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A Evidence Lower Bound L1(q)

Using Jensen’s inequality, we bound the marginal
log likelihood of the observed sequence {yd}.
Hereafter we omit hyper-parameters a0, b0, α,H in
ln p(Y ; a0, b0, α,H) for simplicity.

ln p(Y ) = ln
[ ∫ ( D∏

d=1

p(yd|θd, sd,f)p(sd)p(θ
′
d)
)

×
∞∏
k=1

p(fk,N |fk,M )p(fk,M )dθ′ddf
]

≥
D∑
d=1

E ln p(yd|θd, sd,f) +

D∑
d=1

K−1∑
k=1

E ln p(θ′dk)

+

D∑
d=1

E ln p(sd) +

K∑
k=1

E ln p(fk,M )

−
D∑
d=1

K−1∑
k=1

E ln q(θ′dk)−
K∑
k=1

E ln q(fk,M )
∆
= L0(q).

(1)

First we introduce a lemma (Paisley, 2010).

Lemma 1. (Paisley, 2010) Let {Xk}Kk=1 be a set of
positive random variables, then

E ln
( K∑
k=1

Xk

)
≥ ln

( K∑
k=1

exp(E lnXk)
)
. (2)

or equivalently if Xk = exp(Yk) where Yk is a random
variable, then

E ln
( K∑
k=1

exp(Yk)
)
≥ ln

( K∑
k=1

exp(EYk)
)
. (3)

Proof. The function ln(·) is concave. Using an auxil-
iary probability vector, (p1, . . . , pK), where pk > 0 and∑K
k=1 pk = 1, it follows from Jensens inequality that

E ln
( K∑
k=1

Xk

)
= E ln

( K∑
k=1

pk
Xk

pk

)
≥

K∑
k=1

pkE ln
(Xk

pk

)
(4)

Taking derivatives with respect to {pk}, we have

pk =
exp(E lnXk)∑K
v=1 exp(E lnXv)

(5)

Inserting this back, we obtain the desired bound.

Using Lemma 1, we could further bound the first term
to allow for a practical variational inference. This re-
sult is the same as the one obtained by following the
methodology in LPPA (Lloyd et al., 2016).

E ln p(yd|θd, sd,f)

=

Nd∑
n=1

(
ln ηd + E ln

∞∑
k=1

exp(ln θdk + ln f2
k (t))

)
− ηd

∫
T
E
∞∑
k=1

θdkf
2
k (s)ds (6)

≥
Nd∑
n=1

(
ln ηd + ln

∞∑
k=1

exp(E ln θdk + E ln f2
k (t))

)
− ηd

∫
T
E
∞∑
k=1

θdkf
2
k (s)ds. (7)

Using Equation (7), we implicitly collapse the indica-
tor variables and obtain a lower bound of ELBO:

L1(q)
∆
=

Nd∑
n=1

(
ln ηd + ln

∞∑
k=1

exp(E ln θdk + E ln f2
k (t))

)
− ηd

∫
T
E
∞∑
k=1

θdkf
2
k (s)ds+

D∑
d=1

K−1∑
k=1

E ln
p(θ′dk)

q(θ′dk)

+

D∑
d=1

E ln p(sd) +

K∑
k=1

E ln
p(fk,M )

q(fk,M )
. (8)

Now q(fk,N ) = N (ũk, B̃k), where

ũk = κk,NMκ
−1
k,MMµk,

B̃k = κk,NN − κk,NMκ−1
k,MMκk,MN

+ κk,NMκ
−1
k,MMΣkκ

−1
k,MMκk,MN
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And the expectation parts in Equation (8) can be com-
puted as:

E ln p(θ′dk) = lnα+ (α− 1)E[ln(1− θ′dk)], (9)

E ln q(θ′dk) = ln
Γ(τdk,0 + τdk,1)

Γ(τdk,0)Γ(τdk,1)

