
Inference in Sparse Graphs with Pairwise Measurements and Side Information

Appendix

A Further discussion of related work

Computational Results for Markov Random Fields There is a long line of work on computational aspects
of inference (e.g. MLE, MAP) in Markov Random Field models similar to Model 1 (Veksler, 1999; Boykov and
Veksler, 2006; Komodakis and Tziritas, 2007; Schraudolph and Kamenetsky, 2009; Chandrasekaran et al., 2012).
To our knowledge none of these results shed light on the statistical recovery rates that are attainable for this
setting Ñ computationally e!ciently or not.

Censored Block Model A recent line of research has studied recovery under the so-calledcensored block model
(CBM). In CBM, vertices are labeled by ±1 and for every edgeuv, the number Yu Yv is observed independently
with probability 1 � q (where Yu , Yv are the labels of the vertices). The goal is to Þnd the true labelYu Yv of each
edgeuv correctly with high probability (based on the noisy observations). For partial recovery in the censored
block model we ask for a prediction whose correlation with the ground truth (up to sign) is constant strictly
greater than 1/ 2 asn ! 1. For the Erd¬os-R«enyi random graph model,G(n, !/n) both the threshold (how large
! needs to be in terms ofp) for partial Saade et al.(2015) and exact Abbe et al. (2014) recovery have been
determined Exact recovery is obtained through maximum likelihood estimation which is generally intractable.
The authors provide a polynomial time algorithm based on semideÞnite programming that matches this threshold
up to constant factors.

We observe that in our setting, due to the presence of side information, there is a simple and e!cient algorithm
that achieves exact recovery with high probability when the minimal degree is "(logn): Theorem 6. Such exact
recovery algorithms are known for CBM model only under additional spectral expansion conditionsAbbe et al.
(2014).

Recovery from Pairwise Measurements Chen and Goldsmith (2014) provide conditions on exact recovery
in a censored block model-like setting which, like our own, considers structured classes of graphs. Motivated by
applications in computational biology and social networks analysis,Chen et al. (2016) have recently considered
exact recoveryfor edges in this setting. Like the present work, they consider sparse graphs with local structure
such as grids and rings. Because their focus isexact recover and their model does not have side information, their
results mainly apply to graphs of logarithmic degree and our incomparable to our own results. For example, on
the ring lattice Rn,k in Example 7 their exact recovery result requiresk = "(log(n)), whereas our partial recover
result concerns constantk.

Correlation Clustering Correlation clustering focuses on a combinatorial optimization problem closely related
to the maximum likelihood estimation problem for our setting when we are only given edge labels. The main
di#erence from our work is that the number of clusters is not predetermined. Most work on this setting has
focused on obtaining approximation algorithms and has not considered any particular generative model for the
weights (as in our case). An exception isJoachims and Hopcroft (2005), which gives partial recovery results in a
model similar to the one we consider, in which a ground truth partition is Þxed and the observed edge labels
correspond to some noisy notion of similarity. However, these authors focus on the case whereG is the complete
graph.

Makarychev et al. (2015) consider correlation clustering where the model is a semi-random variant of the one
we consider for the edge inference problem: Fix a graphG = (V, E) and a vertex label Y . For each uv 2 E, we
observeX uv where X uv = Yu Yv with probability 1 � p and has its value in selected by an adversary otherwise.
They do not consider side information, nor are they interested in concrete structured classes of graphs like grids.

B Omitted proofs

B.1 Proofs from Section 2

Proof of Theorem 1 . By the Bernstein inequality it holds that with probability at least 1 � "/ 2,
!

(u,v) ! E

{Yu 6= X u,v Yv} 2pn + 2 log(2/").

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Thus, if we take F =
"

#Y :
$

(u,v) ! E {#Yu 6= X u,v #Yv} 2pn + 2 log(2/")
%

, then Y 2 F with probability at least

1� "/ 2.

Fix #Y 2 {±1}V . We can verify by substitution that for each v 2 V,

{#Yv 6= Yv} =
1

1� 2q

&
PZ (#Yv 6= Zv) � PZ (Yv 6= Zv)

'
.

This implies that when Y 2 F we have the following relation for Hamming error:

!

v! V

"
#Yv 6= Yv

%
=

1
1� 2q

(
!

v! V

P(#Yv 6= Zv) � min
Y ! !F

!

v! V

P(Y "
v 6= Zv)

)

.

Corollary 2 now implies that if we take #Y = arg minY ! !F
$

v! V {Y "
v 6= Zv}, which is precisely the solution to

(2), then with probability at least 1 � "/ 2,

!

v! V

P
*

#Yv 6= Zv

+
� min

Y ! !F

!

v! V

P(Y "
v 6= Zv)

,
4
3

+
1
#

-
log

,
2|F|

"

-
.

Using that |F|
$ 2pn +2 log(2 /!)

k=0

. n
k

/
 (e/p)2pn +2 log(2 /!) and # 1/ 2 we further have that the RHS is bounded

as 2
" log(2e/p")(2pn + 2 log(2/") + 1). Putting everything together (and recalling 1 � 2q = 2#), it holds that with

probability at least 1 � "

!

v! V

"
#Yv 6= Yv

%
 1

#2 (2pn + 2 log(2/") + 1) log(2 e/p").

B.2 Proofs from Section 3

Proof of Theorem 3 . The minimax value of the estimation problem is given by

min
!Y

max
Y

E
X,Z |Y

!

v! V

"
#Yv (X, Z) 6= Yv

%
.

We can move to the following lower bound by considering a game where each vertex predictor#Yv is given access
to the true labels Y of all other vertices in G:

min
{ !Yv }v " V

max
Y

E
X,Z |Y

!

v! V

"
#Yv (X, Z, Y V \{v}) 6= Yv

%
.

Under the new model, the minimax optimal predictor for a given nodev is given by the MAP predictor:

#Yv = arg min
!Y !{± 1}

log
,

1� q
q

- "
#Y 6= Zv

%
+ log

,
1� p

p

- !

u! N v

"
#Y 6= Yu X uv

%
.

When p < q, the minimax optimal estimator for v takes the majority of the predictions suggested by its edges
(that is, Yu · X uv for each neighboru) and uses the vertex observationZv to break ties.

