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Abstract

In this paper we adopt the diffusion approxi-

mation perspective to investigate Stochastic

Gradient Descent (SGD) for least squares,

which allows us to characterize the exact dy-

namics of the online regression process. As

a consequence, we show that SGD achieves

the optimal rate of convergence, up to a log-

arithmic factor. We further show SGD com-

bined with the trajectory average achieves

a faster rate, by eliminating the logarithmic

factor. We extend SGD to the high dimen-

sional setting by proposing a two-step algo-

rithm: a burn-in step using offline learning

and a refinement step using a variant of

truncated stochastic gradient descent. Un-

der appropriate assumptions, we show the

proposed algorithm produces near optimal

sparse estimators. Numerical experiments

lend further support to our obtained theory.

1 Introduction

In this paper we focus on the following random-design

linear regression model

y = xTθ∗ + ε, (1.1)

where y ∈ R is the response variable, x ∈ Rp con-

sists of p random predictor variables, and ε is the

error term independent of x. The target is to es-

timate parameter θ∗ based on the data
{

(xt, yt) :
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t = 1, 2, . . . , N
}

, which are independent and identi-

cally distributed (i.i.d.) realizations of (x, y). The

estimation problem can be formulated as solving the

following convex optimization problem

min
θ∈Rd

Ex,y

{
1

2
(y − xTθ)2

}
. (1.2)

which is known as population risk minimization. It

is well known that when E[xxT] is nondegenerate,

(1.2) admits a closed-form solution

θprm =
(
E
[
xxT

])−1 E [yx] . (1.3)

Correspondingly, the Ordinary Least Square (OLS)

estimator can be viewed as a sample average approx-

imation

θols =

(
1

N

N∑
t=1

xtx
T
t

)−1
1

N

N∑
t=1

ytxt.

However, directly calculating the above OLS esti-

mator has at least two shortcomings. First, the

computational complexity of inverting the empirical

Hessian matrix is in the order of O(p3), which is

costly when p is large. Second, when the number of

predictors p is strictly larger than the number of sam-

ples N , the OLS estimator using the idea of sample

average approximation becomes nonidentifiable.

Stochastic Gradient Descent We focus on the

setting where we only have access data samples{
(xt, yt) : t = 1, 2, . . .

}
streaming in one at a time,

in a sequential manner. The stochastic gradient of

the population risk in (1.2) is

∂

∂θ

[
1

2
(y − xTθ)2

]
= −(y − xTθ)x.



Then the online stochastic gradient descent at time

t performs

θ(t) = θ(t−1) + η(yt − xT
t θ)xt. (1.4)

Here we assume that η > 0 is a small stepsize possibly

depending on the streaming sample size N , and the

availability of a proper initial point θ(0), which will

be specified later. One of our main theorems in §2
states that the obtained online estimator achieves

the following rate of convergence

E
∥∥∥θ(N) − θ∗

∥∥∥2 .
σ2

αX
· p logN

N
,

where αX is the smallest eigenvalue of E[xxT]. After

the trajectory averaging, our theory in §3 suggests

that the rate of convergence of the online estimator

can be further improved (cf. Proposition 3.1):

E
∥∥∥θ̄(N) − θ∗

∥∥∥2 .
σ2

αX
·

tr(Σ−1X )

N
,

and the average prediction risk satisfies that when x

is drawn from D,

E
∣∣∣xT(θ̄(N) − θ∗)

∣∣∣2 .
pσ2

N
.

In addition, we also have asymptotic normality re-

sults in the continuous-time settings. See the details

in Propositions 2.5, 3.1 and Corollary 3.2. The above

rate of convergence is known to be statistically opti-

mal (Raskutti et al., 2010) and partially recovers the

existing results (Ruppert, 1988; Polyak & Juditsky,

1992); see for example Eq. (3) in Polyak & Juditsky

(1992) or Theorem 1 in Ruppert (1988). See also

more recent works by Chen et al. (2016); Su & Zhu

(2018), among many others.