+ (τdk,1 − 1)E[ln(1− θ′dk)] + (τdk,0 − 1)E[ln θ′dk],
(10)

E ln p(sd) = a0 ln b0 − ln Γ(a0) + (a0 − 1) ln ηd − b0ηd,
(11)

E ln
p(fk,M )

q(fk,M )
=

1

2
ln

|Σk|
|κk,MM |

+
m

2

− 1

2
tr
(
κ−1
k,MM (Σk + (µk − g)(µk − g)T )

)
, (12)

E[ln f2
k (tdn)] = −G(−

ũ2
k,n

2B̃k,nn
)− C + ln(

B̃k,nn
2

), (13)∫
T
E[f2

k (s)]ds = γ|T | − tr(κ−1
k,MMΨk)

+ tr(κ−1
k,MMΨkκ

−1
k,MM (Σk + µkµ

T
k )), (14)

G(x), x ≤ 0 is calculated by a precomputed multi-
resolution look-up table. C is a constant and Ψk ∈
RM×M ,Ψk,ij =

∫
T κk(ti, x)κk(x, tj)dx. Ψk is deter-

mined by the kernel hyper-parameter in κk and the
region T .

The expectation with regard to beta distribution is:

E[ln(1− θ′dk)] = ψ(τdk,1)− ψ(τdk,0 + τdk,1),

E[ln(θ′dk)] = ψ(τdk,0)− ψ(τdk,0 + τdk,1).

After adding augmented Lagrangian penalty function,
the modified evidence lower bound is:

Lvi
(Φ,wi)

∆
= L1(q)−

K∑
k=1

wik

(∫
T
Eq[f2

k (s)]ds−A
)

−
K∑
k=1

vik
2

(∫
T
Eq[f2

k (s)]ds−A
)2

. (15)

A.1 Details of Derivatives

Based on the modified evidence lower bound in Equa-
tion (15), we could derive the parameter learning
method.

• ηd. We list the term related to ηd in Equation
(15) first.

Lηd
∆
= Nd ln ηd − ηd

∫
T

K∑
k=1

E
(
θdkf

2
k (s)

)
ds

− ηdb0 + (a0 − 1) ln ηd.

Obviously, there is a closed form update for ηd

ηd =
Nd + a0 − 1

b0 +
∫
T
∑K
k=1 E

(
θdkf2

k (s)
)
ds
.

• τdk,0, τdk,1. We list the term related to these pa-
rameters in Equation (15) first

Lτdk
∆
=

Nd∑
n=1

[
ln

∞∑
k=1

exp
(
Eq[ln θdk]

− Eq[ln f2
k (tdn)]

)]
− ηd

∫
T
E
∞∑
k=1

θdkf
2
k (s)ds

+
(

ln
Γ(τdk,0)Γ(τdk,1)

Γ(τdk,0 + τdk,1)
− (τdk,0 − 1)E ln θ′dk

+ (α− τdk,1)E ln(1− θ′dk)
)
.

Let

Ldnk
∆
= exp

(
Eq[ln θdk] + Eq[ln f2

k (tdn)]
)

= exp
(
ψ(τdk,0) +

k−1∑
l=1

ψ(τdl,1)

−
k∑
l=1

ψ(τdl,0 + τdl,1) + Eq[ln f2
k (tdn)]

)
,

Vk
∆
=

∫
T
Ef2

k (s)ds

There is no closed form update for these variables,
we use coordinate ascent method.