When deg(v) is odd, the majority will be wrong if at least ddeg(v)e of the edges in the neighbor ofv are ßipped,
and will be correct otherwise. Whendeg(v) is even there are two cases: 1) Strictly more thanddeg(v)e of the
edges inN (v) have been ßipped, in which case the majority will be wrong. 2) Exactly half the edges are wrong,
in which the optimal estimator will take the label Zv as its prediction, which will be wrong with probability q.

Inference in Sparse Graphs with Pairwise Measurements and Side Information

We thus have

P(#Yv 6= Yv) =
deg(v)!

k= #deg(v) / 2$

,
deg(v)

k

-
pk (1 � p)deg(v)%k

�
,

deg(v)
ddeg(v)/ 2e

-
p#deg(v) / 2$(1 � p)deg(v)%k

�
,

deg(v)
ddeg(v)/ 2e

- #deg(v) / 2$

p#deg(v) / 2$(1/ 2)#deg(v) / 2$

� "(p#deg(v) / 2$).

In the last line we have used that we treatdeg(v) as constant to suppress a weak dependence on it that arises
when deg(v) is odd. Putting everything together, we see that in expectation we have the bound

E

(
!

v! V

"
#Yv 6= Yv

%
)

� "

0

q
!

v! V

p#deg(v) / 2$

1

.

Proof of Theorem 4 . Recall that the minimax value of the estimation problem is given by

min
!Y

max
Y

E
X,Z |Y

!

v! V

"
#Yv (X, Z) 6= Yv

%
.

As in the proof of Theorem 3, we will move to a lower bound where predictors are given access to extra data. In
this case, we consider a set of disjoint predictors

"
#Y W

%
, one for each componentW 2 W . We assume that #Y W

see the ground truth Yv for each vertexv /2 W , and further sees the productYuv ! Yu Yv for each edgee2 E(W).
Assuming G(W) is connected (this clearly can only make the problem easier), the learner now only needs to infer
one bit of information per component. The minimax value of the new game can be written as:

� min
{ !Y W }

W "W

max
Y

E
X,Z |Y

!

W !W

!

v! W

"
#Y W

v (X, Z, Y V \W , {Yuv | uv 2 E(W)}) 6= Yv

%
.

Because the learner only needs to infer a single bit per component, we have reduced to the setting ofTheorem 3,
components in our setting as vertices in that setting (sodeg(v) is replaced by "G (W)). The only substantive
di#erence is the following: In that lower bound, we required that p < q. For the new setting, we have that
ÒqÓ is actually (pessimistically)q|W |, and so we require thatp < qmax W "W |W | for the bound to apply across all
components. Using the Þnal bound fromTheorem 3, we have

E

(
!

v! V

"
#Yv 6= Yv

%
)

� "

0

qmax W "W |W |
!

W !W
p#! G (W)/ 2$

1

.

B.3 Proofs from Section 4

Proof of Example 1 . We will show that "(pn) Hamming error is optimal for all trees by establishing that all
trees have constant fraction of vertices whose degree is at most two, then appealing toTheorem 3.

Let T be the tree under consideration. T is bipartite. Let (A, B) be the bipartition of T into two disjoint
independent sets. Suppose without loss of generality that|A| � n/ 2. If a is the number of vertices inA of degree
at least 3 and a" = |A|� a, we have that 3a n � 1, hencea (n � 1)/ 3. Thereforea" � n/ 2� a � (n � 1)/ 6.
Letting A" be the set of vertices inA with at most 2 neighbors, we see thatA" is an independent set of size at
least (n � 1)/ 6, and so we appeal toTheorem 3 for the result.

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Proof of Example 2 . Fix d � 3. We will construct a graph G of size (d+ 1) n. By building up from components
as follows:

• For each k 2 [n] let Gk be the complete graph ond + 1 vertices. Remove an edge from an arbitrary pair of
vertices (uk , vk).

• Form G by taking the collection of all Gk , then adding an edge connectingvk to uk+1 for eachk, with the
convention un +1 = u1.

This construction for d = 3 is illustrated in Figure 1.

Observe that G is d-regular. We obtain the desired result by applyingTheorem 4 with the collection {Gk} as the
set system and observing that the each componentGk has only two edges leaving.

Proof of Example 3 . We Þrst examine the case wherec = 3. Here we take the tree decomposition illustrated
in Figure 2a, where we cover the graph with overlapping 3⇥ 2 components, and takeW # =

2
v! W Nv . This yields

mincut#(W) = 3 for all components except those at the graphÕs endpoints. We now connect the components as a
path graph and appeal to Theorem 2, which implies a rate of 3O(p2n).

When c = $(1) we can build a decomposition as follows (informally): ProduceE " as in Figure 2b by performing
the zig-zag cut with every third row of edges, leaving only 3 edges on the left or right side (alternating). We can
now produceT (a path graph) by tiling G" with overlapping 3 ⇥ 3 components. Again, takeW # =

2
v! W Nv .

We can verify that if we perform extended inference we havemincut#(W) = 3 for the O(n) components in the
interior of the graph and mincut#(W) = 2 for the O(

p
n) components at the boundary.

The tree decomposition is illustrated in Figure 3. We have wid#(T) = O(1) and degE (T) = O(1). Applying
Theorem 2 thus gives an upper bound of 3O(p2n + p

p
n) with probability at least 1 � " .

SinceT is a path graph, we payO(ndp2ne) in computation as per Appendix D.

Figure 3: Tree decomposition for 2D grid.

Proof of Example 4 . We will prove this result for the three-dimensional case. We Þrst show the lower bound.

Supposec � 3 is constant, so that we are in the ÒhypertubeÓ regime. Note that vertices on the outermost ÒedgesÓ
of the hypertube, examples of which are circled inFigure 4, have degree at most 4. There are "(n) such vertices,
so appealing toTheorem 3 yields a lower bound on Hamming error of "(p2n). In fact for the n/c 2 ⇥ c ⇥ c
hyper-tube one can achieve theO(p2n) rate using our method. Simply take each components of size 2⇥ c⇥ c
connected in a path as in the example for the 2D grid. Since the minimum cut for each component is already at
least 3, we donÕt need to consider extended components and simply use brute-force on the components themselves.