Stochastic Gradient Descent with Truncation

When p� N , the minimizer θols is known to be non-

identifiable. One popular way to encourage sparsity

is to consider the following penalized regression

min
θ∈Rd

Ex,y

{
1

2
(y − xTθ)2

}
+ λ‖θ‖1, (1.5)

where λ > 0 is a regularization parameter. In this

paper, we propose to use the following truncated

stochastic gradient descent:

θ̃(t) = Truncate
(
θ(t−1) + η(yt − xT

t θ
(t−1))xt, k0

)
,

where the operator “Truncate” ranks the coordinates

and keeps the k0 largest coordinates in absolute val-

ues. The truncation parameter k0 is obtained by

exploiting an offline burn-in step. Our main result

states as follows:

E
∥∥∥θ̄(N) − θ∗

∥∥∥2 .
σ2

αX
· s logN

N
.

In above, s is the size of support S = supp(θ∗). See

more in §4.

Contributions We make three important contri-

butions towards understanding online regression.

(i) To our best knowledge, this work is among the

first that employs the differential equation tools

to analyze the online linear regression problem.

Our analysis can be broke down into two phases.

In the first phase the iteration follows a deter-

ministic dynamics characterized by an ordinary

differential equation (ODE), and in the second

phase the iteration fluctuates around the global

minimizer and behaves as a multidimensional

Ornstein-Uhlenbeck (O-U) process, which is the

solution to a Langevin-type stochastic differen-

tial equation (SDE). Moreover, the convergence

rate is characterized by the second moment of

the stationary distribution of the O-U process.

The accuracy of the diffusion approximation,

however, has not been studied and remains an

open problem: see the remark at the end of §2.

(ii) We provide a trajectory average scheme to fur-

ther improve the rate of convergence. This av-

eraging idea has been exploited in early works

(Ruppert, 1988; Polyak & Juditsky, 1992). How-

ever, our analysis suggests that the averaging

should start with an initialization to be O(η0.5)-

distant from the local minimizer, where η is the

stepsize. Such analysis allows us to introduce

the two-phase training strategy and illustrates

different phenomenon from Ruppert (1988) and

Polyak & Juditsky (1992) that averages from

the initial time.

(iii) We propose a two-stage algorithm for high-

dimensional linear regression problems. The

first stage is an offline algorithm which only

uses a small of the data to learn an initial es-

timator θ̂init, and the second stage refines this
2



coarse estimator in an online fashion such that

it can achieve the optimal rate of convergence.

To the best of the author’s knowledge, we are

among the first to provide statistical guarantees

for the proposed algorithm. See §4.

More literatures In either the optimization or the

statistics literature, stochastic gradient descent has

been extensively studied as a first-order stochastic

approximation method for minimizing an objective

function. The online stochastic gradient method min-

imizes the sum of a large number of component func-

tions update the working parameter of interest using

one data point at a time through a gradient-type up-

date (Kushner & Yin, 2003; Benveniste et al., 2012;

Borkar, 2008; Bertsekas & Tsitsiklis, 1989; Nedić

et al., 2001; Nedic & Bertsekas, 2001; Bertsekas, 2011;

Nedić, 2011; Wang & Bertsekas, 2015, 2016). It has

been shown that after N samples/iterations, the av-

erage of the iterates has O (1/N) optimization error

for strongly convex objective, and O(1/
√
N) error

for general convex objective (Rakhlin et al., 2012;

Shamir & Zhang, 2013), which is known to match

with minimax information lower bounds (Agarwal

et al., 2012a; Nemirovskii & Yudin, 1983) and hence

optimal for convex optimization under the stochastic

first-order oracle. The diffusion approximation char-

acterization can also be interpreted from a variational

bayesian perspective (Mandt et al., 2016), which is

opposite to the direction in this paper, however.

