8 Supplementary Material

8.1 Proof of Lemma 4

We factorize and bound \(\|H_{n,k}^{-1} \nabla R_n(x_m) - H_n^{-1} \nabla R_n(x_m)\| \) as

\[
\|H_{n,k}^{-1} \nabla R_n(x_m) - H_n^{-1} \nabla R_n(x_m)\| \leq (21) \\
\|I - H_{n,k}^{-1} H_n\| \|H_n^{-1} \nabla R_n(x_m)\|.
\]

Thus, it remains to bound \(\|I - H_{n,k}^{-1} H_n\| \) by some \(\epsilon_n \). To do so, consider that we can factorize \(H_n = U(\Sigma + cV_n)I^T \) and \(H_{n,k}^{-1} \) as in (8). We can then expand \(\|I - H_{n,k}^{-1} H_n\| \) as

\[
\|I - H_{n,k}^{-1} H_n\| = \|I - U([\Sigma_k + cV_n]I)^{-1} \times ([\Sigma_k + cV_n]I)U^T \|
\]

where \(\Sigma_k \in \mathbb{R}^{p \times p} \) is the truncated eigenvalue matrix \(\Sigma_k \) with zeros padded for the last \(p-k \) diagonal entries. Observe that the first \(k \) entries of the product \(([\Sigma_k + cV_n]I)^{-1} \times ([\Sigma_k + cV_n]I) \) are equal to 1, while the last \(p-k \) entries are equal to \((\mu_j + cV_n)/cV_n) \). Thus, we have that

\[
\|I - H_{n,k}^{-1} H_n\| = \|U[H_{n,k}^{-1} - I]U^T\| = \left| \frac{\mu_{k+1}}{cV_n} \right|.
\]

(23)

8.2 Proof of Lemma 5

To begin, recall the result from Lemma 4 in (18). From this, we use the following result from [25, Lemma 6], which present here as a lemma.

Lemma 6 Consider the k-TAN step where

\[
\|H_{n,k}^{-1} \nabla R_n(x_m) - H_n^{-1} \nabla R_n(x_m)\| \leq \epsilon_n \|H_n^{-1} \nabla R_n(x_m)\|.
\]

The Newton decrement of the k-TAN iterate \(\lambda_n(x_n) \) is bounded by

\[
\lambda_n(x_n) \leq \left\{ \left(1 + \epsilon_n \right) \lambda_n(x_m)^2 + \epsilon_n \lambda_n(x_m) \right\} \left(1 - (1 + \epsilon_n) \lambda_n(x_m)^2 \right) \\
\text{w.h.p.}
\]

(24)

Lemma 6 provides a bound on the Newton decrement of the iterate \(x_n \) computed from the k-TAN update in [6] in terms of Newton decrement of the previous iterate \(x_m \) and the error \(\epsilon_n \) incurred from the truncation of the Hessian. We proceed in a manner similar to [16, Proposition 4] by finding upper and lower bounds for the sub-optimality \(S_n(x) = R_n(x) - R_n(x^*) \) in terms of the Newton decrement parameter \(\lambda_n(x) \). Consider the result from [22, Theorem 4.1.11],

\[
\lambda_n(x) - \ln (1 + \lambda_n(x)) \leq R_n(x) - R_n(x^*) \leq -\lambda_n(x) - \ln (1 - \lambda_n(x)).
\]

Consider the Taylor’s expansion of \(\ln(1 + a) \) for \(a = \lambda_n(x) \) to obtain the lower bound on \(\lambda_n(x) \),

\[
\lambda_n(x) \geq \ln (1 + \lambda_n(x)) + \frac{1}{2} \lambda_n(x)^2 - \frac{1}{3} \lambda_n(x)^3.
\]

(26)

Assume that \(x \) is such that \(0 < \lambda_n(x) < 1/4 \). Then the expression in (26) can be rearranged and bounded as

\[
\frac{1}{6} \lambda_n(x)^2 \leq \frac{1}{2} \lambda_n(x) - \frac{1}{3} \lambda_n(x)^3
\]

(27)

Now, consider the Taylor’s expansion of \(\ln(1 - a) \) for \(a = \lambda_n(x) \) in a similar manner to obtain for \(\lambda_n(x) < 1/4 \), from [5, Chapter 9.6.3],

\[
-\lambda_n(x) - \ln (1 - \lambda_n(x)) \leq \lambda_n(x)^2 \quad \text{(28)}
\]

Using these bounds with the inequalities in (25) we obtain the upper and lower bounds on \(S_n(x) \) as

\[
\frac{1}{6} \lambda_n(x)^2 \leq S_n(x) \leq \lambda_n(x)^2.
\]

(29)

Now, consider the bound for Newton decrement of the k-TAN iterate \(\lambda_n(x_n) \) from (24). As we assume that \(\lambda_n(x_m) < 1/4 \), we have

\[
\lambda_n(x_n) \leq \frac{4}{(3 - \epsilon_n)^2} \left[(1 + \epsilon_n) \lambda_n(x_m)^2 + \lambda_n(x_m) \epsilon_n \right].
\]

(30)

We substitute this back into the upper bound in (29) for \(x = x_n \) to obtain

\[
S_n(x_n) \leq \lambda_n(x_n)^2 \leq \frac{16}{(3 - \epsilon_n)^4} \left[(1 + \epsilon_n) \lambda_n(x_m)^2 + \lambda_n(x_m) \epsilon_n \right]^2 \\
= \frac{16}{(3 - \epsilon_n)^4} \left[(1 + \epsilon_n) \lambda_n(x_m)^4 \right] \\
+ 2 \epsilon_n (1 + \epsilon_n) \lambda_n(x_m)^3 + \epsilon_n^2 \lambda_n(x_m)^2.
\]

(32)

Consider also from (29) that we can upper bound the Newton decrement as \(\lambda_n(x_m)^2 \leq 6S_n(x_m) \). We plug this back into (32) to obtain a final bound for sub-optimality as

\[
S_n(x_n) \leq \frac{16}{(3 - \epsilon_n)^4} \left[36 (1 + \epsilon_n)^2 S_n(x_m)^2 \right] \quad \text{(33)}
\]

\[+ 30 \epsilon_n (1 + \epsilon_n) S_n(x_m)^3/2 + 6 \epsilon_n^2 S_n(x_m)]. \]

8.3 Additional Experiments

In Figure 5, we show results on the BIO dataset used for protein homology classification in KDD Cup 2004. The dimensions are \(N = 145751 \) and \(p = 74 \). In this setting, the number of samples is very large and the dimension is very small. Observe in Figure 5 that both k-TAN and AdaNewton greatly outperform the first order methods, due to the reduced cost in Hessian computation that comes from adaptive sample size. However, because \(p \) is small, the additional gain from the truncating in the inverse in k-TAN does not provide significant benefit relative to AdaNewton.
Figure 5: Convergence of k-TAN, AdaNewton, SGD, and SAGA in terms of number of processed gradients (left) and runtime (right) for the BIO protein homology classification problem.