7 Appendix

7.1 Variational forms of convex envelopes (Proof of lemma 2 and Remark 1)

In this section, we recall the different variational forms of the homogeneous convex envelope derived in [31] and derive similar variational forms for the non-homogeneous convex envelope, which includes the ones stated in lemma 2). These variational forms will be needed in some of our proofs below.
Lemma 4. The homogeneous convex envelope Ω_{p} of F_{p} admits the following variational forms.

$$
\begin{align*}
\Omega_{\infty}(w) & =\min _{\alpha}\left\{\sum_{S \subseteq V} \alpha_{S} F(S): \sum_{S \subseteq V} \alpha_{S} \mathbb{1}_{S} \geq|w|, \alpha_{S} \geq 0\right\} . \tag{9}\\
\Omega_{p}(w) & =\min _{v}\left\{\sum_{S \subseteq V} F(S)^{1 / q}\left\|v^{S}\right\|_{p}: \sum_{S \subseteq V} v^{S}=|w|, \operatorname{supp}\left(v^{S}\right) \subseteq S\right\} . \tag{10}\\
& =\max _{\kappa \in \mathbb{R}_{+}^{d}} \sum_{i=1}^{d} \kappa_{i}^{1 / q}\left|w_{i}\right| \text { s.t. } \kappa(A) \leq F(A), \forall A \subseteq V . \tag{11}\\
& =\inf _{\eta \in \mathbb{R}_{+}^{d}} \frac{1}{p} \sum_{j=1}^{d} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\frac{1}{q} \Omega_{\infty}(\eta) . \tag{12}
\end{align*}
$$

The non-homogeneous convex envelope of a set function F, over the unit ℓ_{∞}-ball was derived in [10], where it was shown that $\Theta_{\infty}(w)=\inf _{\eta \in[0,1]^{d}}\{f(\eta): \eta \geq|w|\}$ where f is any proper, 1.s.c. convex extension of F (c.f., Lemma 1 [10]). A natural choice for f is the convex closure of F, which corresponds to the tightest convex extension of F on $[0,1]^{d}$. We recall the two equivalent definitions of convex closure, which we have adjusted to allow for infinite values.
Definition 5 (Convex Closure; c.f., [9, Def. 3.1]). Given a set function $F: 2^{V} \rightarrow \overline{\mathbb{R}}$, the convex closure $f^{-}:[0,1]^{d} \rightarrow \overline{\mathbb{R}}$ is the point-wise largest convex function from $[0,1]^{d}$ to $\overline{\mathbb{R}}$ that always lowerbounds F.
Definition 6 (Equivalent definition of Convex Closure; c.f., [35, Def. 1] and [9, Def. 3.2]). Given any set function $f:\{0,1\}^{n} \rightarrow \overline{\mathbb{R}}$, the convex closure of f can equivalently be defined $\forall w \in[0,1]^{n}$ as:

$$
f^{-}(w)=\inf \left\{\sum_{S \subseteq V} \alpha_{S} F(S): w=\sum_{S \subseteq V} \alpha_{S} \mathbb{1}_{S}, \sum_{S \subseteq V} \alpha_{S}=1, \alpha_{S} \geq 0\right\}
$$

It is interesting to note that $f^{-}(w)=f_{L}(w)$ where f_{L} is Lovász extension iff F is a submodular function [35].
The following lemma derive variational forms of Θ_{p} for any $p \geq 1$ that parallel the ones known for the homogeneous envelope.
Lemma 5. The non-homogeneous convex envelope Θ_{p} of F_{p} admits the following variational forms.

$$
\begin{align*}
\Theta_{\infty}(w) & =\inf \left\{\sum_{S \subseteq V} \alpha_{S} F(S): \sum_{S \subseteq V} \alpha_{S} \mathbb{1}_{S} \geq|w|, \sum_{S \subseteq V} \alpha_{S}=1, \alpha_{S} \geq 0\right\} . \tag{13}\\
\Theta_{p}(w) & =\max _{\kappa \in \mathbb{R}^{d}} \sum_{j=1}^{d} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\min _{S \subseteq V} F(S)-\kappa(S), \forall w \in \operatorname{dom}\left(\Theta_{p}(w)\right) . \tag{14}\\
& =\inf _{\eta \in[0,1]^{d}} \frac{1}{p} \sum_{j=1}^{d} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\frac{1}{q} f^{-}(\eta) \tag{15}
\end{align*}
$$

where $\operatorname{dom}\left(\Theta_{p}\right)=\left\{w \mid \exists \eta \in[0,1]^{d}\right.$ s.t $\left.\operatorname{supp}(w) \subseteq \operatorname{supp}(\eta), \eta \in \operatorname{dom}\left(f^{-}\right)\right\}$, and where we define

$$
\psi_{j}\left(\kappa_{j}, w_{j}\right):= \begin{cases}\kappa_{j}^{1 / q}\left|w_{j}\right| & \text { if }\left|w_{j}\right| \leq \kappa_{j}^{1 / p}, \kappa_{j} \geq 0 \\ \frac{1}{p}\left|w_{j}\right|^{p}+\frac{1}{q} \kappa_{j} & \text { otherwise. }\end{cases}
$$

If F is monotone, $\Theta_{\infty}=f^{-}$, then we can replace f^{-}by Θ_{∞} in (15) and we can restrict $\kappa \in \mathbb{R}_{+}^{d}$ in (14).
To prove the variational form (13) in Lemma 5, we need to show first the following property of f^{-}.

Proposition 5 (c.f., [9, Prop. 3.23]). The minimum values of a proper set function F and its convex closure f^{-}are equal, i.e.,

$$
\min _{w \in[0,1]^{d}} f^{-}(w)=\min _{S \subseteq V} F(S)
$$

If S is a minimizer of $f(S)$, then $\mathbb{1}_{S}$ is a minimizer of f^{-}. Moreover, if w is a minimizer of f^{-}, then every set in the support of α, where $f^{-}(w)=\sum_{S \subseteq V} \alpha_{S} F(S)$, is a minimizer of F.

Proof. First note that, $\{0,1\}^{d} \subseteq[0,1]^{d}$ implies that $f^{-}\left(w^{*}\right) \leq F\left(S^{*}\right)$. On the other hand, $f^{-}\left(w^{*}\right)=\sum_{S \subseteq V} \alpha_{S}^{*} F(S) \geq$ $\sum_{S \subseteq V} \alpha_{S}^{*} F\left(S^{*}\right)=F\left(S^{*}\right)$. The rest of the proposition follows directly.