In the offline setting, algorithms for Lasso problems

have been extensively studied in the last decade. For

example, Efron et al. (2004) proposed the LARS al-

gorithm for computing the whole solution path of

lasso penalized regression problems. Agarwal et al.

(2012b) proposed the proximal gradient algorithm

for solving convex regularization problems with fixed

λ. Later, algorithms for nonconvex penalized re-

gression problems have been proposed (Fan et al.,

2017), among others. For sparse online learning

problems, there has been quite some work in the

optimization literature, where researchers study the

iteration complexity of various online learning algo-

rithms, see Bertsekas (2011); Duchi et al. (2011);

Xiao (2010) among others. The idea of truncation,

also known as soft-thresholding operator has been

used for sparse regression. See e.g. Donoho (1995);

Daubechies et al. (2004); Langford et al. (2009) and

recently by Ma (2013); Yuan & Zhang (2013). In

contrast, there is little literature on the statistical

recovery properties for online algorithms until very

recently, where Dieuleveut et al. (2016) analyzed an

accelerated version of the online regression problem

in the low-dimensional setting. However, for match-

ing statistical rates purposes, such acceleration does

not improve the O(
√
p/N) lower bound.

The rest of this paper is organized as follows. §2
describes the continuum diffusion approximation

method and provide explicit traverse time estimation

in the low dimension regime. §3 analyzes averaged

iterations along with finite-sample bounds. §4 ex-

amines a two-step online truncated regression and

provide the finite-sample bound under certain as-

sumptions. §5 provides some numerical experiments

for simulated data that are consistent with our the-

ory. We conclude the paper in §6. For the clarity in

presentation, all proofs are deferred to Appendix.

2 Continuum Framework and Phase

Transition

In this section, we will analyze the SGD algorithm

(1.4) in the low dimensional (p� N) regime. The key

tools are the diffusion approximation techniques and

the goal is to obtain a finite-sample bound, matching

that for the offline method.

We start with regularity assumptions.

Assumption 2.1. Suppose that (x, y) satisfy the

following statements

(i) (Exogeneity) E[x] = 0, E[ε | x] = 0;

(ii) (Homogeneity of variance) var[ε | x] = σ2 for

all x;

(iii) (Absence of multicollinearity) ΣX ≡ E[xxT]

has its smallest eigenvalue αX > 0;

(iv) (Normalized predictors) the predictor variables

are normalized with var(xi) = 1, where ΣX has

all diagonals being 1;

(v) (Subgaussian noise) ε ∼ sub-Gaussian(0, σ2).

Let us consider the SGD iterates (1.4) and let Ft
be the filtration generated by the first t samples

{(xi, yi), i ≤ t}. Our first lemma concerns the condi-

tional expectation of the stochastic gradients.
3



Lemma 2.2. Under Assumption 2.1, the stochastic

gradient at step t satisfies

E
[
−
(
yt − xT

t θ
(t−1)

)
xt | Ft−1

]
= ΣX(θ(t−1)− θ∗).

(2.1)

The noise generated at iteration t ≥ 1 is the incre-

ment subtracting its expectation:

et ≡
(
yt − xT

t θ
(t−1)

)
xt + ΣX(θ(t−1) − θ∗). (2.2)

From (2.1), we have E[et | Ft−1] = 0, and hence et
forms a martingale difference sequence with respect

to Ft. The stochastic gradient update (1.4) can then

be expressed as

θ(t) = θ(t−1) + ηΣX(θ∗ − θ(t−1)) + ηet. (2.3)

Heuristically, (1.4) is approximated by the following

ordinary differential equation

dΘ(t)

dt
= −ηΣX(Θ(t)− θ∗). (2.4)

The following lemma computes the conditional vari-

ance of the increment at time t.

Lemma 2.3. Under Assumption 2.1, we have that,

when θ(t−1) = θ∗ +O(η0.5)

E[ete
T
t | Ft−1] = var

[(
yt − xT

t θ
(t−1)

)
xt | Ft−1

]
= σ2ΣX +O(η0.5).