We now sketch the upper bound for then1/ 3 ⇥ n1/ 3 ⇥ n1/ 3 hypergrid. We use a technique similar to that used
for the 2D grid in Example 3: We take T to be a path graph obtained by covering the hypergrid in overlapping

Inference in Sparse Graphs with Pairwise Measurements and Side Information

Figure 4: Lower bound argument forn/c 2 ⇥ c⇥ c hypergrid.

3⇥ 3⇥ 3 components in a zig-zagging pattern. Note that each 3⇥ 3⇥ 3 component will contain nodes similar
to those highlighted in Figure 4 with degree at most 4. This meansmincut#(W) = 4, so to obtain the O(p3n)
Hamming error we must consider extended components. TakeW # =

2
v! W Nv . Then mincut#(W) = 6 for all

components except those at the boundary of the hypergrid, which havemincut#(W) 2 {4, 5}. There are only o(n)
such components, so we achieve theO(p3n) upper bound by appealing to Theorem 2.

For higher-dimensional hypergrids, the strategy of taking components to be constant-sized hypergrids andT to
be a zig-zagging path graph readily extends. The lower bound stated follows from a simple counting argument.

In general, we can associated vertices of ac1 ⇥ c2 ⇥ . . .⇥ cd hypergrid with the elements of Zc1 ⇥ Zc2 ⇥ . . .⇥ Zcd .
For a vertex v = (v1, . . . , vd), the degree is given bydeg(v) = |{k 2 [d] | vk 2 {0, ck}}|.

Consider the case wherec1, . . . cd%1 = c, cd = n/c d%1. In this case, the degree argument above implies

|{v | deg(v) = d + 1}| �
!

vk !{ 0,c}:k&= d

(n � 2) = "(n).

Thus, a constant fraction of vertices have degreed + 1, and so Theorem 3 implies a lower bound of "(p# d +1
2 $n).

Proof of Example 7 .
Upper bound: Tree decomposition We Þrst formally deÞne the tree decompositionT = (W, F) that we will
use with Algorithm 1 . Assume for simplicity what n = n" · (2k + 1). We will deÞne a vertex set {v1, . . . , vn ! } as
follows: v1 = 1, vi +1 = vi + k + 1. We will now deÞne a component for each of these vertices:

W (vi) = NG (vi).

Let W will be the union of these components. Since we assumedn to be divisible by (2k + 1), the components a
partition of V . We now deÞne theExtend function for this decomposition:

Extend (W) =
4

v! W

NG (v).

That is, the extended componentW #(vi) is the set of all vertices removed fromvi by paths of length 2.

Finally, we construct the edge setF by adding edges of the form (W (vi), W(vi +1)) for i 2 {1, . . . , n" � 1}. This
means that the decomposition is a path graph. The decomposition is clearly admissible in the sense ofDeÞnition 3.

We can observe thatmincut#(W) = 2k just as the minimum cut of Rn,k is itself 2k. Theorem 2 thus implies a
recovery rate of 3O(pk n). Since T is a path graph, the algorithm runs in time O(dpk nen).

Lower bound That O(pk n) is optimal can be seen by appealing toTheorem 3 with the fact that Rn,k is
2k-regular.

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Proof of Example 8 . The average number of vertices added is!n . By the Cherno# bound, with high probability
the number of vertices added is bounded as!n + c

p
!n logn for some constantc. This means that for any # > 0,

there is some minimumn for which an (1 � ! + #) fraction of vertices have no edges added. This means that
there are at least (1� ! + #)n edges with degree 2k, so Theorem 3 yields the result.

B.4 Analysis of TreeDecompositionDecoder

Properties of Tree Decompositions We begin by recalling a few properties of tree decompositions that are
critical for proving the performance bounds for Algorithm 1 .

Proposition 2. For any tree decompositionT = (W, F), the following properties hold:

1. For each v 2 V there exists W with v 2 W .
This guarantees that we produce a prediction for each vertex.

2. If (W1, W2) 2 F , there is somev 2 V with v 2 W1, W2.
This guarantees that the classF (see (19)) is well-deÞned.

3. T is connected
This implies that |F| " 2K .

4. |W| n.
This implies that a mistake bound for components of the tree decomposition translates to a mistake bound for
vertices of G.

Proof of Proposition 2 . 1. DeÞnition 1.

2. Suppose there is some edge (W1, W2) 2 F with no common vertices. Consider the subtreesT1 and T2 created
by removing (W1, W2) 2 F . By the coherence property (DeÞnition 1), the subgraphs ofG" associated with
these decompositions (call themG"

T1
and G"

T2
) must have no common nodes. Yet,G" is connected, so there

must be (u, v) 2 E " with u 2 G"
T1

, v 2 G"
T2

. Our hypothesis now implies that there is noW 2 W containing
u and v, so T violates the edge inclusion property of the tree decomposition.

3. DeÞnition 1

4. This follows directly from the non-redundancy assumption ofDeÞnition 1. See, e.g., (Kleinberg and Tardos,
2006, 10.16).

Estimation in Tree Decomposition Components We now formally deÞne and analyze the component-wise
estimators computed in line 5 of Algorithm 1 .

DeÞnition 6 (Extended Component Estimator). Consider the (edge) maximum likelihood estimator overW #:

3Y W !
! arg min

"Y !{± 1}W !

!

uv ! E ! (W !)

{3Yu 3Yv 6= X uv }. (10)

We deÞne theextended component estimator #Y W ! 2 {±1}W as restriction of 3Y W !
to W .

For #Y W !
estimation performance is governed bymincut#(W) rather than mincut(W), as the next lemma shows:

Lemma 2 (Error Probability for Extended Component Estimator) .

P
,

min
s{±1}

{s#Y W !
6= Y W } > 0

-
 2|W ! |p#mincut ! (W)/ 2$.

Proof of Lemma 2 . Suppose #Y W ! 6= Y W and considerD = {v 2 W # : 3Y W !

v 6= Yv}. Then there is some
maximal connected componentS of D containing at least one vertex ofW . It must then be the case that at least

Inference in Sparse Graphs with Pairwise Measurements and Side Information

half the edge samples in" (S) are ßipped with respect to the ground truth. Consequently it holds that

P
,

min
s{±1}

{s#Y W !
6= Y W } > 0

-

!