Given the choice of the extension $f=f^{-}$, the variational form (13) of Θ_{∞} given in lemma 5 follows directly from definition 6 and proposition 5, as shown in the following corollary.
Corollary 4. Given any set function $F: 2^{V} \rightarrow \overline{\mathbb{R}}_{+}$and its corresponding convex closure f^{-}, the convex envelope of $F(\operatorname{supp}(w))$ over the unit ℓ_{∞}-ball is given by

$$
\begin{aligned}
\Theta_{\infty}(w) & =\inf _{\alpha}\left\{\sum_{S \subseteq V} \alpha_{S} F(S): \sum_{S \subseteq V} \alpha_{S} \mathbb{1}_{S} \geq|w|, \sum_{S \subseteq V} \alpha_{S}=1, \alpha_{S} \geq 0\right\} . \\
& =\inf _{v}\left\{\sum_{S \subseteq V} F(S)\left\|v^{S}\right\|_{\infty}: \sum_{S \subseteq V} v^{S}=|w|, \sum_{S \subseteq V}\left\|v^{S}\right\|_{\infty}=1, \operatorname{supp}\left(v^{S}\right) \subseteq S\right\} .
\end{aligned}
$$

Proof. f^{-}satisfies the first 2 assumptions required in Lemma 1 of [10], namely, f^{-}is a lower semi-continuous convex extension of F which satisfies

$$
\max _{S \subseteq V} m(S)-F(S)=\max _{w \in[0,1]^{d}} m^{T} w-f^{-}(w), \forall m \in \mathbb{R}_{+}^{d}
$$

To see this note that $m^{T} w^{*}-f^{-}\left(w^{*}\right)=\sum_{S \subseteq V} \alpha_{S}^{*}\left(m^{T} \mathbb{1}_{S}-F(S)\right) \geq \sum_{S \subseteq V} \alpha_{S}^{*}\left(m^{T} \mathbb{1}_{S^{*}}-F\left(S^{*}\right)\right)=m\left(S^{*}\right)-F\left(S^{*}\right)$. The other inequality is trivial. The corollary then follows directly from Lemma 1 in [10] and definition 6 .

Note that $\operatorname{dom}\left(\Theta_{\infty}\right)=\left\{w: \exists \eta \in[0,1]^{d} \cap \operatorname{dom}\left(f^{-}\right), \eta \geq|w|\right\}$. Note also that Θ_{∞} is monotone even if F is not. On the other hand, if F is monotone, then f^{-}is monotone on $[0,1]^{d}$ and $\Theta_{\infty}(w)=f^{-}(|w|)$. Then the proof of remark 1 follows, since if F is a monotone submodular function and f_{L} is its Lovász extension, then $\Theta_{\infty}(w)=f^{-}(|w|)=f_{L}(|w|)=$ $\Omega_{\infty}(w), \forall w \in[-1,1]^{d}$, where the last equality was shown in [1].

Next, we derive the convex relaxation of F_{p} for a general $p \geq 1$.
Proposition 6. Given any set function $F: 2^{V} \rightarrow \overline{\mathbb{R}}_{+}$and its corresponding convex closure f^{-}, the convex envelope of $F_{\mu \lambda}(w)=\mu F(\operatorname{supp}(w))+\lambda\|w\|_{p}^{p}$ is given by

$$
\Theta_{p}(w)=\inf _{\eta \in[0,1]^{d}} \lambda \sum_{j=1}^{d} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\mu f^{-}(\eta) .
$$

Note that $\operatorname{dom}\left(\Theta_{p}\right)=\left\{w \mid \exists \eta \in[0,1]^{d}\right.$ s.t $\left.\operatorname{supp}(w) \subseteq \operatorname{supp}(\eta), \eta \in \operatorname{dom}\left(f^{-}\right)\right\}$.

Proof. Given any proper l.s.c. convex extension f of F, we have:
First for the case where $p=1$:

$$
\begin{aligned}
F_{\mu \lambda}^{*}(s) & =\sup _{w \in \mathbb{R}^{n}} w^{T} s-\mu F(\operatorname{supp}(w))-\lambda\|w\|_{1} \\
& =\sup _{\eta \in\{0,1\}^{d}} \sup _{\substack{\text { supp } \\
\operatorname{sign}(w)=\eta \\
\operatorname{sig}(w)=\operatorname{sign}(s)}}|w|^{T}(|s|-\lambda \mathbb{1})-\mu F(\eta) \\
& =\iota_{\{|s| \leq \lambda \mathbb{1}\}}(s)-\inf _{\eta \in\{0,1\}^{d}} \mu F(\eta) .
\end{aligned}
$$

Hence $F_{\mu \lambda}^{* *}(w)=\lambda\|w\|_{1}+\inf _{\eta \in\{0,1\}^{d}} \lambda F(\eta)$. For the case $p \in(1, \infty)$.

$$
\begin{aligned}
F_{\mu \lambda}^{*}(s) & =\sup _{w \in \mathbb{R}^{d}} w^{T} s-\mu F(\operatorname{supp}(w))-\lambda\|w\|_{p}^{p} \\
& =\sup _{\eta \in\{0,1\}^{d}} \sup _{\substack{1 \operatorname{supp}(w)=\eta \\
\operatorname{sign}(w)=\operatorname{sign}(s)}}|w|^{T}|s|-\lambda\|w\|_{p}^{p}-\mu F(\eta) \\
& =\sup _{\eta \in\{0,1\}^{d}} \frac{\lambda(p-1)}{(\lambda p)^{q}} \eta^{T}|s|^{q}-\mu F(\eta) \quad\left(\left|s_{i}\right|=\lambda p\left|x_{i}^{*}\right|^{p-1}, \forall \eta_{i} \neq 0\right) \\
& =\sup _{\eta \in[0,1]^{d}} \frac{\lambda(p-1)}{(\lambda p)^{q}} \eta^{T}|s|^{q}-\mu f^{-}(\eta) .
\end{aligned}
$$

We denote $\hat{\lambda}=\frac{\lambda(p-1)}{(\lambda p)^{q}}$.

$$
\begin{aligned}
F_{\mu \lambda}^{* *}(w) & =\sup _{s \in \mathbb{R}^{d}} w^{T} s-F_{\mu \lambda}^{*}(s) \\
& =\sup _{s \in \mathbb{R}^{d}} \min _{\eta \in[0,1]^{d}} s^{T} w-\hat{\lambda} \eta^{T}|s|^{q}+\mu f^{-}(\eta) \\
& \stackrel{\star}{=} \inf _{\eta \in[0,1]^{d}} \sup _{\substack{s \in \mathbb{R}^{p} \\
\operatorname{sign}(s)=\operatorname{sign}(w)}}|s|^{T}|w|-\hat{\lambda} \eta^{T}|s|^{q}+\mu f^{-}(\eta) \\
& =\inf _{\eta \in[0,1]^{d}} \lambda\left(|w|^{p}\right)^{T} \eta^{1-p}+\mu f^{-}(\eta),
\end{aligned}
$$

where the last equality holds since $\left|w_{i}\right|=\hat{\lambda} \eta_{i} q\left|s_{i}^{*}\right|^{q-1}, \forall \eta_{i} \neq 0$, otherwise $s_{i}^{*}=0$ if $w_{i}=0$ and ∞ otherwise. (\star) holds by Sion's minimax theorem [34, Corollary 3.3]. Note then that the minimizer η^{*} (if it exists) satisfies $\operatorname{supp}(w) \subseteq \operatorname{supp}\left(\eta^{*}\right)$. Finally, note that if we take the limit as $p \rightarrow \infty$, we recover $\Theta_{\infty}=\inf _{\eta \in[0,1]^{d}}\left\{f^{-}(\eta): \eta \geq|x|\right\}$.