Lemmas 2.2 and 2.3 allow us to conclude that, locally

around θ∗, the following continuous-time dynamics

serve as a good approximation for (2.3)

dΘ(t) = −ηΣX (Θ(t)− θ∗) dt+ ησΣ
1/2
X dW (t),

(2.5)

where W (t) is the standard p-dimensional Brown-

ian motion, and Σ
1/2
X denotes the unique positive

semidefinite square root of ΣX .

2.1 Weak Convergence Theory and

Traverse Time Estimates

We utilize the diffusion theory for Markov processes

to derive the weak convergence result of the solutions

to the ODE and SDE in Theorem 2.4. The derivation

requires applications of Lemmas 2.2 and 2.3 under

appropriate temporal and spatial scalings. To avoid

possible ambiguity, we occasionally add a superscript

η to the iterate θ(t) such that θη,(t) ≡ θ(t).

Theorem 2.4. Suppose that Assumption 2.1 holds.

Then the following results hold:

(i) As η → 0+, if θη,(0) converges weakly to some

Θa
0 , then the stochastic process θη,(btη

−1c) con-

verges weakly to the solution to the following

ODE

dΘa(t)

dt
= −ΣX(Θa(t)− θ∗), (2.6)

which is a time-rescaled version of the ODE

(2.4).

(ii) As η → 0+, if η−0.5(θη,(0) − θ∗) converges

weakly to some Θb
0 then η−0.5(θη,(btη

−1c) − θ∗)
converges weakly to the solution to the follow-

ing SDE

dΘb(t) = −ΣXΘb(t) dt+σΣ
1/2
X dW (t), (2.7)

which is a time-and-space-rescaled version of

SDE (2.5).

In general, weak convergence for stochastic processes,

Xη(t)⇒X(t) in Rd, is characterized by the follow-

ing convergence for cylindrical sets: for each coordi-

nate k = 1, . . . , d and any 0 ≤ t1 < · · · < tn <∞ the

convergence in distribution holds as η → 0+ (Kush-

ner & Yin, 2003):

(Xη
k (t1), . . . , Xη

k (tn))⇒ (Xk(t1), . . . , Xk(tn)) .

Theorem 2.4 indicates that (2.4) and (2.5) serve as

good approximations to the dynamics of the SGD

updates when exploiting a rescaling argument: (2.4)

is deterministic and serves as a global approxima-

tion, and (2.5) is local with the information of noise

encoded. From the viewpoint of statisticians, the

ODE approximation corresponds to rate of conver-

gence, while the SDE dictates asymptotic normality.

In other words, (2.5) serves as an asymptotic ex-

pansion of higher order term with error encoded.

The solution to (2.5) is known to be a multivariate

Ornstein-Ulenbeck process:

Θ(t) = θ∗ + (θ0 − θ∗) exp (−ηtΣX)

+ ησ

∫ t

0

exp (η(τ − t)ΣX) Σ
1/2
X dW (τ).

(2.8)

The last term above is a manifestation of Itô integral
4



that has mean zero and second moment:

var

(
ησ

∫ t

0

exp (η(τ − t)ΣX) Σ
1/2
X dW (τ)

)
= η2σ2

∫ t

0

exp (2η(τ − t)ΣX) ΣX dτ

= η2 · σ
2

2η
(Ip − exp (−2ηtΣX)) 4 η · σ

2

2
Ip.

Therefore, Θ(t) traverses first deterministically and

rapidly from initial point θ0 and then to a neigh-

borhood of θ∗. Recall that αX > 0 is the smallest

eigenvalue of ΣX . Further investigations to the afore-

mentioned ODE and SDE approximations allows us

to conclude the following proposition.

Proposition 2.5. Suppose that Assumption 2.1

holds. For N sufficiently large, by setting η �
α−1X logN/N , Θ(t) in (2.8) satisfies

E‖Θ(N)− θ∗‖2 .
σ2

αX
· p logN

N
. (2.9)

Proposition 2.5 implies that, given N streaming sam-

ples, the estimation error is in the order of p/N up to

a logN factor. In other words, SGD for least squares

achieves minimax optimal rate up to a logarithmic

factor.

