time is $O\left(n_{1}{ }^{3 / 2} \operatorname{poly}\left(\prod_{i=1}^{2} d_{i} / \epsilon\right)\right)$.

Proof. For notational simplicity, let us denote $n_{\left[q_{1}\right]}=\prod_{i=1}^{q_{1}} n_{i}, n_{[q] \backslash\left[q_{1}\right]}=\prod_{i=q_{1}+1}^{q} n_{1}, d_{\left[q_{1}\right]}=\prod_{i=1}^{q_{1}} d_{i}$, and $d_{[q] \backslash\left[q_{1}\right]}=\prod_{i=q_{1}+1}^{q} d_{i}$. For any row-block $A_{i_{1}}^{1} \otimes \ldots \otimes A_{i_{q}}^{(q)}$, computing $S_{i 1 i 2 \ldots i_{q}}\left(A_{i_{1}}^{1} \otimes \ldots \otimes A_{i_{q}}^{(q-1)}\right)$ takes $O\left(d\left(\sum_{k=1}^{q} n n z\left(A_{i_{k}}^{(k)}\right)\right)+d q m \log (m)\right)($ see Sec 2$)$. Hence for $S \mathcal{A}$, it takes:

$$
\left(d \sum_{k=1}^{q} \operatorname{nnz}\left(A_{k}\right) \prod_{i \in[q] \backslash\{k\}}^{q} n_{i} / w_{i}\right)+\left(d q m \log (m) \prod_{i=1}^{q} n_{i} / w_{i}\right)
$$

where $S \in \mathbb{R}^{\left(m \prod_{i=1}^{q}\left(n_{i} / w_{i}\right)\right) \times \prod_{i=1}^{q} w_{i}}$ and $m \geq 100 \prod_{i=1}^{q} d_{i}^{2}\left(2+3^{q}\right) / \epsilon^{2}=O(\operatorname{poly}(d / \epsilon))$. We need to compute an orthogonal factorization $S \mathcal{A}=Q R_{\mathcal{A}}$ in $O\left(q m d^{2}\right)$ and then compute $U=R_{\mathcal{A}}^{-1}$ in $O\left(d^{3}\right)$ time. Hence the total running time of Algorithm Condition $(\mathcal{A})$ is $O\left(q m d^{2}+d^{3}\right)$. Thus the total running time of computing $S \mathcal{A}$ and Condition(A) is

$$
O\left(\left(\sum_{k=1}^{q} \operatorname{nnz}\left(A_{k}\right) \prod_{i \in[q] \backslash\{k\}}^{q} n_{i} / w_{i}\right)+\left(\prod_{i=1}^{q} n_{i} / w_{i}\right) \operatorname{poly}(d / \epsilon)+q m d^{2}+d^{3}\right)
$$

We will compute $U G$ in $O\left(d^{2} \log n\right)$ time. We compute $\widetilde{E}=E\left(A_{q_{1}+1} \otimes \ldots \otimes A_{q}\right)^{T}$ in $O\left(d n_{[q] \backslash\left[q_{1}\right]}\right)$ time.
Then we can compute $R\left(A_{1} \otimes \cdots \otimes A_{q_{1}}\right) \widetilde{E}_{j}$ in $O\left(n_{\left[q_{1}\right]} d_{\left[q_{1}\right]} \log n+d_{\left[q_{1}\right]} n_{[q] \backslash\left[q_{1}\right]} \log n\right)$ time.
Since computation of the median $\lambda_{i}$ takes $O(\log n)$ time, computing all $\lambda_{i}$ and then $\lambda_{e}$ takes $O\left(n_{[q] \backslash\left[q_{1}\right]} \log n\right)$ time.

As $\mathcal{A} U G$ has $O(\log n)$ columns, we need to compute $\lambda_{e}$ for each $\mathcal{A} U G$ using the above procedure and hence it takes in total $O\left(d\left(n_{\left[q_{1}\right]}+n_{[q] \backslash\left[q_{1}\right]}\right) \log ^{2} n\right)$ time.

Sampling a column of $\mathcal{A} U G$ using $\lambda_{e}$ takes $O(\log n)$ time, sampling an entry in $M$ takes in total $O\left(n_{\left[q_{1}\right]}+n_{[q] \backslash\left[q_{1}\right]}\right)$ time.
Since we need $\sqrt{\prod_{k=1}^{q} w_{k}}$ poly $(r)$ samples to select rows, the running time is $d\left(n_{\left[q_{1}\right]}+n_{[q] \backslash\left[q_{1}\right]}\right) \log ^{2} n$. $\sqrt{\prod_{k=1}^{q} w_{k}} \operatorname{poly}(r)$.
Now for simplicity, we set $q=2, n_{i}=n_{0}$ for $i \in[2]$. Note that it is optimal to choose $w_{i}=w$ for $i \in[2]$. Substituting $q=2, n_{i}=n_{0}$ and $w_{i}=w$, we that the total running time of Alg. 3:

$$
O\left(d w^{-1} n_{0}\left(\mathrm{nnz}\left(A_{1}\right)+\operatorname{nnz}\left(A_{2}\right)\right)+w^{-2} n_{0}^{2} \operatorname{poly}(d / \epsilon)+w n_{0} \operatorname{poly}(d) \log (n)\right) .
$$

For dense $A_{1}$ and $A_{2}, \mathrm{nnz}\left(A_{1}\right)+\mathrm{nnz}\left(A_{2}\right)=O\left(n_{0}\right)$ time, and so ignoring poly and log terms that do not depend on $n_{0}$, the total running time can be simplified to:

$$
O\left(w^{-1} n_{0}^{2}+w n_{0}\right)
$$

Setting $w=\sqrt{n_{0}}$, we can minimize the above running time to $O\left(n_{0}^{3 / 2}\right)$, which is faster than the $n_{0}^{2}$ time for solving the problem by forming $A_{1} \otimes A_{2}$.

