
Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

Slow and Stale Gradients Can Win the Race: Error-Runtime
Trade-o!s in Distributed SGD

Supplement

Sanghamitra Dutta Gauri Joshi Soumyadip Ghosh Parijat Dube Priya Nagpurkar
Carnegie Mellon

University
Carnegie Mellon

University
IBM TJ Watson
Research Center

IBM TJ Watson
Research Center

IBM TJ Watson
Research Center

6 STRONG CONVEXITY
DISCUSSION

DeÞnition 4 (Strong-Convexity) . A function h(u) is
defined to be c-strongly convex, if the following holds
for all u

1

and u
2

in the domain:

h(u
2

) � h(u
1

) + [rh(u
1

)]

T

(u
2

� u
1

) +

c

2

||u
2

� u
1

||2
2

.

For strongly convex functions, the following result holds
for all u in the domain of h(.).

2c(h(u) � h⇤
)  ||rh(u)||2

2

. (19)

The proof is derived in [Bottou et al. , 2016]. For com-
pleteness, we give the sketch here.

Proof. Given a particular u, let us deÞne the quadratic
function as follows:

q(u0
) = h(u) + rh(u)

T

(u0 � u) +

c

2

||u0 � u||2
2

Now, q(u0
) is minimized at u0

= u � 1

c

rh(u) and the
value is h(u) � 1

2c

||rh(u)||2
2

. Thus, from the deÞnition
of strong convexity we now have,

h⇤ � h(u) + rh(u)

T

(u0 � u) +

c

2

||u0 � u||2
2

� h(u) � 1

2c
||rh(u)||2

2

[minimum value of q(u0
)].

7 RUNTIME ANALYSIS PROOFS

Here we provide all the proofs and supplementary in-
formation for all the results in Section 4.

7.1 Runtime of K-sync SGD

Proof of Lemma 3. We assume that the P learners
have an i.i.d. computation times. When all the learners

start together, and we wait for the Þrst K out of P
i.i.d. random variables to Þnish, the expected compu-
tation time for that iteration is E [X

K:P

], where X
K:P

denotes theK-th statistic of P i.i.d. random variables
X

1

, X
2

, . . . , X
P

. Thus, for J iterations, the runtime is
given by JE [X

K:P

].

7.1.1 K-th statistic of exponential
distributions

Here we give a sketch of why theK-th order statistic
of P exponentials scales aslog(P/P � K). A detailed
derivation can be obtained in [Sheldon, 2002]. Con-
sider P i.i.d. exponential distributions with parameter
µ. The minimum X

1:P

of P independent exponen-
tial random variables with parameter µ is exponential
with parameter Pµ. Conditional on X

1:P

, the sec-
ond smallest valueX

2:P

is distributed like the sum of
X

1:P

and an independent exponential random variable
with parameter (P � 1)µ. And so on, until the K-th
smallest valueX

K:P

which is distributed like the sum
of X

(K�1):P

and an independent exponential random
variable with parameter (P � K + 1)µ. Thus,

X
K:P

= Y
P

+ Y
P�1

+ · · · + Y
P�K+1

where the random variablesY
i

s are independent and
exponential with parameter iµ. Thus,

E [X
K:P

] =

P

X

i=P�K+1

1

iµ
=

H
P

� H
P�K

µ
⇡

log

P

P�K

µ
.

Here H
P

and H
P�K

denote the P -th and (P � K)-th
harmonic numbers respectively.

For the case whereK = P , the expectation is given by,

E [X
P :P

] =

1

µ

P

X

i=1

1

i
=

1

µ
H

P

⇡ 1

µ
log P.

7.2 Runtime of K-batch-async SGD

Here we include a discussion on renewal processes for
completeness, as a background to the proof of Lemma4,

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

which gives the runtime of K-batch-async SGD. The
familiar reader can skim through this part, and directly
proceed to the proof of Lemma4 in the main paper in
Section 4.

DeÞnition 5 (Renewal Process). A renewal process
is an arrival process where the inter-arrival intervals
are positive, independent and identically distributed
random variables.
Lemma 6 (Elementary Renewal Theorem). [Gallager,
2013, Chapter 5] Let {N(t), t > 0} be a renewal count-
ing process denoting the number of renewals in time t.
Let E [Z] be the mean inter-arrival time. Then,

lim

t!1

E [N(t)]

t
=

1

E [Z]

(20)

Observe that for asynchronous SGD orK-batch-async
SGD, every gradient push by a learner to the PS can be
thought of as an arrival process. The time between two
consecutive pushes by a learner follows the distribution
of X

i

and is independent as computation time has been
assumed to be independent across learners and mini-
batches. Thus the inter-arrival intervals are positive,
independent and identically distributed and hence, the
gradient pushes are a renewal process.