The variational form (15) given in lemma 5 follows from proposition 6 for the choice $\mu=\frac{1}{q}, \lambda=\frac{1}{p}$.
The following proposition derives the variational form (14) for $p=\infty$.
Proposition 7. Given any set function $F: 2^{V} \rightarrow \mathbb{R} \cup\{+\infty\}$, and its corresponding convex closure f^{-}, Θ_{∞} can be written $\forall w \in \operatorname{dom}\left(\Theta_{\infty}\right)$ as

$$
\begin{aligned}
\Theta_{\infty}(w) & =\max _{\kappa \in \mathbb{R}_{+}^{d}}\left\{\kappa^{T}|w|+\min _{S \subseteq V} F(S)-\kappa(S)\right\} \\
& =\max _{\kappa \in \mathbb{R}_{+}^{d}}\left\{\kappa^{T}|w|+\min _{S \subseteq \operatorname{supp}(w)} F(S)-\kappa(S)\right\}
\end{aligned}
$$

(if F is monotone)

Similarly $\forall w \in \operatorname{dom}\left(f^{-}\right)$we can write

$$
f^{-}(w)=\max _{\kappa \in \mathbb{R}^{d}}\left\{\kappa^{T}|w|+\min _{S \subseteq V} F(S)-\kappa(S)\right\}
$$

$$
=\Theta_{\infty}(w)=\max _{\kappa \in \mathbb{R}_{+}^{d}}\left\{\kappa^{T} w+\min _{S \subseteq \operatorname{supp}(w)} F(S)-\kappa(S)\right\} \quad \text { (if } F \text { is monotone) }
$$

Proof. $\forall w \in \operatorname{dom}\left(\Theta_{\infty}\right)$, strong duality holds by Slater's condition, hence

$$
\begin{aligned}
\Theta_{\infty}(w) & =\min _{\alpha}\left\{\sum_{S \subseteq V} \alpha_{S} F(S): \sum_{S \subseteq V} \alpha_{S} \mathbb{1}_{S} \geq|w|, \sum_{S \subseteq V} \alpha_{S}=1, \alpha_{S} \geq 0\right\} \\
& =\min _{\alpha \geq 0} \max _{\rho \in \mathbb{R}, \kappa \in \mathbb{R}_{+}^{d}}\left\{\sum_{S \subseteq V} \alpha_{S} F(S)+\kappa^{T}\left(|w|-\sum_{S \subseteq V} \alpha_{S} \mathbb{1}_{S}\right)+\rho\left(1-\sum_{S \subseteq V} \alpha_{S}\right)\right\} . \\
& =\max _{\rho \in \mathbb{R}, \kappa \in \mathbb{R}_{+}^{d}} \min _{\alpha \geq 0}\left\{\kappa^{T}|w|+\sum_{S \subseteq V} \alpha_{S}\left(F(S)-\kappa^{T} \mathbb{1}_{S}-\rho\right)+\rho\right\} . \\
& \left.=\max _{\rho \in \mathbb{R}, \kappa \in \mathbb{R}_{+}^{d}}\left\{\kappa^{T}|w|+\rho: F(S) \geq \kappa^{T} \mathbb{1}_{S}+\rho\right)\right\} . \\
& \left.=\max _{\kappa \in \mathbb{R}_{+}^{d}} \kappa^{T}|w|+\min _{S \subseteq V} F(S)-\kappa(S)\right\} .
\end{aligned}
$$

Let $J=\operatorname{supp}(|w|)$ then $\kappa_{J c}^{*}=0$. Then for monotone functions $F(S)-\kappa^{*}(S) \geq F(S \cap J)-\kappa^{*}(S)$, so we can restrict the minimum to $S \subseteq J$. The same proof holds for f^{-}, with the Lagrange multiplier $\kappa \in \mathbb{R}^{d}$ not constrained to be positive.

The following Corollary derives the variational form (14) for $p \in[1, \infty]$.
Corollary 5. Given any set function $F: 2^{V} \rightarrow \mathbb{R} \cup\{+\infty\}, \Theta_{p}$ can be written $\forall w \in \operatorname{dom}\left(\Theta_{p}\right)$ as

$$
\begin{aligned}
\Theta_{p}(w) & =\max _{\kappa \in \mathbb{R}^{d}} \sum_{j=1}^{d} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\min _{S \subseteq V} F(S)-\kappa(S) . \\
& =\max _{\kappa \in \mathbb{R}_{+}^{d}} \sum_{j=1}^{d} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\min _{S \subseteq V} F(S)-\kappa(S) .
\end{aligned}
$$

(if F is monotone)
where

$$
\psi_{j}\left(\kappa_{j}, w_{j}\right):= \begin{cases}\kappa_{j}^{1 / q}\left|w_{j}\right| & \text { if }\left|w_{j}\right| \leq \kappa_{j}^{1 / p}, \kappa_{j} \geq 0 \\ \frac{1}{p}\left|w_{j}\right|^{p}+\frac{1}{q} \kappa_{j} & \text { otherwise }\end{cases}
$$

Proof. By Propositions 6 and 7 , we have $\forall w \in \operatorname{dom}\left(\Theta_{p}\right)$, i.e., $\exists \eta \in[0,1]^{d}$, s.t $\operatorname{supp}(w) \subseteq \operatorname{supp}(\eta), \eta \in \operatorname{dom}\left(f^{-}\right)$,

$$
\begin{aligned}
\Theta_{p}(w) & =\inf _{\eta \in[0,1]^{d}} \frac{1}{p} \sum_{j=1}^{d} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\frac{1}{q} f^{-}(\eta) \\
& =\inf _{\eta \in[0,1]^{d}} \frac{1}{p} \sum_{j=1}^{d} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\frac{1}{q} \max _{\rho \in \mathbb{R}, \kappa \in \mathbb{R}^{d}}\left\{\kappa^{T} \eta+\rho: F(S) \geq \kappa^{T} \mathbb{1}_{S}+\rho\right\} . \\
& \stackrel{\star}{=} \max _{\rho \in \mathbb{R}, \kappa \in \mathbb{R}^{d}} \inf _{\eta \in[0,1]^{d}}\left\{\frac{1}{p} \sum_{j=1}^{d} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\frac{1}{q} \kappa^{T} \eta+\rho: F(S) \geq \kappa^{T} \mathbb{1}_{S}+\rho\right\} .
\end{aligned}
$$