∂Lτdk
∂τdk,0

= −ηd
(
Vk
∂[θdk]

∂τdk,0
+

K∑
l=k+1

Vl
∂[θdl]

∂τdk,0

)

−
(
τdk,0 − 1−

Nd∑
n=1

Ldnk∑K
v=1 Ldnv

)
ψ′(τdk,0)

+
(
τdk,0 − 1 + τdk,1 − α−

Nd∑
n=1

∑K
v=k Ldnv∑K
v=1 Ldnv

)
× ψ′(τdk,0 + τdk,1),

∂Lτdk
∂τdk,1

= −ηd
(
Vk
∂[θdk]

∂τdk,1
+

K∑
l=k+1

Vl
∂[θdl]

∂τdk,1

)

−
(
τdk,1 − α−

Nd∑
n=1

∑K
v=k+1 Ldnv∑K
v=1 Ldnv

)
ψ′(τdk,1)

+
(
τdk,0 − 1 + τdk,1 − α−

Nd∑
n=1

∑K
v=k Ldnv∑K
v=1 Ldnv

)
× ψ′(τdk,0 + τdk,1).
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where we have

∂[θdk]

∂τdk,0
=

τdk,1
(τdk,0 + τdk,1)2

k−1∏
l=1

τdl,1
τdl,0 + τdl,1

,

∂[θdk]

∂τdk,1
= − τdk,0

(τdk,0 + τdk,1)2

k−1∏
l=1

τdl,1
τdl,0 + τdl,1

,

∂[θdl]

∂τdk,0
= − τdl,0

τdl,0 + τdl,1

τdk,1
(τdk,0 + τdk,1)2

×
l−1∏

v=1,v 6=k

τdv,1
τdv,0 + τdv,1

,

∂[θdl]

∂τdk,1
=

τdl,0
τdl,0 + τdl,1

τdk,0
(τdk,0 + τdk,1)2

×
l−1∏

v=1,v 6=k

τdv,1
τdv,0 + τdv,1

.

• {Σk, µk}. Take µk for an example.

∂Lφk

∂µk
=

D∑
d=1

( Nd∑
n=1

1∑K
v=1 Ldnv

∂Ldnk
∂µk

)
−
(
wik + vik(Vk −A) +

D∑
d=1

ηdE[θdk]
)∂Vk
∂µk

+
∂

∂µk

[1

2
ln |Σk| −

1

2
ln |κk,MM |

− 1

2
tr
(
κ−1
k,MM (Σk + (µk − g)(µk − g)T )

)]
.

Hyper-parameter part: We could update the
hyper-parameters in a similar way.

• Gaussian process hyper-parameters κk,MM , σ.
Similar to that in {Σk, µk}.

• Beta distribution prior α.

Lα
∆
= D(K − 1) lnα+ (α− 1)

D∑
d=1

K−1∑
k=1

(ψ(τdk,1)

− ψ(τdk,0 + τdk,1)).

Then we have a closed form update for α.

α =
D(K − 1)∑D

d=1

∑K−1
k=1

(
ψ(τdk,1 + τdk,0)− ψ(τdk,1)

) .
(16)

A.2 Proof of Upper Bound

Theorem 1. Each optimization problem is upper
bounded.

Lvi
(Φ,wi) ≤ ln p(Y ) +

K∑
k=1

w2
ik

2vik
, i ∈ N+.

Proof. L1(q) can be easily bounded by variational in-
ference framework

L1(q) ≤ ln p(Y )

Let hik =
∫
T Eq[f2

k (s)]ds−A, and then we have

K∑
k=1

wik

(∫
T
Eq[f2

k (s)]ds−A
)

+

K∑
k=1

vik
2

(∫
T
Eq[f2

k (s)]ds−A
)2

=

K∑
k=1

(wikhik +
vik
2
h2
ik) ≥

K∑
k=1

w2
ik

2vik

Combining these two parts finishes the proof.

A.3 A Bias When Using Lemma 1

Although the bound in Lemma 1 is rather tight, it can
still add a bias which may lead to the over-shrinking
phenomenon in the model. We illustrate the bias
through the following simple model.

Y1 = X2
1 , Y2 = X2

2 , X1 ∼ N (2, 1), X2 ∼ N (2, 4),

where N (·) is the normal distribution. Using Lemma
1, we can arrive the following inequality:

Lleft
∆
= Ep(Y1:2) ln

(
wY1 + (1− w)Y2

)
(17)

≥ ln
(
w exp(E lnY1) + (1− w) exp(E lnY2)

)
∆
= Lright, w ∈ [0, 1].