Remark. Although Theorem 2.4 establishes the

weak convergence of the SGD iteration to the ODE

and SDE solutions under two different scalings, no

such convergence rates have been provided, and hence

the asymptotic analysis using the continuous-time

dynamics does not give the analogous discrete-time

dynamics. The recent revised work by Li et al. (2017)

concludes that the continuous-time dynamics serve

as the so-called order-1 weak approximation to the

discrete-time dynamics. However, their bound of the

discrete–continuous gap ignores the dependency of

dimension d. Such explicit bound is left for further

investigations.

3 Achieving Optimal Rate via

Trajectory Average

The previous section indicates that, starting from

θ0 = O(η0.5), the SGD iteration (1.4) is close to

the global minimizer θ∗ and keeps oscillating around

such minimizer. We can further improve the bound

using trajectory average:

θ̄(N) =
1

N

N∑
t=1

θ(t).

This averaging scheme provides a sharper bound of

convergence rate in two aspects: (i) the logN factor

is eliminated; (ii) the constant factor is improved.

Since θ(t) ≈ Θ(t) for each t = 1, . . . , N , we have

roughly that θ̄(N) ≈ Θ̄(N) where

Θ̄(N) =
1

N

∫ N

0

Θ(t)dt.

Utilizing probabilistic tools related to the Ornstein-

Uhlenbeck processes, we conclude that the following

proposition concerning the convergence rate of Θ̄(N).

Proposition 3.1. Suppose θ0 = θ∗ +OP(η0.5). As

ηN →∞, Θ̄(N) weakly converges:
√
N(Θ̄(N)− θ∗)⇒ N

(
0, σ2Σ−1X

)
, and (3.1)

E
∥∥Θ̄(N)− θ∗

∥∥2 . σ2 ·
tr(Σ−1X )

N
. (3.2)

Immediately from Proposition 3.1, we obtain the

following corollary.

Corollary 3.2. For any given x0 ∈ Rp, as ηN →∞,

we have:
√
NxT

0

(
Θ̄(N)− θ∗

)
⇒ N

(
0, (xT

0 Σ−1X x0)σ2
)
, and

(3.3)

E
(∣∣xT

0 (Θ̄(N)− θ∗)
∣∣2 | x0

)
. xT

0 Σ−1X x0 ·
σ2

N
.

Moreover, let x be drawn from the data distribution

with bounded second moments, then the prediction

error is bounded as

E
∣∣xT(Θ̄(N)− θ∗)

∣∣2 .
pσ2

N
.

Proposition 3.1 and Corollary 3.2 imply that, under

the scaling condition that ηN →∞, Θ̄(N) approx-

imately follows N
(
θ∗, (σ

2/N)Σ−1X
)
. The striking

fact of these results is that the rate of convergence is

independent of the stepsize η.

Remark. The results in Proposition 3.1 is related

to classical averaged SGD finite-sample bounds by

Ruppert (1988) and Polyak & Juditsky (1992), who

prove that when minimizing a strongly convex func-

tion E[F (θ; ζ)] with a Lipschitz gradient, by choosing

appropriate step sizes,
√
N
(
θ̄(N) − θ∗

)
⇒ N

(
0,A−1S2A−1

)
,
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where A = E
[
∇2F (θ∗; ζ)

]
is the Hessian matrix,

and S2 = E [∇F (θ∗; ζ)∇F (θ∗; ζ)]
T

is the covariance

of noise at a local minimizer. In our case, A = ΣX

and S2 = σ2ΣX so A−1S2A−1 = σ2Σ−1X . Seeing the

approximation θ̄(N) ≈ Θ̄(N), the results in Proposi-

tion 3.1 matches the best known sample bounds for

SGD.