S' W ! :S(W &=) , øS(W &=)

p#|! (S) |/ 2$

!

S' W !

p#mincut ! (W)/ 2$

 2|W ! |p#mincut ! (W)/ 2$.

Lemma 2 shows that consideringmincut# o#ers improved failure probability over mincut because it allows us
to take advantage of all of the information in W #, yet only pay (in terms of errors) for cuts that involve nodes
in the core componentW. In Figure 2a, all components of the tree decomposition except the endpoints have
mincut#(W) = 3, and so their extended component estimators achieveO(p2) failure probability.

Concentration We begin by stating a concentration result for functions of independent random variables,
which we will use to establish a bound on the total number of components that fail in the Þrst stage of our
algorithm. Let X 1, . . . , X n be independent random variables each taking values in a probability spaceX , and
let F : X n ! R. We will be interested in the concentration of the random variableS = F (X 1, . . . , X n). Letting
X "

1, . . . , X "
n be independent copies ofX 1, . . . , X n , we deÞneS(i) = F (X 1, . . . , X i %1, X "

i , X i +1 , . . . , X n). Finally,
we deÞne a new random variable

V+ =
n!

i =1

E
&
(S � S(i))2

+ | X 1, . . . , X n

'
.

Theorem 5 (Entropy Method with Efron-Stein Variance (Boucheron et al., 2003)) . If there exists a constant
a > 0 such that V+ aS then

P{S � E[S] + t} exp
,

�t2

4a E[S] + 2at

-
.

Subsequently, with probability at least1� " ,

S E[S] + max
"

4a log(1/"), 2
5

2a E[S] log(1/")
%
 2E[S] + 6a log(1/").

With Theorem 5 in mind, we may proceed to a bound on the number of components with mistakes when the
basic component estimator(8) is used.
Lemma 3 (Formal Version of Lemma 1). For all " > 0, with probability at least 1 � " over the draw of X ,

min
s!{± 1} W

!

W !W

{ sW "Y W != Y W } " 2
!

W !W

2|W | p" mincut(W) / 2# + 6 max
e! E

|W (e)| max
W !W

|E $(W)| log(1/!). (11)

(12)

Proof of Lemma 3 . DeÞne a random variable

S(X) =
!

W !W
min

s!{± 1}

"
s#Y W (X) 6= Y W

%
,

where #Y W are the component-wise estimators produced by Algorithm1 and X are the edge observations. To
prove the lemma we will apply Theorem 5 by showing that there is a constant a such that the necessary variance
bound V+ aS holds.

To this end, consider

S(X) � S(X (e)) =
!

W !W

,
min

s!{± 1}

"
s#Y W (X) 6= Y W

%
� min

s!{± 1}

"
s#Y W (X (e)) 6= Y W

%-
,

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

where X (e) is deÞned as inTheorem 5. To be more precise, we draw (X "
e)e! E from the same distribution as X ,

then let X (e) be the result of replacingX e with X "
e.

We have

S(X) � S(X (e)) =
!

W !W (e)

,
min

s!{± 1}

"
s#Y W (X) 6= Y W

%
� min

s!{± 1}

"
s#Y W (X (e)) 6= Y W

%-
,

since changingX e can only change#Y W if e2 W . Now, sinceS(X (e)) is nonnegative we have

(S(X) � S(X (e))2
+ =

6

7
!

W !W (e)

,
min

s!{± 1}

"
s#Y W (X) 6= Y W

%
� min

s!{± 1}

"
s#Y W (X (e)) 6= Y W

%-
8

9

2

+

6

7
!

W !W (e)

min
s!{± 1}

"
s#Y W (X) 6= Y W

%
8

9

2

 |W(e)|
!

W !W (e)

min
s!{± 1}

"
s#Y W (X) 6= Y W

%
.

We now sum over all edges to arrive at an upper bound onV+ :

V+ =
!

e! E

E
&
(S(X) � S(X (e))2

+ | X
'

 max
e! E

|W(e)|
!

e! E

!

W !W (e)

min
s!{± 1}

"
s#Y W (X) 6= Y W

%

= max
e! E

|W(e)|
!

W !W

!

e! E (W)

min
s!{± 1}

"
s#Y W (X) 6= Y W

%

 max
e! E

|W(e)| max
W !W

|E(W)|
!

W !W
min

s!{± 1}

"
s#Y W (X) 6= Y W

%

 max
e! E

|W(e)| max
W !W

|E(W)|
!

W !W
min

s!{± 1}

"
s#Y W (X) 6= Y W

%

= max
e! E

|W(e)| max
W !W

|E(W)|S(X).

We now appeal toTheorem 5 with a = maxe! E |W(e)|maxW !W |E(W)|, which yields that with probability at
least 1� " ,

S 2E[S] + 6 max
e! E

|W(e)| max
W !W

|E(W)| log(1/").

Finally, the bound on E[S] follows from Proposition 1:

E[S] =
!

W !W
P

,
min

s!{± 1}

"
s#Y W (X) 6= Y W

%-

!

W !W
2|W |p#mincut(W)/ 2$.

An analogous concentration result toLemma 3 holds to bounds the number of components that fail over the
whole graph when the extended component estimator is used:

Lemma 4. For all " > 0, with probability at least 1 � " over the draw of X ,

min
s!{± 1} W

!

W !W

{ sW "Y W !
!= Y W !

} " 2
!

W !W

2|W ! | p" mincut ! (W) / 2# + 6 max
e! E

|W ! (e)| max
W !W

|E $(W !)| log(1/!). (13)

Inference in Sparse Graphs with Pairwise Measurements and Side Information

Proof of Lemma 4 . This proof proceeds exactly as in the proof ofLemma 3 using

S(X) =
!

W !W
min

s!{± 1}

"
s#Y W !

(X) 6= Y W
%

.