We vary the value of w and plot Lright and Lleft. The
result is given in Figure 1. We can see that the for
Lright the optimal is w = 1 while for Lleft the optimal
is obviously a mixture of two components. This is be-
cause the logarithm function will punish values which
are closer to zero harder. Since Y2 has a large variance,
there will be a large proportion of samples near zero
which makes the corresponding E lnY2 smaller and less
favorable. This bias in the inequality may account for
the shrinkage in LPPA and BaNPPA.

B Test Likelihood

In LPPA, the allocation matrix Θ is treated as hyper-
parameters and all the parameters are {µ,Σ,H,Θ}.
Let Φ = {H,Θ}. In variational inference we use
the variational distribution q(f ; Φ) to approximate the
posterior p(f |Ytrain; Φ). The test likelihood can be
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Figure 1: Bias in the inference with lower bound. Left:
The histogram of Y1 and Y2. Right: Lleft (Blue) ver-
sus Lright (Red) and the round marker indicates the
maximum of the curve.

lower-bounded as follows.

ln p(Ytest|Ytrain; Φ) = ln

∫
p(Ytest|f ; Φ)p(f |Ytrain; Φ)df

≈ ln

∫
p(Ytest|f ; Φ)q(f ; Φ)df

≥
∫
q(f ; Φ) ln

p(Ytest|f ; Φ)q(f ; Φ)

q(f ; Φ)
df

= Eq ln p(Ytest|f ; Φ)

≥
D∑
d=1

Ntest
d∑
n=1

ln

K∑
k=1

θdk exp
[
Eq(ln f2

k (tdn))
]

−
D∑
d=1

K∑
k=1

θdk

∫
T
Eq[f2

k (s)]ds
∆
= Ltest. (18)

In BaNPPA, all the parameters to be optimized are
{η, τ ,µ,Σ,H, a0, b0, α}. Let Φ = {H, a0, b0, α}.
However, if we follow the same deduction as LPPA,
we will not arrive at a fair comparison since the in-
equality in Equation (18) is different in principle for
LPPA and BaNPPA, and therefore, we draw L sam-
ples from variational distribution q(s, θd; a0, b0, α) for
s, θd and then follow the lower bound in Equation (18).

Eq ln p(Ytest|s,Θ,f ; Φ)

=

∫
q(s,Θ,f ; Φ) ln p(Ytest|s,Θ,f ; Φ)dsdΘdf

≈ 1

L̃

L̃∑
l=1

∫
q(f ;H) ln p(Ytest|sl,Θl,f ;H)df

≥ 1

L̃

L̃∑
l=1

( D∑
d=1

Ntest
d∑
n=1

ln
(
sl,d

K∑
k=1

θl,dk exp
[
Eq(ln f2

k (tdn))
])

−
D∑
d=1

sl,d

K∑
k=1

θl,dk

∫
T
Eq[f2

k (s)]ds
)
. (19)

C Additional Experiment Results

C.1 Details of the Data Sets

• Synthetic dataset.
A) In λd(t) = sd

∑4
k=1 θdkf̃(t;ψk), t ∈ [0, 60].

sd ∼ Gamma(2, 3),

θd ∼ Dirichlet(1.2, 1, 0.8, 0.6),

f̃(t;ψk) ∝ exp
(
− (t− 15 + 10k)2

10

)
+ exp

(
− (t− 55 + 10k)2

10

)
.

Each f̃(t;ψk) is either a Gaussian distribution or a
mixture of two Gaussian distributions normalized
by its integral.

B) In λd(t) = sd
∑6
k=1 θdkfk(t).

sd ∼ Gamma(2, 3),

θd ∼ Dirichlet(1.2, 1, 0.8, 0.6, 0.5, 0.5),

f̃(t;ψk) ∝ exp
(
− (t− 15 + 10k)2

10

)
+ exp

(
− (t− 75 + 10k)2

10

)
.