7.3 Runtime of K-async SGD

Proof of Lemma 5. For new-longer-than-used distribu-
tions observe that the following holds:

Pr(X
i

> u + t|X
i

> t)  Pr(X
i

> u) (21)

Thus the random variable X
i

� t|X
i

> t is thus stochas-
tically dominated by X

i

. Now let us assume we want
to compute the expected computation time of one it-
eration of K-async starting at time instant t

0

. Let us
also assume that the learners last read their parameter
values at time instants t

1

, t
2

, . . . t
P

respectively where
any K of theset

1

, t
2

, . . . t
P

are equal to t
0

as K out of
P learners were updated at timet

0

and the remaining
(P �K) of theset

1

, t
2

, . . . t
P

are < t
0

. Let Y
1

, Y
2

, . . . Y
P

be the random variables denoting the computation time
of the P learners starting from time t

0

. Thus,

Y
i

= X
i

�(t
0

�t
i

)|X
i

> (t
0

�t
i

) 8 i = 1, 2, . . . , P (22)

Now each of theY
i

s are independent and are stochas-
tically dominated by the corresponding X

i

s.

Pr(Y
i

> u)  Pr(X
i

> u) 8 i, j = 1, 2, . . . , P (23)

The expectation of the K-th statistic of
{Y

1

, Y
2

, . . . , Y
P

} is the runtime of the iteration.
Let us denoteh

K

(x
1

, x
2

, . . . , x
P

) as the K-th statistic
of P numbers (x

1

, x
2

, . . . , x
P

). And let us us denote

g
K,s(x) as the K-th statistic of P numbers where

P �1 of them are given ass
1⇥(P�1)

and x is the P�th
number. Thus

g
K,s(x) = h

K

(x, s(1), s(2), . . . , s(P � 1)).

First observe that g
K,s(x) is an increasing function of

x since given the otherP � 1 values, the K-th order
statistic will either stay the same or increase with x.
Now we use the property that if Y

i

is stochastically
dominated by X

i

, then for any increasing function g(.),
we have

E
Y1 [g(Y

1

)]  E
X1 [g(X

1

)] .

This result is derived in [Kreps, 1990] .

This implies that for a given s,

E
Y1 [g

K,s(Y1

)]  E
X1 [g

K,s(X1

)] .

This leads to,

E
Y1|Y2=s(1),Y3=s(2)...YP=s(P�1)

[h
K

(Y
1

, Y
2

, . . . Y
P

)]

 E
X1|Y2=s(1),Y3=s(2)...YP=s(P�1)

[h
K

(X
1

, Y
2

, . . . Y
P

)]

(24)

From this,

E [h
K

(Y
1

, Y
2

, . . . Y
P

)]

= E
Y2,...,YP

⇥

E
Y1|Y2,Y3...YP

[h
K

(Y
1

, Y
2

, . . . Y
P

)]

⇤

 E
Y2,...,YP

⇥

E
X1|Y2,Y3...YP

[h
K

(X
1

, Y
2

, . . . Y
P

)]

⇤

= E [h
K

(X
1

, Y
2

, . . . Y
P

)] (25)

This step proceeds inductively. Thus, similarly

E [h
K

(X
1

, Y
2

, . . . Y
P

)]

= E
X1,Y3,...,YP

⇥

E
Y2|X1,Y3...YP

[h
K

(X
1

, Y
2

, . . . Y
P

)]

⇤

 E
X1,Y3,...,YP

⇥

E
X2|X1,Y3...YP

[h
K

(X
1

, X
2

, Y
3

, . . . Y
P

)]

⇤

= E [h
K

(X
1

, X
2

, Y
3

. . . Y
P

)] (26)

Thus, Þnally combining, we have,

E [h
K

(Y
1

, Y
2

, . . . Y
P

)]

 E [h
K

(X
1

, Y
2

, . . . Y
P

)]

 E [h
K

(X
1

, X
2

, Y
3

. . . Y
P

)]  . . .

 E [h
K

(X
1

, X
2

, X
3

. . . X
P

)] (27)

7.3.1 Special Case: Exponential
Distributions

For exponential distributions, the inequality in
Lemma 5 holds with equality. This follows from the
memoryless property of exponentials. Let us consider

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

the scenario of the proof of Lemma5 where we similarly
deÞneY

i

= X
i

� (t
0

� t
i

)|X
i

> (t
0

� t
i

). From the
memoryless property of exponentials [Sheldon, 2002], if
X

i

⇠ exp(µ), then Y
i

⇠ exp(µ). Thus, the expectation
of the K-th statistic of Y

i

s can be easily derived as all
the Y

i

s are now i.i.d. with distribution exp(µ). Thus,
the runtime for J iterations is given by,

E [T] = JE [Y
K:P

] =

J

µ

P

X

i=P�K+1

1

i
⇡ J

µ
log

P

P � K
.

7.3.2 Comparison of K-async and
K-batch-async SGD

We compare the error-runtime trade-o! of K-async
with K-batch-async SGD in Figure10 as follows.