Two-Phase Phenomenon. We propose a two-

phase training strategy as follows. In the first

phase, we run the SGD for Ncvg iterations to get

convergence to a O(η0.5)-neighborhood. In the sec-

ond phase, we compute the partial sum of the last

Navg SGD iterates and then divide it by Navg,

where the output θ̄(N) approximately follows the

distribution N
(
θ∗, (σ

2/N)Σ−1X
)
. For simplicity, we

consider the case where the two phases have the

same number of samples. Suppose Ncvg = Navg ∼
0.5α−1X η−1 log

(
η−1

)
. From Proposition 3.1, we know

that it takes

N = Ncvg +Navg ∼ α−1X η−1 log
(
η−1

)
iterates to obtain an estimator satisfying

E‖Θ̄(N)− θ∗‖2 ≤ σ2 ·
tr(Σ−1X )

Navg
≤ 2σ2 ·

tr(Σ−1X )

N
.

(3.4)

Corollary 3.2 implies

E
∣∣xT

0 (Θ̄(N)− θ∗)
∣∣2 . σ2 p

Navg
= 2σ2 p

N
. (3.5)

The error bound in (3.4) is O
(
σ2 tr(Σ−1X ) ·N−1

)
,

which improves the bound O
(
σ2pα−1X · (logN)N−1

)
without averaging step (2.9) in two ways: (i) the

Hessian-related factor pα−1X in (3.4) is improved

to tr(Σ−1X ), and (ii) the logN factor is eliminated.

Moreover, the rate is independent of η under the

asymptotic regime ηN →∞. We comment here that

the numbers of data in the two phases are not re-

quired to be the same. However, the main results

largely holds as long as the two sizes of data samples

are of the same magnitude. Interested readers can

find more on the variants of averaging schemes in

Rakhlin et al. (2012) and Shamir & Zhang (2013).

4 Sparse Online Regression

Recall that our true model is y = xTθ∗ + ε. We

consider the setting that θ∗ is s-sparse, that is, the

support set of θ∗, S = supp(θ∗), has size s.

We consider the setting where we have at hand a mini-

batch data, {(xk, yk)}nk=1, after which the data come

in a streaming fashion. This resembles the setting

of many scientific studies. For example, in genomic

and biomedical imaging studies, a small-scale clinical

trial is first carried out for some preliminary results,

after which more and more studies are carried out

in order to improve the detection power. Motivated

by this setting, we propose and study the following

two-step algorithm for sparse online regression:

• Step 1. Burn-in using offline learning: We

use nonconvex penalized regression to obtain

a burn-in estimator θ̂init with active set Ainit =

supp
(
θ̂init

)
.

• Step 2. Refinement using online learning: We

start with the initial estimator in Step 1 and then

run the truncated stochastic gradient update.

We analyze the above two steps separately.

4.1 Burn-in Step

Let Xinit = (x1, . . . ,xn)T. In the first offline stage,

we run the following nonconvex penalized regression

θ̂init = argmin
θ

{
1

2n
‖y −Xinitθ‖22︸ ︷︷ ︸
Linit(θ)

+

p∑
j=1

pλ(θj)

}
,

(4.1)

where pλinit
(·) is a folded concave penalty with reg-

ularization parameter λinit, such as SCAD (Fan &

Li, 2001) or MCP (Zhang, 2010). One can adopt

iLAMM for solving the optimization problem (4.1)

(Fan et al., 2017), and we only require some common

regularity conditions, as specified in the following

assumption.

Assumption 4.1. Let ν and c be some appropriate

constants. Suppose pλ(x) can be written as pλ(x) =

λ|x|+ hλ(x) such that

(a) p′λ(x) = 0, for |x| ≥ ν ≥ cλ > 0.

(b) h′λ(x) is monotone and Lipschitz continuous, i.e.,

for x′ ≥ x, there exists a constant ξ− ≥ 0 such

that h′λ(x′)− h′λ(x) ≤ −ξ−(x′ − x).