The only di#erence is that edges are more inßuential than in that lemma because each extended component
estimator #Y W !

may depend on more edges than the simpler component estimator#Y W . To this end, deÞne
W#(e) = {W | e2 E "(W #)}. One can verify that if we replace every instance ofW(e) in the proof of Lemma 3
with W#(e) it holds that V+ aS with a = maxe! E |W#(e)|maxW !W |E(W #)|. Theorem 5 then implies that
with probability at least 1 � " ,

S 2E[S] + 6 max
e! E

|W#(e)| max
W !W

|E(W #)| log(1/")

= 2 E[S] + 6deg#
E (T) max

W !W
|E(W #)| log(1/").

Proof of Theorem 2 .
Full theorem statement We will prove the following error bound: If T = (W, F) is admissible, with probability
at least 1� " over the draw of X and Z , #Y satisÞes:

!

v ! V

#
"Yv != Yv

$
(14)

" O

%
1
"2

%

2wid! (T)
!

W !W

p" mincut ! (W) / 2# + deg!
E (T) max

W !W
|E (W !)| log(1/!)

&

á(wid(T) + deg(T) log n)

&

(15)

This statement specializes to(6) when all of the tree decomposition quantities are constant and" = 1 /n .

Error bound for individual components Lemma 2 implies that for a Þxed component W 2 W, the
probability that the estimator produced by the brute-force enumeration routine fails to exactly recover the labels
in W (up to sign) is bounded as

P
,

min
s{±1}

{s#Y W !
6= Y W } > 0

-
 2|W ! |p#mincut ! (W)/ 2$.

Error bound across all components Consider the following random variable, which is the total number
components

S(X) =
!

W !W
min

s!{± 1}

"
s#Y W !

(X) 6= Y W
%

.

The bound on component failure probability immediately implies in in-expectation bound on S:

E[S]
!

W !W
2|W ! |p#mincut ! (W)/ 2$.

Lemma 4 shows that S concentrates tightly around its expectation. More precisely, let A !
6deg#

E (T) maxW !W |E(W #)| and

K n ! 2wid! (T)+2
!

W !W
p#mincut ! (W)/ 2$ + A log(2/"). (16)

Then Lemma 4 implies that with probability at least 1 � "/ 2,

min
s!{± 1}W

!

W !W
{sW #Y W !

6= Y W } 2
!

W !W
2|W ! |p#mincut ! (W)/ 2$ + A log(2/")

 K n (17)

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Inference with side information: Hypothesis class Consider the following binary signing of the compo-
nents in T:

s# = arg min
s!{± 1}W

!

W !W
{sW #Y W !

6= Y W }.

s# is signing of the component-wise predictions (#Y W !
) that best matches the ground truth. If we knew the

value of s# we could use it to produce a vertex prediction with at most K n mistakes. Computing the s# is
information-theoretically impossible because we do not have access toY , but we will show that the signing we
produce using the side informationZ is close.

DeÞne

L n = deg(T) · K n . (18)

We will argue that (17) implies that s# lies in the class

F(X) !

:
;

<
s 2 {±1}W |

!

(W 1 ,W 2) ! F

{sW 1 6= sW 2 · S(W1, W2)} L n

=
>

?
. (19)

First, consider the for loop on Algorithm 1 , line 11. Proposition 2 implies that S(W1, W2) as deÞned in this loop
is well-deÞned, because there always exists somev 2 W1 \ W2.

Second, consider the value of

!

(W 1 ,W 2) ! F

{s#
W 1

6= s#
W 2

· S(W1, W2)} =
!

(W 1 ,W 2) ! F

{s#
W 1

6= s#
W 2

· #Y W !
1

v · #Y W !
2

v }.

We can bound this quantity in terms of the number of componentsW for which

min
s!{± 1}

"
s#Y W !

6= Y W
%

= 1 .

Observe that if mins!{± 1}

"
s#Y W ! 6= Y W

%
= 0 then there is someøsW 2 {±1} such that #Y W !

= øsW Y W . If we
take s#

W = øsW in all the components with no errors, and choose the sign arbitrarily for others, we will have

{s#
W 1

6= s#
W 2

· #Y W !
1

v · #Y W !
2

v } = 0 whenever both W1 and W2 have no errors. Pessimistically, there are at most
L n = deg(T) · K n edges (W1, W2) where at least one ofW1 or W2 has an error, and therefore(17) implies that
with probability at least 1 � "/ 2, s# 2 F .

We conclude this discussion by showing that|F(X)| small. Since byProposition 2 T is connected, labelings of
the edges ofT are in one to one correspondence with labelings of the components. Consequently,

|F(X)|
L n!

k=0

,
|W|
k

-

,
e|W|
L n

- L n

,

en
L n

- L n

. (20)

The last inequality uses that, from Proposition 2, |W| n.

Final error bound for inference with side information We now use the properties ofF (X) to derive an
error bound for the prediction #Y . Recall from Algorithm 1 that #Y is deÞned in terms of

ös = min
s!F (X)

!

W !W

!

v! W

{sW #Y W !

v 6= Zv}. (21)

We reduce the analysis of the error rate ofös to analysis of excess risk in a manner that parallels the proof of
Theorem 1, but is slightly more involved because the best predictor inF does not perfectly match the ground

Inference in Sparse Graphs with Pairwise Measurements and Side Information

truth. Fix ös 2 {±1}W . For each componentW 2 W we have
!

v! W

{ösW #Y W !

v 6= Yv}
!

v! W

{ösW #Y W !

v 6= s*
W

#Y W !

v } +
!

v! W

{s*
W

#Y W !

v 6= Yv}

!

v! W

{ösW #Y W !

v 6= s*
W

#Y W !

v } + |W | {s*
W

#Y W !
6= Y W }

=
1

1� 2q

!

v! W :s#
W

!Y W !
v = Yv

*
PZ

*
ösW #Y W !

v · Zv < 0
+
� PZ

*
s*

W
#Y W !

v · Zv < 0
++

� 1
1� 2q

!

v! W :s#
W

!Y W !
v &= Yv

*
PZ

*
ösW #Y W !

v · Zv < 0
+
� PZ

*
s*

W
#Y W !

v · Zv < 0
++

+ |W | {s*
W

#YW 6= YW }.