Lo
g

lo
ss

Time

K-batch-async

K-async

Figure 10: Accuracy Runtime Trade-o! on MNIST
Dataset: Comparison ofK-async with K-batch-async
under exponential computation time with X

i

⇠ exp(1).
As derived theoretically, the K-batch-async has a
sharper fall with time as compared to K-async even
though the error attained is similar.

8 ASYNC-SGD ANALYSIS PROOFS

In this section, we provide a proof of the error conver-
gence of asynchronous andK-async SGD.

8.1 Async-SGD with Fixed learning rate

First we prove a simpliÞed version of Theorem3 for the
caseK = 1. While this is actually a corollary of the
more general Theorem3, we prove this Þrst for ease of
understanding and simplicity. The proof of the more
general Theorem3 is then provided in Section8.2.

Corollary 2. Suppose that the objective function
F (w) is strongly convex with parameter c and the
learning rate ⌘  1

2L(

MG
m +1)

. Also assume that

E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

 �E
⇥

||rF (w
j

)||2
2

⇤

for
some constant �  1. Then, the error after J iterations

of Async SGD is given by,

E [F (w
J

)] � F ⇤  ⌘L�2

2c�0m
+

(1 � ⌘c�0
)

J

(E [F (w
0

)] � F ⇤ � ⌘L�2

2c�0m
)

where �0
= 1 � � +

p0

2

and p
0

is a non-negative lower
bound on the conditional probability that ⌧(j) = j given
all the past delays and parameters.

To prove the result, we will use the following lemma.

Lemma 7. Let us denote v
j

= g(w
⌧(j)

, ⇠
j

), and as-
sume that E

⇠j |w [g(w, ⇠
j

)] = rF (w). Then,

E
⇥

||rF (w
j

) � v
j

||2
2

⇤

 E
⇥

||v
j

||2
2

⇤

�
E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+ E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

.

Proof of Lemma 7. Observe that,

E
⇥

||rF (w
j

) � v
j

||2
2

⇤

= E
⇥

||rF (w
j

) � rF (w
⌧(j)

) + rF (w
⌧(j)

) � v
j

||2
2

⇤

= E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

+ E
⇥

||v
j

� rF (w
⌧(j)

)||2
2

⇤

(28)

The last line holds since the cross term is0 as derived
below.

E
⇥

(rF (w
j

) � rF (w
⌧(j)

)

T

(v
j

� rF (w
⌧(j)

))

⇤

= Ew⌧(j),wj [(rF (w
j

) � rF (w
⌧(j)

)

T

E
⇠j |w⌧(j),wj

⇥

(v
j

� rF (w
⌧(j)

))

⇤

]

= Ew⌧(j),wj [(rF (w
j

) � rF (w
⌧(j)

)

T

(E
⇠j |w⌧(j)

[v
j

] � rF (w
⌧(j)

))] = 0

Here again the last line follows from Assumption 2 in
Section 2 which states that

E
⇠j |w⌧(j)

[v
j

] = rF (w
⌧(j)

)).

Returning to (28), observe that the second term can
be further decomposed as,

E
⇥

||v
j

� rF (w
⌧(j)

)||2
2

⇤

= Ew⌧(j)

h

E
⇠j |w⌧(j)

⇥

||v
j

� rF (w
⌧(j)

)||2
2

⇤

i

= Ew⌧(j)

h

E
⇠j |w⌧(j)

⇥

||v
j

||2
2

⇤

i

� 2Ew⌧(j)

h

E
⇠j |w⌧(j)

⇥

vT

j

rF (w
⌧(j)

)

⇤

i

+ Ew⌧(j)

h

E
⇠j |w⌧(j)

⇥

||rF (w
⌧(j)

)||2
2

⇤

i

= E
⇥

||v
j

||2
2

⇤

� 2E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+ E
⇥

||rF (w
⌧(j)

)||2
2

⇤

= E
⇥

||v
j

||2
2

⇤

� E
⇥

||rF (w
⌧(j)

)||2
2

⇤

.

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

We also prove aK-learner version of this lemma to
prove Theorem3. Now we proceed to provide the proof
of Corollary 2.

Proof of Corollary 2.