(\star) holds by Sion's minimax theorem [34, Corollary 3.3]. Note also that

$$
\inf _{\eta_{j} \in[0,1]} \frac{1}{p} \frac{\left|w_{j}\right|^{p}}{\eta_{j}^{p-1}}+\frac{1}{q} \kappa_{j} \eta_{j}=\left\{\begin{array}{ll}
\kappa_{j}^{1 / q}\left|w_{j}\right| & \text { if }\left|w_{j}\right| \leq \kappa_{j}^{1 / p}, \kappa_{j} \geq 0 \\
\frac{1}{p}\left|w_{j}\right|^{p}+\frac{1}{q} \kappa_{j} & \text { otherwise }
\end{array}:=\psi_{j}\left(\kappa_{j}, w_{j}\right)\right.
$$

where the minimum is $\eta_{j}^{*}=1$ if $\kappa_{j} \leq 0$. If $\kappa_{j} \geq 0$, the infimum is zero if $w_{j}=0$. Otherwise, the minimum is achieved at $\eta_{j}^{*}=\min \left\{\frac{\left|w_{j}\right|}{\kappa_{j}^{1 / p}}, 1\right\}\left(\right.$ if $\left.\kappa_{j}=0, \eta_{j}^{*}=1\right)$. Hence,

$$
\Theta_{p}(w)=\max _{\kappa \in \mathbb{R}^{d}} \sum_{j=1}^{d} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\min _{S \subseteq V} F(S)-\kappa(S) .
$$

7.2 Necessary conditions for support recovery (Proof of Theorem 1)

Before proving Theorem 1, we need the following technical Lemma.
Lemma 6. Given $J \subset V$ and a vector w s.t $\operatorname{supp}(w) \subseteq J$, if Φ is not decomposable at w w.r.t J, then $\exists i \in J^{c}$ such that the i-th component of all subgradients at w is zero, $0=[\partial \Phi(w)]_{i}$.

Proof. If Φ is not decomposable at w and $0 \neq[\partial \Phi(w)]_{i}, \forall i \in J^{c}$, then $\forall M_{J}>0, \exists \Delta \neq 0, \operatorname{supp}(\Delta) \subseteq J^{c}$ s.t., $\Phi(w+\Delta)<\Phi(w)+M_{J}\|\Delta\|_{\infty}$. In particular, we can choose $M_{J}=\inf _{i \in J^{c}, v \in \partial \Phi\left(w_{J}\right), v_{i} \neq 0}\left|v_{i}\right|>0$, if the inequality holds for some $\Delta \neq 0$, then let $i_{\max }$ denote the index where $\left|\Delta_{i_{\max }}\right|=\|\Delta\|_{\infty}$. Then given any $v \in \partial \Phi(w)$ s.t., $v_{i_{\max }} \neq 0$, we have

$$
\begin{aligned}
\Phi\left(w+\|\Delta\|_{\infty} \mathbb{1}_{i_{\max }}\right) \leq \Phi(w+\Delta) & <\Phi(w)+M_{J}\|\Delta\|_{\infty} \\
& \leq \Phi(w)+\left\langle v,\|\Delta\|_{\infty} \mathbb{1}_{i_{\max }} \operatorname{sign}\left(v_{i_{\max }}\right)\right\rangle \\
& \leq \Phi\left(w+\|\Delta\|_{\infty} \mathbb{1}_{i_{\max }}\right)
\end{aligned}
$$

which leads to a contradiction.

Theorem 1. The minimizer \hat{w} of $\min _{w \in \mathbb{R}^{d}} L(w)-z^{\top} w+\lambda \Phi(w)$, where L is a strongly-convex and smooth loss function and $z \in \mathbb{R}^{d}$ has a continuous density w.r.t to the Lebesgue measure, has a weakly stable support w.r.t. Φ, with probability one.

Proof. We will show in particular that Φ is decomposable at \hat{w} w.r.t $\operatorname{supp}(\hat{w})$. Since L is strongly-convex, given z the corresponding minimizer \hat{w} is unique, then the function $h(z):=\arg \min _{w \in \mathbb{R}^{d}} L(w)-z^{T} w+\lambda \Phi(w)$ is well defined. We want to show that

$$
\begin{aligned}
& P(\forall z, \Phi \text { is decomposable at } h(z) \text { w.r.t } \operatorname{supp}(h(z))) \\
& =1-P(\exists z, \text { s.t, } \Phi \text { is not decomposable at } h(z) \text { w.r.t } \operatorname{supp}(h(z))) \\
& \geq 1-P\left(\exists z, \text { s.t., } \exists i \in(\operatorname{supp}(h(z)))^{c},[\partial \Phi(h(z))]_{i}=0\right) \quad \text { by lemma } 6 \\
& =1
\end{aligned}
$$

Given fixed $i \in V$, we show that the set $S_{i}:=\left\{z: i \in(\operatorname{supp}(h(z)))^{c},[\partial \Phi(h(z))]_{i}=0\right\}$ has measure zero. Then, taking the union of the finitely many sets $S_{i}, \forall i \in V$, all of zero measure, we have $P\left(\exists z\right.$, s.t., $\exists i \in(\operatorname{supp}(h(z)))^{c},[\partial \Phi(h(z))]_{i}=$ $0)=0$.

To show that the set S_{i} has measure zero, let $z_{1}, z_{2} \in S_{i}$ and denote by $\mu>0$ the strong convexity constant of L. We have by convexity of Φ :

$$
\begin{aligned}
\left(\left(z_{1}-\nabla L\left(h\left(z_{1}\right)\right)\right)-\left(z_{2}-\nabla L\left(h\left(z_{2}\right)\right)\right)\right)^{\top}\left(h\left(z_{1}\right)-h\left(z_{2}\right)\right) & \geq 0 \\
\left(z_{1}-z_{2}\right)^{\top}\left(h\left(z_{1}\right)-h\left(z_{2}\right)\right) & \geq\left(\nabla L\left(h\left(z_{1}\right)\right)-\nabla L\left(h\left(z_{2}\right)\right)\right)^{\top}\left(h\left(z_{1}\right)-h\left(z_{2}\right)\right) \\
\left(z_{1}-z_{2}\right)^{\top}\left(h\left(z_{1}\right)-h\left(z_{2}\right)\right) & \geq \mu\left\|h\left(z_{1}\right)-h\left(z_{2}\right)\right\|_{2}^{2} \\
\frac{1}{\mu}\left\|z_{1}-z_{2}\right\|_{2} & \geq\left\|h\left(z_{1}\right)-h\left(z_{2}\right)\right\|_{2}
\end{aligned}
$$

Thus h is a deterministic Lipschitz-continuous function of z. Let $J=\operatorname{supp}(h(z))$, then by optimality conditions $z_{J}-$ $\nabla L\left(h\left(z_{J}\right)\right) \in \partial \Phi\left(h\left(z_{J}\right)\right)$ (since $h(z)=h\left(z_{J}\right)$), then $z_{i}-\nabla L\left(h\left(z_{J}\right)\right)_{i}=0$ since $\left[\partial \Phi\left(h\left(z_{J}\right)\right)\right]_{i}=0$. and thus z_{i} is a Lipschitz-continuous function of z_{J}, which can only happen with zero measure.