(c) hλ(x) and hλ(x) are symmetric and pass through

0.

(d) |h′λ(x)| ≤ λ for any x ∈ R.
6



We need the following definition of restricted eigenval-

ues. Let Hinit = XT
initXinit/n be the Hessian matrix.

Definition 4.2 (Restricted Eigenvalue, RE). The

restricted eigenvalue is defined as

κ+(m, γ) = sup
u

{
uTHinitu/n : ‖u‖2 = 1,u ∈ C(m, γ)

}
;

κ−(m, γ) = inf
u

{
uTHinitu/n : ‖u‖2 = 1,u ∈ C(m, γ)

}
,

where C(m, γ) ≡
{
u : S ⊆ J, |J | ≤ m, ‖uJc‖1 ≤

γ‖uJ‖1
}

is a local `1 cone.

We say the RE condition holds if there exists m and γ

such that 0 < κ∗ ≤ κ−(m, γ) ≤ κ+(m, γ) ≤ κ∗ <∞.

Raskutti et al. (2010) showed that the RE condition

holds with high probability when the design variables

have sub-Gaussian tails. We also need the following

assumption concerning minimal signal strength.

Assumption 4.3 (Minimal Signal Strength). As-

sume that minj∈S |θ∗,j | ≥ 2λ = 2c
√

log p/n.

Assumption 4.3 is rather mild since
√

log p/n dimin-

ishes quickly. In other words, Assumption 4.3 can

be regarded as sample complexity requirement in

the offline line step. Our first result in this section

concerns the statistical property of the burn-in es-

timator θ̂init, when using iLAMM for computation.

The readers are referred to Fan et al. (2017) for more

information regarding to computation using iLAMM.

Proposition 4.4. Assume that Assumption 4.1

holds. Assume that the RE condition holds with

m = 2s, γ = 3, and κ∗ > ξ−. Suppose that

n & s log p and λ = c
√

log p/n for a constant c.

Then, with probability at least 1−1/p, we must have

‖θ̂init − θ∗‖ . s
√

log p/n and |Ainit| ≤ (C + 1)s,

for a constant C. Moreover, if we assume Assumption

4.3, then S ⊂ Ainit.

4.2 Refinement Step

In this section, we extend our analysis in §2 to the

online updates after the offline burn-in step, namely,

by adding in a truncation step, we obtain a rate that

matches the finite-sample bound for batch method.

We start from θinit and run the following truncated

stochastic gradient descent algorithm:

θ̃(t) = θ(t−1) + η(yt − xT
t θ

(t−1))xt,

θ(t) = Truncate(θ̃(t), k0).
(4.2)

where k0 = |Ainit| ≥ s is the size of the support

set of θinit. The first step is simply the stochastic

gradient descent step. The second step is added,

where we recall that Truncate operator keeps the

maximal k0 absolute coordinates and zero-out all

others. To avoid ambiguity, if there are multiple k0
maximals coordinates then the ones with least indices

are selected. We establish the following lemma.

Lemma 4.5. Suppose we are under the assumptions

in Proposition 4.4, and let M be a diagonal matrix

with 1s on the (i, i) entries where i ∈ Ainit, and 0s

otherwise. Then with probability ≥ 1− 1/p we have

for all t ≤ T

Truncate(θ̃(t), k0) =Mθ̃(t).

In other words, the algorithm focuses on the subset

that has been selected from the true support under

the assumptions in Proposition 4.4.

From the fact that θ(t−1) is supported on Ainit

θ(t) =M
[
θ(t−1) + η(yt − xT

t θ
(t−1))xt

]
= θ(t−1) + η(yt − xT

t θ
(t−1))Mxt.

Let zt = xt|Ainit be the k0-dimensional vector that

project xt ∈ Rp onto active set Ainit, and similarly,

let ψ(t) = θ(t)|Ainit
∈ Rk0 and ψ∗ = θ∗|Ainit

∈ Rk0
be separately the projected iteration and minimizer.