F (w
j+1

)  F (w
j

) + (w
j+1

� w
j

)

TrF (w
j

)

+

L

2

||w
j+1

� w
j

||2
2

=F (w
j

) + (�⌘v
j

)

TrF (w
j

) +

L⌘2

2

||v
j

||2
2

=F (w
j

) � ⌘

2

||rF (w
j

)||2
2

� ⌘

2

||v
j

||2
2

+

⌘

2

||rF (w
j

) � v
j

||2
2

+

L⌘2

2

||v
j

||2
2

(29)

Here the last line follows from 2aT b = ||a||2
2

+ ||b||2
2

�
||a � b||2

2

. Taking expectation,

E [F (w
j+1

)]  E [F (w
j

)] � ⌘

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘

2

E
⇥

||v
j

||2
2

⇤

+

⌘

2

E
⇥

||rF (w
j

) � v
j

||2
2

⇤

+

L⌘2

2

E
⇥

||v
j

||2
2

⇤

(a)

 E [F (w
j

)] � ⌘

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘

2

E
⇥

||v
j

||2
2

⇤

+

⌘

2

E
⇥

||v
j

||2
2

⇤

� ⌘

2

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+

⌘

2

E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

+

L⌘2

2

E
⇥

||v
j

||2
2

⇤

(30)

Here, (a) follows from Lemma7 that we just derived.
Now, again bounding from (30), we have

E [F (w
j+1

)] (31)
(b)

 E [F (w
j

)] � ⌘

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘

2

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+

⌘

2

�E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2

2

E
⇥

||v
j

||2
2

⇤

(c)

 E [F (w
j

)] � ⌘

2

(1 � �)E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2�2

2m

� ⌘

2

✓

1 � L⌘(

M
G

m
+ 1)

◆

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

(d)

 E [F (w
j

)] � ⌘

2

(1 � �)E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2�2

2m

� ⌘

4

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

(e)

 E [F (w
j

)] � ⌘

2

(1 � �)E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2�2

2m

� ⌘

4

p
0

E
⇥

||rF (w
j

)||2
2

⇤

(32)

Here (b) follows from the statement of the theorem
that

E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

 �E
⇥

||rF (w
j

)||2
2

⇤

for some constant�  1. The next step (c) follows
from Assumption 4 in Section 2 which lead to

E
⇥

||v
j

||2
2

⇤

 �2

m
+

✓

M
G

m
+ 1

◆

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

.

Step (d) follows from choosing ⌘ < 1

2L(

MG
m +1)

and

Þnally (e) follows from Lemma 1.

Now one might recall that the function F (w) was de-
Þned to be strongly convex with parameterc. Using
the standard result of strong-convexity (6) in (32), we
obtain the following result.

E [F (w
j+1

)] � F ⇤  ⌘2L�2

2m

+ (1 � ⌘c(1 � � +

p
0

2

))(E [F (w
j

)] � F ⇤
)

Let us denote�0
= (1� � +

p0

2

). Then, using the above
recursion, we thus have,

E [F (w
J

)] � F ⇤  ⌘L�2

2c�0m
+

(1 � ⌘�0c)J(E [F (w
0

)] � F ⇤ � ⌘L�2

2c�0m
)

8.1.1 Discussion on range of p
0

Let us denote the conditional probability of ⌧(j) = j

given all the past delays and parameters asp(j)
0

. Now
p
0

 p
(j)

0

8j. Clearly the value of p
(j)

0

will di!er for
di!erent distributions and accordingly the value of p

0

will di!er. Here we include a brief discussion on the
possible values ofp

0

for di!erent distributions. These
also hold for K-async andK-batch-async SGD.

Lemma 8 (Bounds of p
0

). Define p
0

= inf

j

p
(j)

0

, i.e.
the largest constant such that p

0

 p
(j)

0

8 j.

• For exponential computation times, p
(j)

0

=

1

P

for
all j and is thus invariant of j and p

0

=

1

P

.

• For new-longer-than-used (See Definition 3) com-
putation times, p

(j)

0

 1

P

and thus p
0

 1

P

.

• For new-shorter-than-used computation times,
p
(j)

0

� 1

P

and thus p
0

� 1

P

.

Proof of Lemma 8. Let t
0

be the time when the j-th
iteration occurs, and suppose that learneri0 pushed
its gradient in the j-th iteration. Now similar to the

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

proof of Lemma 5, let us also assume that the learn-
ers last read their parameter values at time instants
t
1

, t
2

, . . . t
P

respectively wheret0
i

= t
0

and the remain-
ing (P � 1) of these t

i

s are < t
0

. Let Y
1

, Y
2

, . . . Y
P

be the random variables denoting the computation
time of the P learners starting from time t

0

. Thus,
Y
i

= X
i

� (t
0

� t
i

)|X
i

> (t
0

� t
i

). For exponentials,
from the memoryless property, all theseY

i

s become
i.i.d. and thus from symmetry the probability of i0

Þnishing before all the others is equal,i.e. 1

P

. Thus,

p
(j)

0

= p
0

=

1

P

. For new-longer-than-used distributions,
as we have discussed before all theY

i

s with i 6= i0 will
be stochastically dominated byY

i

0
= X

i

0 . Thus, prob-
ability of is with i 6= i0 Þnishing Þrst is higher thani0.
Thus, p

(j)

0

 1

P

and so isp
0

. Similarly, for new-shorter-
than-used distributions, Y

i

0 is stochastically dominated
by all the Y

i

s and thus probability of i0 Þnishing Þrst
is more. So,p(j)

0

� 1

P

and so isp
0

.