7.3 Sufficient conditions for support recovery (Proof of Lemma 3 and Theorem 2)

Lemma 3. Let Φ be a monotone convex function, $\Phi\left(|w|^{\alpha}\right)$ admits the following majorizer, $\forall w^{0} \in \mathbb{R}^{d}, \Phi\left(|w|^{\alpha}\right) \leq(1-$ $\alpha) \Phi\left(\left|w^{0}\right|^{\alpha}\right)+\alpha \Phi\left(\left|w^{0}\right|^{\alpha-1} \circ|w|\right)$, which is tight at w^{0}.

Proof. The function $w \rightarrow w^{\alpha}$ is concave on $\mathbb{R}_{+} \backslash\{0\}$, hence

$$
\begin{aligned}
\left|w_{j}\right|^{\alpha} & \leq\left|w_{j}^{0}\right|^{\alpha}+\alpha\left|w_{j}^{0}\right|^{\alpha-1}\left(\left|w_{j}\right|-\left|w_{j}\right|^{0}\right) \\
\left|w_{j}\right|^{\alpha} & \leq(1-\alpha)\left|w_{j}^{0}\right|^{\alpha}+\alpha\left|w_{j}^{0}\right|^{\alpha-1}\left|w_{j}\right|
\end{aligned}
$$

$$
\Phi\left(|w|^{\alpha}\right) \leq \Phi\left((1-\alpha)\left|w^{0}\right|^{\alpha}+\alpha\left|w^{0}\right|^{\alpha-1} \circ\left|w_{j}\right|\right) \quad \quad \quad \text { (by monotonicity) }
$$

$$
\Phi\left(|w|^{\alpha}\right) \leq(1-\alpha) \Phi\left(\left|w^{0}\right|^{\alpha}\right)+\alpha \Phi\left(\left|w^{0}\right|^{\alpha-1} \circ|w|\right) \quad \quad \quad \text { (by convexity) }
$$

If $w_{j}=0$ for any j, the upper bound goes to infinity and hence it still holds.
Theorem 2. [Consistency and Support Recovery] Let $\Phi: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}_{+}$be a proper normalized absolute monotone convex function and denote by J the true support $J=\operatorname{supp}\left(w^{*}\right)$. If $\left|w^{*}\right|^{\alpha} \in \operatorname{int} \operatorname{dom} \Phi, J$ is strongly stable with respect to Φ and λ_{n} satisfies $\frac{\lambda_{n}}{\sqrt{n}} \rightarrow 0, \frac{\lambda_{n}}{n^{\alpha / 2}} \rightarrow \infty$, then the estimator (6) is consistent and asymptotically normal, i.e., it satisfies

$$
\begin{equation*}
\sqrt{n}\left(\hat{w}_{J}-w_{J}^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2} Q_{J J}^{-1}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P(\operatorname{supp}(\hat{w})=J) \rightarrow 1 \tag{8}
\end{equation*}
$$

Proof. We will follow the proof in [38]. We write $\hat{w}=w^{*}+\frac{\hat{u}}{\sqrt{n}}$ and $\Psi_{n}(u)=\frac{1}{2}\left\|y-X\left(w^{*}+\frac{u}{\sqrt{n}}\right)\right\|_{2}^{2}+\lambda_{n} \Phi\left(c \circ\left|w^{*}+\frac{u}{\sqrt{n}}\right|\right)$, where $c=\left|w^{0}\right|^{\alpha-1}$. Then $\hat{u}=\arg \min _{u \in \mathbb{R}^{d}} \Psi_{n}(u)$. Let $V_{n}(u)=\Psi_{n}(u)-\Psi_{n}(0)$, then

$$
V_{n}(u)=\frac{1}{2} u^{T} Q u-\epsilon^{T} \frac{X u}{\sqrt{n}}+\lambda_{n}\left(\Phi\left(c \circ\left|w^{*}+\frac{u}{\sqrt{n}}\right|\right)-\Phi\left(c \circ\left|w^{*}\right|\right)\right)
$$

Since w^{0} is a \sqrt{n}-consistent estimator to w^{*}, then $\sqrt{n} w_{J^{c}}^{0}=O_{p}(1)$ and $n^{\frac{1-\alpha}{2}} c_{J^{c}}^{-1}=O_{p}(1)$. Since $\frac{\lambda_{n}}{n^{\alpha / 2}} \rightarrow \infty$, by stability of J, we have

$$
\begin{align*}
\lambda_{n}\left(\Phi\left(c \circ\left|w^{*}+\frac{u}{\sqrt{n}}\right|\right)-\Phi\left(c \circ\left|w^{*}\right|\right)\right) & =\lambda_{n}\left(\Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|+c_{J^{c}} \circ \frac{\left|u_{J^{c}}\right|}{\sqrt{n}}\right)-\Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right)\right) \\
& \geq \lambda_{n}\left(\Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|\right)+M_{J}\left\|c_{J^{c}} \circ \frac{\left|u_{J^{c}}\right|}{\sqrt{n}}\right\|_{\infty}-\Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right)\right) \\
& =\lambda_{n}\left(\Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|\right)-\Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right)\right)+M_{J}\left\|\lambda_{n} n^{-\alpha / 2} n^{\frac{\alpha-1}{2}} c_{J^{c}} \circ\left|u_{J^{c}}\right|\right\|_{\infty} \\
& \xrightarrow[\rightarrow]{\infty} \infty \text { if } u_{J^{c}} \neq 0 \tag{16}
\end{align*}
$$

Otherwise, if $u_{J^{c}}=0$, we argue that

$$
\begin{equation*}
\lambda_{n}\left(\Phi\left(c \circ\left|w^{*}+\frac{u}{\sqrt{n}}\right|\right)-\Phi\left(c \circ\left|w^{*}\right|\right)\right)=\lambda_{n}\left(\Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|\right)-\Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right)\right) \xrightarrow{p} 0 \tag{17}
\end{equation*}
$$