Then by projection onto Ainit, the problem is trans-

lated to a low-dimensional problem

ψ(t) = ψ(t−1) + η(yt − zTt ψ
(t−1))zt.

We can now apply results from §2. Analogous to

(2.5), ψ(t) can be approximated by Ψ(t) which is the

solution to SDE

dΨ(t) = −ηΣZ (Ψ(t)−ψ∗) dt+ ησΣ
1/2
Z dW (t).

(4.3)

The error bound in terms of the `2-loss is analogous

to Proposition 2.5, as follows.

Proposition 4.6. Under Assumptions 2.1 and 4.3,

when we know there are N streaming samples, by

setting η = α−1X logN/N then the rate is

E
[
‖θ(N) − θ∗‖2;A∗

]
.

σ2

αX
· s logN

N
, (4.4)

where A∗ is the event set that S ⊂ A∗.

We believe the missing of log p compared to minimax

rate is due to the minimal signal strength assumption,

which results in a different class of minimax problems

(Raskutti et al., 2010).
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5 Simulation Results:

Low-dimensional Case

In this section, we conduct some numerical experi-

ments to evaluate the algorithm we proposed in the

low-dimensional setting. Limited by space, we re-

fer the readers to the supplementary material for

simulations in high-dimensional setting.

In low-dimensional case, we focus on the utility of

the averaging process in the proposed algorithm. We

fix the dimension to be p = 10 and generate N =

20000 samples according to yi = xT
i θ∗ + εi where

the regression coefficient θ∗ = (1, 1, ..., 1)T, εi follows

N(0, 1) and xi follows a multivariate N(0, Ip) so

αX = 1. We choose for simplicity θ0 = 0 (other

values apply). We run the stochastic gradient descent

to derive an estimator θ̂ with step size ηi ≡ logN/N

being a constant for all 1 ≤ i ≤ N . The above

procedure is repeated for 100 times and the average

`2 error ||θ̂ − θ∗||2 is recorded.

Meanwhile, we also start the averaging process from

k = 2000, 5000, 8000 and 10000 in each repetition

and record the mean `2 loss separately. This means

that we consider 5 cases here altogether. The results

are shown in Figure 1.

• C1: Tcvg = 2000, Tavg = 18000;

• C2: Tcvg = 5000, Tavg = 15000;

• C3: Tcvg = 8000, Tavg = 12000;

• C4: Tcvg = 10000, Tavg = 10000;

• C5: Tcvg = 20000, Tavg = 0.

From the upper panel in Figure 1, we can tell that

averaging does help when Tcvg is large enough. This

is consistent to the Two-phase Training Strategy

since when Tcvg is small, the estimator has not yet

converged to the O(N−0.5)-neighborhood of the true

coefficient. Simultaneously, we can see from the lower

panel in Figure 1 that averaging helps reduce the

oscillation of the estimator during SGD. This matches

the discussion in §3 and shows that it can perform

steadily well in experiments for simulated data.

6 Conclusion

In this work, we propose a diffusion approximation

approach to characterize the exact dynamics of online

regression. This allows us to prove the near-optimal

Figure 1: The `2 error in case C1 to C5 in the low-
dimensional case. The dotted line is the oracle optimal
error rate we can achieve when all samples are offline.
Upper: the mean `2 error over 100 repetition; Lower: the
`2 error in one repetition.

statistical rate of convergence along the streaming

process. Using the idea of iteration average, we fur-

ther improve the rate of convergence by eliminating

the logN factor. Lastly, we propose a two-step al-

gorithm for sparse online regression: a burn-in step

using offline learning and a refinement step using

truncated SGD. We show the proposed two-step al-

gorithm produces near optimal sparse estimators,

as if the locations of the nonzeroes were known in

advance. We in addition conduct simulation experi-

ments in both low-dimensional and high-dimensional

settings, which substantiate our proposed theory.
8
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