
Supplementary Material

1 Proofs in Section 2

Before we prove Proposition 1, let us recall the definition
of star-convexity and show a lemma.

Definition 1 (Star-convex functions). A function f :
Rn → R is star-convex if there is x∗ ∈ argmin

x∈X
f(x) such

that for all α ∈ [0, 1] and x ∈ X ,

f((1− α)x∗ + αx) ≤ (1− α)f(x∗) + αf(x). (1)

The following lemma characterizes the differentiable star-
convex functions.

Lemma 1 For a differentiable function f , the star convex-
ity condition (1) is equivalent to the following condition

f(x)− f(x∗) ≤ ∇f(x)>(x− x∗), (2)

where x∗ = argmin
x∈X

f(x).

Proof. Suppose (1) holds. Then we have

f(x)− f(x∗) ≤ f(x)− f((1− α)x∗ + αx)

1− α
, (3)

for all α ∈ [0, 1]. Note that

lim
α→1−

f(x)− f((1− α)x∗ + αx)

1− α
= ∇f(x)>(x− x∗),

which implies (2). Conversely, suppose that (2) holds. Let
us denote

d(α) := f((1− α)x∗ + αx)− f(x∗).

Clearly, (1) is equivalent to

d(α) ≤ αd(1), for all 0 ≤ α ≤ 1. (4)

It remains to show that if f is differentiable then (2) implies
(4). In fact, (2) leads to

f((1−α)x∗+αx)−f(x∗) ≤ α∇f((1−α)x∗+αx)>(x−x∗),

or,
d(α) ≤ αd′(α).

Hence, (
d(α)

α

)′
=
αd′(α)− d(α)

α2
≥ 0,

for all 0 < α ≤ 1, implying that d(α)α is a nondecreasing
function for α ∈ (0, 1]. Therefore,

d(α)

α
≤ d(1)

1
,

which proves (4) for α ∈ (0, 1]. Since d(0) = f(x∗) = 0,
(4) in fact holds for all α ∈ [0, 1]. 2

Proposition 1 If f(·) is star-convex and smooth with
bounded gradient in X , then f(·) is weakly pseudo-convex.

Proof: From Lemma 1, we have

f(x)− f(x∗) ≤ ∇f(x)>‖x− x∗‖

≤ M
∇f(x)>(x− x∗)
‖∇f(x)‖

where the last inequality is due to the bounded gradient
condition ‖∇f(x)‖ ≤M for x ∈ X . 2

Proposition 2 If f(·) has bounded gradient and satisfies
the acute angle condition, then f(·) is weakly pseudo-
convex.

Proof: For all x ∈ X , we have

f(x)− f(x∗) ≤ M‖x− x∗‖

≤ M

Z

∇f(x)>(x− x∗)
‖∇f(x)‖

where the first inequality follows from the bounded gradi-
ent assumption while the second inequality is due to the
acute angle condition. 2

Proposition 3 If f(·) has bounded gradient and satisfy the
α-homogeneity with respect to its minimum, i.e., there ex-
ists α > 0 satisfying

f(t(x− x∗) + x∗)− f(x∗) = tα(f(x)− f(x∗)),

for all x ∈ X and t ≥ 0 where x∗ = argminx∈X f(x),
then f(·) is weak pseudo-convex.

Proof: By taking the derivative of the equation (3) with
respective to t and letting t = 1, we have

∇f(x)>(x− x∗) = α(f(x)− f(x∗)).
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Therefore, we have

f(x)− f(x∗) =
1

α
∇f(x)>(x− x∗)

≤ M

α

∇f(x)>(x− x∗)
‖∇f(x)‖

,

which satisfies the weak pseudo-convexity condition with
K = M

α . 2