To see this note first that since w^{0} is a \sqrt{n}-consistent estimator to w^{*}, then $c_{J}=\left|w_{J}^{0}\right|^{\alpha-1} \xrightarrow{p}\left|w_{J}^{*}\right|^{\alpha-1}, c_{J} \circ\left|w_{J}^{*}\right| \xrightarrow{p}\left|w_{J}^{*}\right|^{\alpha}$ and $c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right| \xrightarrow{p}\left|w_{J}^{*}\right|^{\alpha}$. Then by the assumption $\left|w^{*}\right|^{\alpha} \in \operatorname{int} \operatorname{dom} \Phi$, we have that both $c_{J} \circ\left|w_{J}^{*}\right|, c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right| \in$ int dom Φ with probability going to one. By convexity, we then have:

$$
\begin{aligned}
& \lambda_{n}\left(\Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|\right)-\Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right)\right) \geq\left\langle\nabla \Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right), \lambda_{n} \frac{u_{J}}{\sqrt{n}}\right\rangle \\
& \lambda_{n}\left(\Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|\right)-\Phi\left(c_{J} \circ\left|w_{J}^{*}\right|\right)\right) \leq\left\langle\nabla \Phi\left(c_{J} \circ\left|w_{J}^{*}+\frac{u_{J}}{\sqrt{n}}\right|\right), \lambda_{n} \frac{u_{J}}{\sqrt{n}}\right\rangle
\end{aligned}
$$

where $\nabla \Phi(w)$ denotes a subgradient of Φ at w.
For all $w \in$ int dom Φ where Φ is convex, monotone and normalized, we have that $\|z\|_{\infty}<\infty, \forall z \in \partial \Phi(w)$. To see this, note that since $w \in \operatorname{int} \operatorname{dom} \Phi, \exists \delta>0$ s.t., $\forall w^{\prime} \in B_{\delta}(w), \Phi\left(w^{\prime}\right)<+\infty$. Let $w^{\prime}=w+\operatorname{sign}(z) \mathbb{1}_{i_{\max }} \delta$, where $i_{\max }$ denotes the index where $\left|z_{i_{\max }}\right|=\|z\|_{\infty}$ then by convexity we have

$$
\begin{aligned}
\Phi\left(w^{\prime}\right) & \geq \Phi(w)+\left\langle z, w^{\prime}-w\right\rangle, & \forall z \in \partial \Phi(w) \\
+\infty>\Phi\left(w^{\prime}\right) & \geq\|z\|_{\infty} \delta, & \forall z \in \partial \Phi(w), \quad(\text { since } \Phi(w) \geq 0)
\end{aligned}
$$

Since $\frac{\lambda_{n}}{\sqrt{n}} \rightarrow 0$, we can then conclude by Slutsky's theorem that (17) holds.
Hence by (16) and (17),

$$
\lambda_{n}\left(\Phi\left(c \circ\left|w^{*}+\frac{u}{\sqrt{n}}\right|\right)-\Phi\left(c \circ\left|w^{*}\right|\right)\right) \xrightarrow{p} \begin{cases}0 & \text { if } u_{J^{c}}=0 \tag{18}\\ \infty & \text { Otherwise }\end{cases}
$$

By CLT, $\frac{X^{T} \epsilon}{\sqrt{n}} \xrightarrow{d} W \sim \mathcal{N}\left(0, \sigma^{2} Q\right)$, it follows then that $V_{n}(u) \xrightarrow{d} V(u)$, where

$$
V(u)= \begin{cases}\frac{1}{2} u_{J}^{T} Q_{J J} u_{J}-W_{J}^{T} u_{J} & \text { if } u_{J^{c}}=0 \\ \infty & \text { Otherwise }\end{cases}
$$

V_{n} is convex and the unique minimum of V is $u_{J}=Q_{J J}^{-1} W_{J}, u_{J^{c}}=0$, hence by epi-convergence results [c.f., [38]]

$$
\begin{equation*}
\hat{u}_{J} \xrightarrow{d} Q_{J J}^{-1} W_{J} \sim \mathcal{N}\left(0, \sigma^{2} Q_{J J}^{-1}\right), \quad \hat{u}_{J^{c}} \xrightarrow{d} 0 \tag{19}
\end{equation*}
$$

Since $\hat{u}=\sqrt{n}\left(\hat{w}-w^{*}\right)$, then it follows from (19) that

$$
\begin{equation*}
\hat{w}_{J} \xrightarrow{p} w_{J}^{*}, \quad \hat{w}_{J^{c}} \xrightarrow{p} 0 \tag{20}
\end{equation*}
$$

Hence, $P(\operatorname{supp}(\hat{w}) \supseteq J) \rightarrow 1$ and it is sufficient to show that $P(\operatorname{supp}(\hat{w}) \subseteq J) \rightarrow 1$ to complete the proof.
For that denote $\hat{J}=\operatorname{supp}(\hat{w})$ and let's consider the event $\hat{J} \backslash J \neq \emptyset$. By optimality conditions, we know that

$$
-X_{\hat{J} \backslash J}^{T}(X \hat{w}-y) \in \lambda_{n}[\partial \Phi(c \circ \cdot)(\hat{w})]_{\hat{J} \backslash J}
$$

Note, that $-\frac{X_{\hat{J} \backslash J}^{T}(X \hat{w}-y)}{\sqrt{n}}=\frac{X_{\hat{J} \backslash J}^{T} X\left(\hat{w}-w^{*}\right)}{\sqrt{n}}-\frac{X_{\hat{J} \backslash J}^{T} \epsilon}{\sqrt{n}} . \quad$ By CLT, $\frac{X_{\hat{J}, J}^{T} \epsilon}{\sqrt{n}} \xrightarrow{d} W \sim \mathcal{N}\left(0, \sigma^{2} Q_{\hat{J} \backslash J, \hat{J} \backslash J}\right)$ and by (20) $\hat{w}-w^{*} \xrightarrow{p} 0$ then $-\frac{X_{\hat{J} \backslash J}^{T}(X \hat{w}-y)}{\sqrt{n}}=O_{p}(1)$.