Now note that given that Zv is drawn as a noisy version ofYv ,@
@
@PZ

*
ösW #Y W !

v · Zv < 0
+
� PZ

*
s*

W
#Y W !

v · Zv < 0
+@

@
@= 1 � 2q and so

#
1

1 # 2q

!

v ! W :s#
W

!Y W !
v %= Yv

'
PZ

'
ösW "Y W !

v áZv < 0
(

PZ

'
s&

W
"Y W !

v áZv < 0
((

" 2
!

v ! W

{ s&
W

"Y W !

v != Yv } +
1

1 # 2q

!

v ! W :s#
W

!Y W !
v %= Yv

'
PZ

'
ösW "Y W !

v áZv < 0
(

PZ

'
s&

W
"Y W !

v áZv < 0
((

" 2|W | { s&
W

"Y W !
!= Y W } +

1
1 # 2q

!

v ! W :s#
W

!Y W !
v %= Yv

'
PZ

'
ösW "Y W !

v áZv < 0
(

PZ

'
s&

W
"Y W !

v áZv < 0
((

.

We conclude that
!

v! W

{ösW #Y W !

v 6= Yv}

 3|W | {s*
W

#Y W !
6= Y W } +

1
1� 2q

!

v! W

*
PZ

*
ösW #Y W !

v · Zv < 0
+
� PZ

*
s*

W
#Y W !

v · Zv < 0
++

.

Summing over all the componentsW 2 W we arrive at the bound
!

W !W

!

v ! W

{ ösW "Y W !

v != Yv }

" 3
)

max
W !W

|W |
* !

w !W

{ s&
W

"Y W !
!= Y W } +

1
1 # 2q

!

W !W

!

v ! W

'
PZ

'
ösW "Y W !

v áZv < 0
(

PZ

'
s&

W
"Y W !

v áZv < 0
((

" 3
)

max
W !W

|W |
*

K n +
1

1 # 2q

!

W !W

!

v ! W

'
PZ

'
ösW "Y W !

v áZv < 0
(

PZ

'
s&

W
"Y W !

v áZv < 0
((

We can now appeal to the statistical learning bounds fromAppendix C to handle the right-hand side of this
expression. Lemma 5 implies that if we take ös = arg mins!F

$
W !W

$
v! W

"
ösW #Y W !

v · Zv < 0
%

, which is

precisely the solution to (21), we obtain the excess risk bound,
!

W !W

!

v! W

*
PZ

*
ösW #Y W !

v · Zv < 0
+
� PZ

*
s*

W
#Y W !

v · Zv < 0
++

,

2
3

+
c
2

-
log(2|F|/") +

1
c

!

w!W

!

v! W

{ösW #Y W !

v 6= Yv},

with probability at least 1 � "/ 2 over Z for all c > 0. If we choosec = 1 /#, rearrange, and apply the union bound,
this implies that with probability at least 1 � " over the draw of X and Z we have

!

W !W

!

v! W

{ösW #Y W !

v 6= Yv} 6
,

max
W !W

|W |
-

K n +
2
#2 log(2|F|/").

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Recall that |F| (e|W|/L n)L n , which implies a bound of

!

W !W

!

v! W

{ösW #Y W !

v 6= Yv}

 O
,

1
#2 [wid(T) · K n + L n · log(en/L n) + log(1 /")]

-

 O
,

1
#2 [K n · (wid(T) + deg(T) · log(en/K n)) + log(1 /")]

-

 O

0
1
#2

0

2wid! (T)
!

W !W
p#mincut ! (W)/ 2$ + deg#

E (T) max
W !W

|E(W #)| log(1/")

1

· (wid(T) + deg(T) log n)

1

Our choice of #Y in Algorithm 1 ensures that the Hamming error
$

v! V

"
#Yv 6= Yv

%
inherits this bound. Proposi-

tion 2 implies that every v 2 V is in some component, so this choice is indeed well-deÞned.

C Statistical learning

Here we consider a Þxed design variant of the statistical learning setting. Fix an input spaceX and output space
Z. We are given a Þxed setX 1, . . . , X n 2 X and samplesZ1, . . . , Zn 2 Z with Zi drawn from P(Zi | X i) for
some distribution P. We Þx a hypothesis classF which is some subset of mappings fromX to Z, and we would
like to use Z to Þnd #Y 2 F that will predict future observations of Z on X . To evaluate prediction we deÞne
a loss function %: Z ⇥ Z ! R+ , and deÞneL i (Y) = EZ |X i [%(Y, Z)]. Our goal is to useZ to select #Y 2 F to
guarantee lowexcess risk: !

i ! [n]

L i (#Y (X i)) � min
Y !F

!

i ! [n]

L i (Y (X i)) . (22)

Typically this is accomplished using theempirical risk minimizer (ERM):

#Y = arg min
Y !F

!

i ! [n]

%(Y (X i), Zi)5.

In this paper we consider a speciÞc instantiation of the above framework in which

• X = V , the vertex set for some graph (possibly a tree decomposition), andX 1, . . . , X n are an arbitrary
ordering of V (so n = |V |). In light of this we index all variables using V going forward.

• Z = {±1}. We Þx Y 2 {±1}V and let Zv = Yv with probability 1 � q and Zv = �Yv otherwise (as in
Model 1).

• %(Y, Z) = {Y 6= V}, so L i (Y) = PZ (Y 6= Zv).

• F ✓ {±1}V is arbitrary.

For this setting the excess risk for a predictor #Y 2 {±1}V can be written as

!

v! V

P(#Yv 6= Zv) � min
Y ! !F

!

v! V

P(Y "
v 6= Zv) , (23)

and the empirical risk minimizer is given by #Y = arg min Y ! !F
$

v! V {Y "
v 6= Zv}.

We assume this setting exclusively for the remainder of the section.

5There are a many standard bounds quantifying the performance of ERM in settings beyond the one we consider. See
Bousquet et al. (2004) for a survey.

Inference in Sparse Graphs with Pairwise Measurements and Side Information

Lemma 5 (Excess risk bound for ERM). Let #Y be the ERM and let Y # = arg minY ! !F
$

v! V P(Y " 6= Z). Then
with probability at least 1 � " over the draw of Z ,

!

v! V

P
*

#Yv 6= Zv

+
� min

Y ! !F

!

v! V

P(Y "
v 6= Zv)

,
2
3

+
c
2

-
log

,
|F|
"

-
+

1
c

!

v! V

"
#Yv 6= Y #

v

%
(24)

for all c > 0.