8.2 K-async SGD under Þxed learning rate

In this subsection, we provide a proof of Theorem3.

Before we proceed to the proof of this theorem, we Þrst
extend our Assumption 4 from the variance of a single
stochastic gradient to sum of stochastic gradients in
the following Lemma.

Lemma 9. If the variance of the stochastic updates is
bounded as E

⇠j |w⌧l,j

⇥

||g(w
⌧(l,j)

, ⇠
l,j

) � rF (w
⌧(l,j)

)||2
2

⇤

 �

2

m

+

MG
m

||rF (w
⌧(l,j)

)||2
2

8 ⌧(l, j)  j , then for K-
async, the variance of the sum of stochastic updates
given all the parameter values w

⌧(l,j)

is also bounded
as follows:

E
⇠1,j ,...,⇠K,j |w⌧(1,j)...w⌧(K,j)

"

||
K

X

l=1

g(w
l,j

, ⇠
l,j

)||2
2

#

 K�2

m
+ (

M
G

m
+ K)||

K

X

l=1

rF (w
⌧(l,j)

)||2
2

(33)

Proof. First let us consider the expectation of any cross
term such that l 6= l0. For the ease of writing, let
⌦ = {w

⌧(1,j)

. . .w
⌧(K,j)

}. Now observe the conditional
expectation of the cross term as follows.

E
⇠1,j ,...,⇠K,j |⌦[(g(w

l,j

, ⇠
l,j

) � rF (w
⌧(l,j)

))

T

((g(w
l

0
,j

, ⇠
l

0
,j

) � rF (w
⌧(l

0
,j)

))]

= E
⇠l,j ,⇠l0,j |⌦[(g(w

l,j

, ⇠
l,j

) � rF (w
⌧(l,j)

))

T

((g(w
l

0
,j

, ⇠
l

0
,j

) � rF (w
⌧(l

0
,j)

))]

= E
⇠l0,j |⌦[E

⇠l,j |⇠l0,j ,⌦[(g(w
l,j

, ⇠
l,j

) � rF (w
⌧(l,j)

))

T

]

(g(w
l

0
,j

, ⇠
l

0
,j

) � rF (w
⌧(l

0
,j)

)]

= E
⇠l0,j |⌦[0

T

(g(w
l

0
,j

, ⇠
l

0
,j

) � rF (w
⌧(l

0
,j)

)] = 0 (34)

Thus the cross terms are all0. So the expression

simpliÞes as,

E
⇠1,j ,...,⇠K,j |⌦

"

||
K

X

l=1

g(w
l,j

, ⇠
l,j

) � F (w
⌧(l,j)

)||2
2

#

(a)

=

K

X

l=1

E
⇠1,j ,...,⇠K,j |⌦

⇥

||g(w
l,j

, ⇠
l,j

) � F (w
⌧(l,j)

)||2
2

⇤


K

X

l=1

�2

m
+

M
G

m
||rF (w

⌧(l,j)

)||2
2

(35)

Thus,

E
⇠1,j ,...,⇠K,j |⌦

"

||
K

X

l=1

g(w
l,j

, ⇠
l,j

)||2
2

#

= E
⇠1,j ,...,⇠K,j |⌦

"

||
K

X

l=1

g(w
l,j

, ⇠
l,j

) � F (w
⌧(l,j)

)||2
2

#

+ E
⇠1,j ,...,⇠K,j |⌦

"

||
K

X

l=1

F (w
⌧(l,j)

)||2
2

#

 K�2

m
+

K

X

l=1

M
G

m
||F (w

⌧(l,j)

)||2
2

+ ||
K

X

l=1

F (w
⌧(l,j)

)||2
2

 K�2

m
+

K

X

l=1

M
G

m
||F (w

⌧(l,j)

)||2
2

+

K

X

l=1

K||F (w
⌧(l,j)

)||2
2

(36)

Now we return to the proof of the theorem.

Proof of Theorem 3. Let v
j

=

1

K

P

K

l=1

g(w
l,j

, ⇠
l,j

).
Following steps similar to the Async-SGD proof, from
Lipschitz continuity we have the following.