On the other hand, $\frac{\lambda_{n} c_{\hat{\jmath} \backslash J}}{\sqrt{n}}=\lambda_{n} n^{\frac{1-\alpha}{2}} n^{\frac{\alpha-1}{2}} c_{\hat{J} \backslash J} \rightarrow \infty$, hence $\frac{\lambda_{n} c_{\hat{\jmath} \backslash J}}{\sqrt{n}} c_{\hat{J} \backslash J}^{-1} v_{\hat{J} \backslash J} \rightarrow \infty, \forall v \in \partial \Phi(c \circ \cdot)(\hat{w})$, since $c_{\hat{J} \backslash J}^{-1} v_{\hat{J} \backslash J}=O_{p}(1)^{-1}$. To see this, let $w_{J}^{\prime}=\hat{w}_{J}$ and 0 elsewhere. Note that by definition of the subdifferential and the stability assumption on J, there must exists $M_{J}>0$ s.t

$$
\begin{aligned}
\Phi\left(c \circ w^{\prime}\right) & \geq \Phi(c \circ \hat{w})+\left\langle v_{\hat{J} \backslash J},-\hat{w}_{\hat{J} \backslash J}\right\rangle \\
& \geq \Phi\left(c \circ w^{\prime}\right)+M_{J}\left\|c_{\hat{J} \backslash J} \circ \hat{w}_{\hat{J} \backslash J}\right\|_{\infty}-\left\|c_{\hat{J} \backslash J}^{-1} \circ v_{\hat{J} \backslash J}\right\|_{1}\left\|c_{\hat{J} \backslash J} \circ \hat{w}_{\hat{J} \backslash J}\right\|_{\infty} \\
\left\|c_{\hat{J} \backslash J}^{-1} \circ v_{\hat{J} \backslash J}\right\|_{1} & \geq M_{J}
\end{aligned}
$$

We deduce then $P(\operatorname{supp}(\hat{w}) \subseteq J)=1-P(\hat{J} \backslash J \neq \emptyset)=1-P($ optimality condition holds $) \rightarrow 1$.

7.4 Discrete stability (Proof of Proposition 2 and relation to weak submodularity)

Proposition 2. If F is a finite-valued monotone function, F is ρ-submodular iff discrete weak stability is equivalent to strong stability.

Proof. If F is ρ-submodular and J is weakly stable, then $\forall A \subseteq J, \forall i \in J^{c}, 0<\rho[F(J \cup\{i\})-F(J)] \leq F(J \cup\{i\})-F(J)$, i.e., J is strongly stable w.r.t. F. If F is such that any weakly stable set is also strongly stable, then if F is not ρ-submodular, then $\forall \rho \in(0,1]$ there must exists a set $B \subseteq V$, s.t., $\exists A \subseteq B, i \in B^{c}$, s.t., $\rho[F(B \cup\{i\})-F(B)]>F(A \cup\{i\})-F(A) \geq$ 0 . Hence, $F(B \cup\{i\})-F(B)>0$, i.e., B is weakly stable and thus it is also strongly stable and we must have $F(A \cup\{i\})-F(A)>0$. Choosing then in particular, $\rho=\min _{B \subseteq V} \min _{A \subseteq B, i \in B^{c}} \frac{F(A \cup\{i\})-F(A)}{F(B \cup\{i\})-F(B)} \in(0,1]$, leads to a contradiction; $\min _{A \subseteq B, i \in B^{c}} F(A \cup\{i\})-F(A) \geq \rho[F(B \cup\{i\})-F(B)]>F(A \cup\{i\})-F(A)$.

We show that ρ-submodularity is a stronger condition than weak submodularity. First, we recall the definition of weak submodular functions.
Definition 7 (Weak Submodularity (c.f., [7, 11])). A function F is weakly submodular if $\forall S, L, S \cap L=\emptyset, F(L \cup S)-$ $F(L)>0$,

$$
\gamma_{S, L}=\frac{\sum_{i \in S} F(L \cup\{i\})-F(L)}{F(L \cup S)-F(L)}>0
$$

Proposition 8. If F is ρ-submodular then F is weakly submodular. But the converse is not true.
Proof. If F is ρ-submodular then $\forall S, L, S \cap L=\emptyset, F(L \cup S)-F(L)>0$, let $S=\left\{i_{1}, i_{2}, \cdots, i_{r}\right\}$

$$
\begin{aligned}
F(L \cup S)-F(L) & =\sum_{k=1}^{r} F\left(L \cup\left\{i_{1}, \cdots, i_{k}\right\}\right)-F\left(L \cup\left\{i_{1}, \cdots, i_{k-1}\right\}\right) \\
& \leq \sum_{k=1}^{r} \frac{1}{\rho}\left(F\left(L \cup\left\{i_{k}\right\}\right)-F(L)\right) \\
\Rightarrow \gamma_{S, T} & =\rho>0
\end{aligned}
$$

We show that the converse is not true by giving a counter-example: Consider the function defined on $V=\{1,2,3\}$, where $F(\{i\})=1, \forall i, F(\{1,2\})=1, F(\{2,3\})=2, F(\{1,3\})=2, F(\{1,2,3\})=3$. Then note that this function is weakly submodular. We only need to consider sets $|S| \geq 2$, since otherwise $\gamma_{S, T}>0$ holds trivially. Accordingly, we also only need to consider L which is the empty set or a singleton. In both cases $\gamma_{S, T}>0$. However, this F is not ρ-submodular, since $F(1,2)-F(1)=0<\rho(F(1,2,3)-F(1,3))=\rho$ for any $\rho>0$.

7.5 Relation between discrete and continuous stability (Proof of Propositions 3 and 4, and Corollary 3)

First, we present a useful simple lemma, which provides an equivalent definition of decomposability for monotone function.
Lemma 7. Given $w \in \mathbb{R}^{d}, J \subseteq J, \operatorname{supp}(w)=J$, if Φ is a monotone function, then Φ is decomposable at w w.r.t J iff $\exists M_{J}>0, \forall \delta>0, i \in J^{c}$, s.t,

$$
\Phi\left(w+\delta \mathbb{1}_{i}\right) \geq \Phi(w)+M_{J} \delta
$$

Proof. By definition $2, \exists M_{J}>0, \forall \Delta \in \mathbb{R}^{d}, \operatorname{supp}(\Delta) \subseteq J^{c}$,

$$
\Phi(w+\Delta) \geq \Phi(w)+M_{J}\|\Delta\|_{\infty}
$$

in particular this must hold for $\Delta=\delta \mathbb{1}_{i}$. On the other hand, if the inequality hold for all $\delta \mathbb{1}_{i}$, then given any Δ s.t. $\operatorname{supp}(\Delta) \subseteq J^{c}$ let $i_{\max }$ be the index where $\Delta_{i_{\max }}=\|\Delta\|_{\infty}$ and let $\delta=\|\Delta\|_{\infty}$, then

$$
\Phi(w+\Delta) \geq \Phi\left(w+\delta_{i_{\max }}\right) \geq \Phi(w)+M_{J} \delta=\Phi(w)+M_{J}\|\Delta\|_{\infty}
$$

Proposition 3. Given any monotone set function F, all sets $J \subseteq V$ strongly stable w.r.t to F are also strongly stable w.r.t Ω_{p} and Θ_{p}.