Corollary 2 (ERM excess risk: Well-speciÞed case). When Y 2 F we have that with probability at least 1 � " ,

!

v! V

P
*

#Yv 6= Zv

+
� min

Y !F

!

v! V

P(Yv 6= Zv)
,

4
3

+
1
#

-
log

,
|F|
"

-
, (25)

recalling q = 1 / 2� #.

Proof of Corollary 2 . When Y 2 F , Y # = Y , and we have

!

v! V

"
#Yv 6= Yv

%
=

1
1� 2q

!

v! V

*
P

*
#Yv 6= Zv

+
� P(Yv 6= Zv)

+
.

Applying this inequality to the right hand side of (24) and rearranging yields
,

1� 1
c(1 � 2q)

- !

v! V

*
P

*
#Yv 6= Zv

+
� P(Yv 6= Zv)

+

,
2
3

+
c
2

-
log(|F|/").

To complete the proof we takec = 2
1%2q , which gives

1
2

!

v! V

*
P

*
#Yv 6= Zv

+
� P(Yv 6= Zv)

+

,
2
3

+
1

1� 2q

-
log(|F|/").

Proof of Lemma 5 . We will use Lemma 6 with F as the index set so that everyi 2 [N] corresponds to one
Y " 2 F . We deÞne our collection of random variables as

TY !

v = {Y "
v 6= Zv}� {Y #

v 6= Zv}

whereY is the ground truth and Y " is any element ofF . Now using Lemma 6and recalling &2
Y ! =

$
v! V Var(TY !

v),
we have that with probability at least 1 � " , simultaneously for all Y ",

!

v! V

(E[TY !

v] � TY !

v) 2
3

log(|F|/") +
A

2&2
Y ! log(|F|/")

 inf
c> 0

B,
2
3

+
c
2

-
log(|F|/") + &2

Y ! /c
C

 inf
c> 0

(,
2
3

+
c
2

-
log(|F|/") +

1
c

!

v! V

E[(TY !

v)2]

)

.

In particular this implies that for #Y = arg min Y ! !F
$

v! V {Y "
v 6= Zv} we have that for all c > 0,

!

v! V

*
P

*
#Yv 6= Zv

+
� P(Y #

v 6= Zv)
+

!

v! V

* "
#Yv 6= Zv

%
� {Y #

v 6= Zv}
+

+
,

2
3

+
c
2

-
log(|F|/")

+
1
c

!

v! V

E
B*

{#Yv 6= Zv}� {Y #
v 6= Zv}

+2
C

.

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

Now sinceY # 2 F and #Y is the ERM, we get that
$

v! V

* "
#Yv 6= Zv

%
� {Y #

v 6= Zv}
+
 0 and so,

!

v! V

*
P

*
#Yv 6= Zv

+
� P(Y #

v 6= Zv)
+

,
2
3

+
c
2

-
log(|F|/") +

1
c

!

v! V

E
B*

{#Yv 6= Zv}� {Y #
v 6= Zv}

+2
C

=
,

2
3

+
c
2

-
log(|F|/") +

1
c

!

v! V

"
#Yv 6= Y #

v

%
.

Lemma 6 (Maximal Inequality) . For each i 2 [N], let {Ti
v}v! V be a random process with each variableT i

v
bounded in absolute value by 1. DeÞne&2

i =
$

v! V Var(T i
v). With probability at least 1 � " ,

!

v! V

(E[T i
v] � Ti

v) 2
3

log(N/") +
A

2&2
i log(N/") 8i 2 [N]. (26)

Proof of Lemma 6 . Let us start by writing out the Bernstein bound for the random variable
$ n

t =1 Z i
t :

P

0
!

v! V

(E[T i
v] � Ti

v) > '

1

 exp
,
� ' 2

i

2&2
i + 2

3 ' i

-
.

We now consider the family of processes{Ti
v}v! V and see that by union bound we have

P

0

max
i ! [N]

!

v! V

(E[T i
v] � Ti

v) � ' i > 0

1

!

i ! [N]

exp
,
� ' 2

i

2&2
i + 2

3 ' i

-
.

Solving the quadratic formula, it holds that if we take

' i �
1
3

log(N/") +
A

log2(N/")/ 9 + 2&2
i log(N/"),

then we have
!

i ! [N]

exp
,
� ' 2

i

2&2
i + 4

3

-
 ".

We can conclude that

P

0

8i 2 [N],
!

v! V

(E[T i
v] � Ti

v) >
1
3

log(N/") +
A

log2(N/")/ 9 + 2&2
i log(N/")

1

 ".

D Algorithms

The tree inference algorithm from Section 2and the full tree decomposition inference algorithm,Algorithm 1 , rely
on the solution of a constrained minimization problem over the edges and vertices of a treeT. This minimization
problem is stated in its most general form asAlgorithm 2 . This problem can be solved e!ciently using the
following tree-structured graphical model:

• Fix an arbitrary order on T, and let p(v) denote the parent of a vertexv under this order.

• DeÞne variabless 2 {±1}V and C 2 {1, . . . , K n }V .

• For each variablev 2 V deÞne factor:

(v (sv , sp(v) ,C v ,C " + (v)
) = e% {Cost v [sv]} ·

:
;

<

!

u! ! + (v)

Cu Cv �
D

sv 6= sp(v) · S(v, p(v))
E

=
>

?
.

Inference in Sparse Graphs with Pairwise Measurements and Side Information

With this formulation it is clear that given (s, C) maximizing the potential

((s, C) =
F

v! V

(v (sv , sp(v) ,C v ,C " + (v)
)

the node labelss are a valid solution for Algorithm 2 . Since(is a tree-structured MRF the maximizer can be
calculated exactly using max-sum message passing (see e.g.Cowell et al. (2006)). The only catch is that naively
this procedureÕs running time will scale asndeg(T) , because each of the variablesCv has a range that scales withn.
For example, the range ofCv is 3O(pn) for the setup in Section 2. We now show that the structure of the factors
can be exploited to perform message passing in polynomial time indeg(T) and n. In particular, message passing
can be performed in time time ÷O(K n n2) for general trees and time ÷O(K n n) when T is a path graph.