Each f̃(t;ψk) is either a Gaussian distribution or
a mixture of two Gaussian distributions normal-
ized by its integral. We use the rejection sampling
method for the inhomogeneous Poisson process to
generate the time sequences.

• citation dataset. Two examples with different
citation patterns are given in Figure 3.

C.2 The Comparison of the Train Likelihood

The comparison of the train likelihood Ltrain is given
in Figure 2. We can notice that for LPPA, the train
likelihood keeps increasing when we increase K. This
is also a sign of over-fitting.

C.3 Computation Time

We plot the change of the training likelihood in one
trial in Figure 4. For total computational complexity,
both BaNPPA-NC and BaNPPA take more computa-
tion time but are still comparable to LPPA. Two rea-
sons account for this fact. One is that there are more
parameters to be optimized in BaNPPA and BaNPPA-
NC and the other is that BaNPPA potentially has an
infinite number of problems to be solved. In Figure 4,
we can notice that the training likelihood for BaNPPA
and the training likelihood for BaNPPA-NC stabilize
rather quickly. This is because we use Equation (19)
to calculate the likelihood and there are no divergence
terms in it.
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Figure 2: The comparison of the train likelihood for three algorithms. For LPPA, we change the number of
latent functions K. For BaNPPA/BaNPPA-NC, we fix K = 14 and optimize the hyper-parameter α using the
variational expectation-maximization. Error bars and shaded area represent the 95% confidence intervals.
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Figure 3: Citation data set. Top: A paper which
slowly gets citation and becomes popular many years
later. Bottom: A paper which quickly gets citation af-
ter being published. Smooth lines are the mean inten-
sity function inferred from LPPA and BaNPPA. Small
bars is the time of each citation. The x-axis indicates
the time in year after publication.

C.4 Synthetic Data Sets with a Relatively
Large K

We add three more synthetic data set with a larger K.

C) We sample 200 sequences from λd(t) =

sd
∑6
k=1 θdkf̃(t;ψk), where sd, θd are drawn from

Dirichlet distribution and Gamma distribution.

sd ∼ Gamma(2, 3),

θd ∼ Dir(0.8, 0.4, 0.2, 0.2, 0.2, 0.2).

We use f̃(t;ψk) = exp(−(t− 15 + 10k)2/10), k =
1, . . . , 6, t ∈ [0, 60] as basis intensity functions.

D) We sample 200 sequences from λd(t) =

sd
∑8
k=1 f̃(t;ψk), where sd, θd are drawn from

Dirichlet distribution and Gamma distribution.

sd ∼ Gamma(2, 3),

θd ∼ Dir(0.8, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1, 0.1).

We use f̃(t;ψk) ∝ exp(−(t− 15 + 10k)2/10), k =
1, . . . , 8, t ∈ [0, 80] as basis intensity functions.

E) We sample 200 sequences from λd(t) =

sd
∑10
k=1 f̃(t;ψk), where sd, θd are drawn from

Dirichlet distribution and Gamma distribution.

sd ∼ Gamma(2, 3),

θd ∼ Dir(0.8, 0.6, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1, 0.1).

We use f̃(t;ψk) ∝ exp(−(t− 15 + 10k)2/10), k =
1, . . . , 10, t ∈ [0, 100] as basis intensity functions.

In the experiment, we fix the hyper-parameter a0 and
b0 and the length-scale hyper-parameters in all κk,MM

to be 4.3081 (Close to the half of the span of f̃(t;ψk)).
This means we only optimize the mixture weights and
the variational distribution q(m,S) for Gaussian pro-
cesses.

We vary the hyper-parameter α = [1.1, 2, 3, 4, 5]. The
result is given in Figure. We can see that BaNPPA-NC
tends to over-shrink the components even when α = 5
and gets a worse result.
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