Proof. We make use of the variational form (11). Given a set J stable w.r.t to F and $\operatorname{supp}(w) \subseteq J$, let $\kappa^{*} \in \arg \max _{\kappa \in \mathbb{R}_{+}^{d}}\left\{\sum_{i \in J} \kappa_{i}^{1 / q}\left|w_{i}\right|: \kappa(A) \leq F(A), \forall A \subseteq V\right\}$, then $\Omega(w)=\left|w_{J}\right|^{T}\left(\kappa_{J}^{*}\right)^{1 / q}$. Note that $\forall A \subseteq J, F(A \cup i)>F(A)$, by definition 3. Hence, $\forall i \in J^{c}$, we can define $\kappa^{\prime} \in \mathbb{R}_{+}^{d}$ s.t., $\kappa_{J}^{\prime}=\kappa_{J}^{*}, \kappa_{(J \cup i)^{c}}^{\prime}=0$ and $\kappa_{i}^{\prime}=\min _{A \subseteq J} F(A \cup i)-F(A)>0$. Note that κ^{\prime} is feasible, since $\forall A \subseteq J, \kappa^{\prime}(A)=\kappa^{*}(A) \leq F(A)$ and $\kappa^{\prime}(A+i)=\kappa^{*}(A)+\kappa_{i}^{\prime} \leq F(A)+F(A \cup i)-F(A)=F(A \cup i)$. For any other set $\kappa^{\prime}(A)=\kappa^{\prime}(A \cap(J+i)) \leq F(A \cap(J+i)) \leq F(A)$, by monotonicity. It follows then that $\Omega\left(w+\delta \mathbb{1}_{i}\right)=\max _{\kappa \in \mathbb{R}_{+}^{d}}\left\{\sum_{i \in J \cup i}^{d} \kappa_{i}^{1 / q}\left|w_{i}\right|: \kappa(A) \leq F(A), \forall A \subseteq V\right\} \geq\left|w_{J}\right|^{T}\left(\kappa_{J}^{*}\right)^{1 / q}+\delta\left(\kappa_{i}^{\prime}\right)^{1 / q} \geq \Omega(w)+\delta M$, with $M=\left(\kappa_{i}^{\prime}\right)^{1 / q}>0$. The proposition then follows by lemma 7 .

Similarly, the proof for Θ_{p} follows in a similar fashion. We make use of the variational form (14). Given a set J stable w.r.t to F and $\operatorname{supp}(w) \subseteq J$, first note that this implicity implies that $F(J)<+\infty$ and hence $\Theta_{p}(w)<+\infty$. Let $\kappa^{*} \in \arg \max _{\kappa \in \mathbb{R}_{+}^{d}} \sum_{j=1}^{d} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\min _{S \subseteq V} F(S)-\kappa(S)$ and $S^{*} \in \arg \min _{S \subseteq J} F(S)-\kappa^{*}(S)$. Note that $\forall S \subseteq$ $J, \forall i \in J^{c}, F(S \cup i)>F(S)$, by definition 3. Hence, $\forall i \in J^{c}$, we can define $\kappa^{\prime} \in \mathbb{R}_{+}^{d}$ s.t., $\kappa_{J}^{\prime}=\kappa_{J}^{*}, \kappa_{(J \cup i)^{c}}^{\prime}=0$ and $\kappa_{i}^{\prime}=\min _{S \subseteq J} F(S \cup i)-F(S)>0$. Note that $\forall S \subseteq J, F(S)-\kappa^{\prime}(S)=F(S)-\kappa^{*}(S) \geq F\left(S^{*}\right)-\kappa^{*}\left(S^{*}\right)$ and $F(S+i)-\kappa^{\prime}(S+i)=F(S+i)-\kappa^{*}(S)-\kappa_{i}^{\prime} \geq F(S+i)-\kappa^{*}(S)-F(S+i)+F(S) \geq F\left(S^{*}\right)-\kappa^{*}\left(S^{*}\right)$. Note also that $\psi_{i}\left(\kappa_{i}^{\prime}, \delta\right)=\left(\kappa_{i}^{\prime}\right)^{1 / q} \delta$ if $\delta \leq\left(\kappa_{i}^{\prime}\right)^{1 / p}$, and $\psi_{i}\left(\kappa_{i}^{\prime}, \delta\right)=\frac{1}{p} \delta^{p}+\frac{1}{q} \kappa_{i}^{\prime}=\delta\left(\frac{1}{p} \delta^{p-1}+\frac{1}{q} \kappa_{i}^{\prime} \delta^{-1}\right) \geq \delta\left(\kappa_{i}^{\prime}\right)^{1 / q}$ otherwise. It follows then that $\Theta_{p}\left(w+\delta \mathbb{1}_{i}\right) \geq \sum_{j \in J} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\left(\kappa_{i}^{\prime}\right)^{1 / q} \delta+\min _{S \subseteq J \cup i} F(S)-\kappa^{\prime}(S) \geq \sum_{j \in J} \psi_{j}\left(\kappa_{j}, w_{j}\right)+\left(\kappa_{i}^{\prime}\right)^{1 / q} \delta+$ $\min _{S \subseteq J} F(S)-\kappa^{*}(S)=\Theta_{p}(w)+\delta M$ with $M=\left(\kappa_{i}^{\prime}\right)^{1 / q}>0$. The proposition then follows by lemma 7 .
Proposition 4. If $F=F_{-}$and J is strongly stable w.r. Ω_{∞}, then J is strongly stable w.r.t F. Similarly, for any monotone F, if J is strongly stable w.r.t Θ_{∞}, then J is strongly stable w.r.t F.

Proof. $F(A+i)=\Omega_{\infty}\left(\mathbb{1}_{A}+\mathbb{1}_{i}\right)=\Theta_{\infty}\left(\mathbb{1}_{A}+\mathbb{1}_{i}\right)>\Omega_{\infty}\left(\mathbb{1}_{A}\right)=\Theta_{\infty}\left(\mathbb{1}_{A}\right)=F(A), \forall A \subseteq J$.
Corollary 3. If F is monotone submodular and J is weakly stable w.r.t $\Omega_{\infty}=\Theta_{\infty}$ then J is weakly stable w.r.t F.

Proof. If F is a monotone submodular function, then $\Omega_{\infty}(w)=\Theta_{\infty}(w)=f_{L}(|w|)$. If J is not weakly stable w.r.t F, then $\exists i \in J^{c}$ s.t., $F(J \cup\{i\})=F(J)$. Thus, given any $w, \operatorname{supp}(w)=J$, choosing $0<\delta<\min _{i \in J}\left|w_{i}\right|$, result in $f_{L}\left(|w|+\delta \mathbb{1}_{i}\right)=f_{L}(|w|)$, which contradicts the weak stability of J w.r.t to $\Omega_{\infty}=\Theta_{\infty}$.