Algorithm 2 TreeDecoder
Input: Tree T = (V, E), {Costv}v! V , {S(u, v)}(u,v) ! E , K n 2 N.

ös = arg min
s!{± 1}V

!

v! V

Costv [sv]

s.t.
!

(u,v) ! E

{su 6= sv · S(u, v)} K n

Return: ös 2 {±1}V .

To solve TreeDecoder e!ciently, we Þrst turn T into a DAG by running a BFS from a given vertex r and
directing edges according to the time of discovery. We denote this DAG by

�!
T . We root this directed tree at r ,

and denote the parent of a vertexu 6= r by p(u). For u 2 V, let
�!
T u denote the (directed) subtree rooted atu.

Given a labeling Y to the vertices of T, an edgeuv for which su 6= sv · S(u, v) is called a violated edge.

We now deÞne a tableOPT that will be used to store values for sub-problems ofAlgorithm 2 . For u 6= r , and
budget K , we deÞneOPT(u, K |1) to be the optimal value of the optimization problem in Algorithm 2 over the
subtree

�!
T u for budget K , where the label ofp(u) is constrained to have value 1. Importantly, the edge (u, p(u))

is also considered in the count of violated edges (in addition to the edges in
�!
T u). OPT(u, K | � 1) is deÞned

likewise, but for p(u) constrained to label value�1.

OPT(u, K |1) = min
s!{% 1,1}

min#
v " N u

K v = K % {s&= Sp (u) ·S(u,p (u)) }

6

7
!

v! N (u)

OPT(v, K v |s) + Cost v [s]

8

9 .

Here s is simply the value assigned tou. We constrain the budgetsK v to satisfy 0 K v |�!T v | (clearly no
subtree

�!
T v can violate more than |�!T v | edges). For the sake of readability, we do not include this constraint in

the recursive formula above. A similar recursion can be obtained forOPT(u, K |� 1).

One can verify that if we can computeOPT(u, K |s) for all nonroot nodes and all values ofK K n , s 2 {�1, 1}
then we can Þnd the optimum of the problem of our whole tree. To achieve this, simply attach a degree one node
r " to the root of the tree, add a directed edge (r ", r) and set the label of the root to equal 1. Then we simply
solve for OPT(r, K |1), where S(r, r ") = 1 as well as OPT(r, K, 1), where S(r ", r) is �1 and return the minimum
of the the values.

For a leaf nodew, the value of OPT(w, K "|s) can be calculated as follows: it ismin(cost[sw = �1], cost[sw = 1]),
for K " � 1. If K = 0, it is cost[s"] where s" is the unique label not violating the constraint s 6= s" · S(w, p(w))

We now show how to calculateOPT(u, K u |s) for any vertex in the tree, assuming OPT has already been
calculated for its children. To do this, we try both values of su , and then condition on its value to optimize

min#
j " [1 ,k] K j = K % {s&= sp (u) ·S(u,p (u)) }

!

u ! [1,k]

OPT(j, K j |s).

The function
$

v! N u
OPT(v, K v |s) can be minimized using another layer of dynamic programming as follows:

For r s, let [r, s] be the set of integers betweenr and s. Assuming we enumerate the vertices inN (u) by

Dylan J. Foster, Daniel Reichman, Karthik Sridharan

1, ..., k := |N (u)| and setting K j to be the budget for the j th node, we have the equality

min#
j " [1 ,k] K j = K % {s&= sp (u) ·S(u,p (u)) }

!

u ! [1,k]

OPT(j, K j |s)

= min
K 1 ! [0,K % {s&= sp (u) ·S(u,p (u)) }]

OPT(1, K 1|s) + min#
j " [2 ,k] K j = K %K 1 % {s&= sp (u) ·S(u,p (u)) }

!

j ! [2,k]

OPT(j, K j |s).

The minimization problem can be solved in timeO(|N (u)|K 2
n) time. We Þrst calculate the minimum cost for

the Þrst two vertices where the number of constraints violated can range between 1 toK . This can be done
in time O(K 2). We then examine the minimum cost for the Þrst three vertices (assuming of courseu has at
least three descendants) where the number of violated constraints ranges between 0 andK . Since we have
the information for the Þrst two vertices, these values can be calculated again in timeO(K 2). We repeat this
iteration until all descendants of u are considered. It follows that the overall running time of this algorithm is$

u! V |N (u)|K 2
n = O(nK 2

n), since T is a tree.

When T is a path graph each node has a single child, the recursion collapses to timeO(nK n).

E Further techniques for general graphs

Here we give a simple proof that if the minimal degree ofG is "(logn), then there is an algorithm that achieves
arbitrarily small error for each vertex as n ! 1 as soon asq = 1 / 2� # is constant.

Theorem 6. There is an e!cient algorithm that guarantees

E

(
!

v! v

"
#Yv 6= Yv

%
)

!

v! V

exp(�Cdeg(v)#2(1 � 2p)2).

for some C > 0.

Observe that this rate quickly approaches 0 with n as soon asdeg(G) = "(logn) (i.e., it has o(n) Hamming
error) . On the other hand, if degree is constant (sayd), then even whenp = 0 the rate of this algorithm is only
e%dO (" 2) n, so the algorithm does not have the desired property of having error approach 0 asp ! 0.

Proof of Theorem 6 . Fix a vertex v and, for each vertexu in its neighborhood, deÞne an estimateSu = Zu ·X uv .
We can observe thatP(Su = Yv) = (1 � p)(1 � q) + pq = 1

2 + #(1� 2p). Our algorithm will be to use the estimator
#Yv = Majority({Su}u! N (v)). Since eachSu is independent, the Hoe#ding bound gives that

P(#Yv 6= Yv) exp(�Cdeg(v)#2(1 � 2p)2).

Taking this prediction for each vertex gives an expected Hamming error bound of

E

(
!

v! v

"
#Yv 6= Yv

%
)

!

v! V

exp(�Cdeg(v)#2(1 � 2p)2).

	Introduction
	Inference for Trees
	Inference for General Graphs
	Concrete Results for Specific Graphs
	Discussion
	Further discussion of related work
	Omitted proofs
	Statistical learning
	Algorithms
	Further techniques for general graphs