F (w
j+1

)  F (w
j

) + (w
j+1

� w
j

)

TrF (w
j

)

+

L

2

||w
j+1

� w
j

||2
2

=F (w
j

) � ⌘

K

K

X

l=1

g(w
l,j

, ⇠
l,j

)

TrF (w
j

) +

L

2

||⌘v
j

||2
2

(a)

=F (w
j

) � ⌘

2K

K

X

l=1

||rF (w
j

)||2
2

� ⌘

2K

K

X

l=1

||g(w
l,j

, ⇠
l,j

)||2
2

+

⌘

2K

K

X

l=1

||g(w
l,j

, ⇠
l,j

)||2
2

� ⌘

2K

K

X

l=1

||rF (w
j

)||2
2

+

L⌘2

2

||v
j

||2
2

=F (w
j

) � ⌘

2

||rF (w
j

)||2
2

� ⌘

2K

K

X

l=1

||g(w
l,j

, ⇠
l,j

)||2
2

+

⌘

2K

K

X

l=1

||g(w
l,j

, ⇠
l,j

) � rF (w
j

)||2
2

+

L⌘2

2

||v
j

||2
2

(37)

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

Here (a) follows from 2aT b = ||a||2
2

+ ||b||2
2

� ||a� b||2
2

.
Taking expectation,

E [F (w
j+1

)]  E [F (w
j

)] � ⌘

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘

2K

K

X

l=1

E
⇥

||g(w
l,j

, ⇠
l,j

)||2
2

⇤

+

⌘

2K

K

X

l=1

E
⇥

||rF (w
j

) � g(w
l,j

, ⇠
l,j

)||2
2

⇤

+

L⌘2

2

E
⇥

||v
j

||2
2

⇤

(a)

 E [F (w
j

)] � ⌘

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘

2K

K

X

l=1

E
⇥

||g(w
l,j

, ⇠
l,j

)||2
2

⇤

+

⌘

2K

K

X

l=1

E
⇥

||g(w
l,j

, ⇠
l,j

)||2
2

⇤

� ⌘

2K

K

X

l=1

E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

+

⌘

2K

K

X

l=1

E
⇥

||rF (w
j

) � rF (w
⌧(l,j)

)||2
2

⇤

+

L⌘2

2

E
⇥

||v
j

||2
2

⇤

(38)

(b)

 E [F (w
j

)] � ⌘

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘

2K

K

X

l=1

E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

+

⌘

2

�E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2

2

E
⇥

||v
j

||2
2

⇤

(c)

 E [F (w
j

)] � ⌘

2

(1 � �)E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2�2

2Km

� ⌘

2K

K

X

l=1

✓

1 � L⌘(

M
G

Km
+

1

K
)

◆

E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

(d)

 E [F (w
j

)] � ⌘

2

(1 � �)E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2�2

2Km

� ⌘

4K

K

X

l=1

E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

(e)

 E [F (w
j

)] � ⌘

2

(1 � �)E
⇥

||rF (w
j

)||2
2

⇤

+

L⌘2�2

2Km

� ⌘

4

p
0

E
⇥

||rF (w
j

)||2
2

⇤

(39)

Here step (a) follows from Lemma 7 and
step (b) follows from the assumption that
E
⇥

||rF (w
j

) � rF (w
⌧(l,j)

)||2
2

⇤

 �E
⇥

||rF (w
j

)||2
2

⇤

for some constant �  1. The next step (c) fol-
lows from the Lemma 9 that bounds the variance
of the sum of stochastic gradients. Step (d) fol-

lows from choosing ⌘ < 1

2L(

MG
Km+

1
K)

and Þnally

(e) follows from Lemma 1 in Section 3 that says
E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

� p
0

E
⇥

||rF (w
j

)||2
2

⇤

for some
non-negative constantp

0

which is a lower bound on
the conditional probability that ⌧(l, j) = j given all
past delays and parameter values.

Finally, since F (w) is strongly convex, using the in-
equality 2c(F (w)�F ⇤

)  ||rF (w)||2
2

in (39), we Þnally
obtain the desired result.

8.2.1 Extension to Non-Convex case

The analysis can be extended to provide weaker guar-
antees for non-convex objectives. Let�0

= 1 � � +

p0

2

For non-convex objectives, we have the following result.

Theorem 5. For non-convex objective function, we
have the following ergodic convergence result given by:

1

J + 1

J

X

j=0

E
⇥

||rF (w
j

)||2
2

⇤

 2(F (w
0

) � F ⇤
)

(J + 1)⌘�0 +

L⌘�2

Km�0

where F ⇤
= minw F (w).

Proof. Recall the recursion derived in the last proof in
(39). After re-arrangement, we obtain the following:

E
⇥

||rF (w
j

)||2
2

⇤

 2(E [F (w
j

)] � E [F (w
j+1

]))

⌘�0 +

L⌘�2

Km�0

(40)

Taking summation from j = 0 to j = J , we get,

1

J + 1

J

X

j=0

E
⇥

||rF (w
j

)||2
2

⇤

 2(E [F (w
0

)] � E [F (w
J

)])

(J + 1)⌘�0 +

L⌘�2

Km�0

(a)

 2(F (w
0

) � F ⇤
)

(J + 1)⌘�0 +

L⌘�2

Km�0 (41)

Here (a) follows since we assumew
0

to be known and
also from E [F (w

J

)] � F ⇤.

8.3 Variable Learning Rate Schedule

We propose a new heuristic for learning rate sched-
ule that is more stable than Þxed learning rate
for asynchronous SGD. Our learning rate sched-
ule is ⌘

j

= min

n

C

||wj�w⌧(j)||22
, ⌘

max

o

, where ⌘
max

is a suitably large value of learning rate beyond
which the convergence diverges. This heuristic is in-
spired from the assumption in Theorem 4 given by
⌘
j

E
⇥

||w
j

� w
⌧(j)

||2
2

⇤

 C. In this section, we derive
the accuracy trade-o! mentioned in Theorem 4 based
on this assumption.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

Proof of Theorem 4. Following steps similar to (29),
we Þrst obtain the following:

F (w
j+1

)  F (w
j

) � ⌘
j

2

||rF (w
j

)||2
2

� ⌘
j

2

||v
j

||2
2

+

⌘
j

2

||rF (w
j

) � v
t

||2
2

+

L⌘2

j

2

||v
j

||2
2

(42)

Now taking expectation, we obtain the following result.
E [F (w

j+1

)]

(a)

 E [F (w
j

)] � ⌘
j

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘
j

2

E
⇥

||v
j

||2
2

⇤

+

⌘
j

2

E
⇥

||v
j

||2
2

⇤

� ⌘
j

2

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+

⌘
j

2

E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

+

L⌘2

j

2

E
⇥

||v
j

||2
2

⇤

(b)

 E [F (w
j

)] � ⌘
j

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘
j

2

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+

CL2

2

+

L⌘2

j

2

E
⇥

||v
j

||2
2

⇤

(c)

 E [F (w
j

)] � ⌘
j

2

E
⇥

||rF (w
j

)||2
2

⇤

+

CL2

2

+

L⌘2

j

�2

2m

� ⌘
j

2

✓

1 � L⌘
j

(

M
G

m
+ 1)

◆

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

(e)

 E [F (w
j

)] � ⌘
j

2

E
⇥

||rF (w
j

)||2
2

⇤

+

CL2

2

+

⌘2

j

L�2

2m
� ⌘

j

4

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

(43)

Here (a) follows from (30), (b) follows from (12), (c)
follows from Assumption 4 and (d) follows as⌘

j


1

2L(

MG
m +1)

. Let us deÞne�
j

=

CL

2

2

+

⌘

2
jL�

2

2m

. Thus, the

recursion can be written as,

E [F (w
j+1

)]  E [F (w
j

)] � ⌘
j

2

E
⇥

||rF (w
j

)||2
2

⇤

� ⌘
j

4

E
⇥

||rF (w
⌧(j)

)||2
2

⇤

+ �

j

(e)

 E [F (w
j

)] � ⌘
j

2

(1 +

p
0

2

)E
⇥

||rF (w
j

)||2
2

⇤

+ �

j

(44)

Here (e) follows from Lemma1. If the loss function
F (w) is strongly convex with parameter c, then for all
w, we have2c(F (w) � F ⇤

)  ||rF (w)||2
2

. Using this
result, we obtain

E [F (w
j+1

)] � F ⇤  (1 � ⌘
j

(1 +

p
0

2

)c)(E [F (w
j

)] � F ⇤
)

+ �

j

 (1 � ⌘
j

(1 +

p
0

2

)c)(1 � ⌘
j�1

(1 +

p
0

2

)c)(E [F (w
j�1

)] � F ⇤
)

+ (1 � ⌘
j

(1 +

p
0

2

)c)�
j�1

+ �

j

 (1 � ⇢
j

)(1 � ⇢
j�1

) . . . (1 � ⇢
0

)(E [F (w
0

)] � F ⇤
) + �

(45)

where ⇢
j

= ⌘
j

(1 +

p0

2

)c and � = �

j

+ (1 � ⇢
j

)�

j�1

+

· · · + (1 � ⇢
j

)(1 � ⇢
j�1

) . . . (1 � ⇢
1

)�

0

.

9 SIMULATION SETUP DETAILS

MNIST [LeCun, 1998]: For the simulations on MNIST
dataset, we Þrst convert the28 ⇥ 28 images into single
vectors of length 784. We use a single layer of neurons
followed by soft-max cross entropy with logits loss
function. Thus e!ectively the parameters consist of a
weight matrix W of size784 ⇥ 10 and a bias vector
b of size1 ⇥ 10. We use a regularizer of value0.01,
mini-batch size m = 1, and learning rate ⌘ = 0.01.
For implementation we used Tensorßow with Python3.
Thus, the model is as follows:

X=tf.placeholder(tf.float32,[None,784])

Y=tf.placeholder(tf.float32,[None,10])

W=tf.Variable(tf.random_normal(shape=[784,10],

stddev=0.01), name="weights")

b=tf.Variable(tf.random_normal(shape=[1,10],

stddev=0.01), name="bias")

logits=tf.matmul(X,W) + b

entropy=tf.nn.softmax_cross_entropy_with

_logits(logits=logits,labels=Y) +

lamda*tf.square(tf.norm(W))

loss=tf.reduce_mean(entropy)

For the run-time simulations, we generate random vari-
ables from the respective distributions in python to
represent the computation times.

CIFAR10 [Krizhevsky and Hinton, 2009]: For the CI-
FAR10 simulations, similar to MNIST, we convert the
images into vectors of length1024. We combine the
three colour variants in the ratio [0.2989, 0.5870, 0.114]

to generate a single vector of length1024 for every im-
age. We use a single layer of neurons again followed by
soft-max cross entropy with logits in tensorßow. Thus,
the parameters consist of a weight matrixW of size
1024 ⇥ 10 and a bias vectorb of size1 ⇥ 10. We use a
mini-batch size of 250, regularizer of 0.05.

We use a similar model as follows:

X=tf.placeholder(tf.float32,[None,1024])

Y=tf.placeholder(tf.float32,[None,10])

W=tf.Variable(tf.random_normal(shape=[1024,10],

stddev= 0.01),name="weights")

b=tf.Variable(tf.random_normal(shape=[1,10],

stddev = 0.01),name="bias")

logits=tf.matmul(X,W) + b

entropy=tf.nn.softmax_cross_entropy_with

_logits(logits=logits,labels=Y) +

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

Lo
g

lo
ss

Iterations

Figure 11: Error-Iterations tradeo! on MNIST dataset:
Simulation of K-sync SGD for di!erent values of K.
Observe that accuracy improves with increasingK
which means increasing e!ective batch size (⌘ = 0.05).

Lo
g

lo
ss

Time

Figure 12: Error-Runtime tradeo! on MNIST dataset:
Simulation of K-sync SGD for di!erent values of K
(⌘ = 0.05).

lamda*tf.square(tf.norm(W))

loss=tf.reduce_mean(entropy)

The computation time as each learner is generated from
exponential distribution.

10 CHOICE OF
HYPERPARAMETERS

Our analysis techniques can also inform the choice of
hyperparameters for synchronous andK-sync SGD.

10.1 Varying K in K-sync

We Þrst perform some simulations ofK-sync SGD
applied on the MNIST dataset. For the simulation set-
up, we consider8 parallel learners with Þxed mini-batch
sizem = 1 and Þxed learning rate0.05. The number
of learners to wait for in K-sync, i.e. K is varied and
the error-runtime trade-o! is observed. The runtimes
are generated from a shifted exponential distribution
given by X

i

⇠ m + exp µ.

Observe that in the plot of error with the number of
iterations in Figure 11, the error improves with increas-
ing K, which means increasing the e!ective mini-batch
and reducing the variability in the gradient. However,
if we look at the same error plotted against runtime

(See Figure12) instead of the number of iterations,
observe that increasingK naively does not always lead
to a better trade-o!. As K increases, the central PS
has to wait for more learners to Þnish at every iteration,
thus su!ering from increased straggler e!ect. The best
error-runtime trade-o! is obtained at an intermediate
K = 4. Thus, the current analysis informs the optimal
choice ofK to achieve a good error-runtime trade-o!.

10.2 Varying mini-batch m

We consider the training of Alexnet on ImageNet
dataset [Krizhevsky et al., 2012] using P = 4 learn-
ers. For this simulation, we perform fully synchronous
SGD, i.e. K-sync with K = P = 4. We Þx the learning
rate and vary the mini-batch used for training. The
runtimes are generated from a shifted exponential dis-
tribution given by X

i

⇠ m + exp µ, that depends on
the mini-batch size. Intuitively, this distribution makes
sense since to compute one mini-batch, a learner would
atleast need a timem (Work Complexity). However,
due to delays, it has the additional exponential tail.
The error-runtime trade-o!s are observed in Figure 13
and Figure 14.

Lo
g

lo
ss

Iterations

Figure 13: Error-Iterations tradeo! on IMAGENET
dataset: Simulation of fully synchronous SGD (K =

P = 4) for di!erent values of mini-batch m. Observe
that accuracy improves with increasingm which means
increasing e!ective batch size.

Lo
g

lo
ss

Time

Figure 14: Error-Runtime tradeo! on IMAGENET
dataset: Same simulation of fully synchronous SGD
(K = P = 4) for di!erent values of mini-batch m
plotted against time. Observe that higher m does not
necessarily mean the best trade-o! with runtime as
higher mini-batch also has longer time.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

Again, observe that the plot of error with the number
of iterations improves with the mini-batch size, as also
expected from theory. However, increasing the mini-
batch also changes the runtime distribution. Thus,
when we plot the same error against runtime, we again
observe that increasing the mini-batch size naively does
not necessarily lead to the best trade-o!. Instead, the
best error-runtime trade-o! is observed with an inter-
mediate mini-batch value of 1024. Thus, our analysis
informs the choice of the optimal mini-batch.

