Supplementary Material

1 Proofs in Section 2

Before we prove Proposition 1, let us recall the definition of star-convexity and show a lemma.

Definition 1 (Star-convex functions). A function f : $\mathbf{R}^{n} \rightarrow \mathbf{R}$ is star-convex if there is $x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x)$ such that for all $\alpha \in[0,1]$ and $x \in \mathcal{X}$,

$$
\begin{equation*}
f\left((1-\alpha) x^{*}+\alpha x\right) \leq(1-\alpha) f\left(x^{*}\right)+\alpha f(x) \tag{1}
\end{equation*}
$$

The following lemma characterizes the differentiable starconvex functions.

Lemma 1 For a differentiable function f, the star convexity condition (1) is equivalent to the following condition

$$
\begin{equation*}
f(x)-f\left(x^{*}\right) \leq \nabla f(x)^{\top}\left(x-x^{*}\right) \tag{2}
\end{equation*}
$$

where $x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x)$.
Proof. Suppose (1) holds. Then we have

$$
\begin{equation*}
f(x)-f\left(x^{*}\right) \leq \frac{f(x)-f\left((1-\alpha) x^{*}+\alpha x\right)}{1-\alpha} \tag{3}
\end{equation*}
$$

for all $\alpha \in[0,1]$. Note that

$$
\lim _{\alpha \rightarrow 1^{-}} \frac{f(x)-f\left((1-\alpha) x^{*}+\alpha x\right)}{1-\alpha}=\nabla f(x)^{\top}\left(x-x^{*}\right)
$$

which implies (2). Conversely, suppose that (2) holds. Let us denote

$$
d(\alpha):=f\left((1-\alpha) x^{*}+\alpha x\right)-f\left(x^{*}\right)
$$

Clearly, (1) is equivalent to

$$
\begin{equation*}
d(\alpha) \leq \alpha d(1), \text { for all } 0 \leq \alpha \leq 1 \tag{4}
\end{equation*}
$$

It remains to show that if f is differentiable then (2) implies (4). In fact, (2) leads to
$f\left((1-\alpha) x^{*}+\alpha x\right)-f\left(x^{*}\right) \leq \alpha \nabla f\left((1-\alpha) x^{*}+\alpha x\right)^{\top}\left(x-x^{*}\right)$, or,

$$
d(\alpha) \leq \alpha d^{\prime}(\alpha)
$$

Hence,

$$
\left(\frac{d(\alpha)}{\alpha}\right)^{\prime}=\frac{\alpha d^{\prime}(\alpha)-d(\alpha)}{\alpha^{2}} \geq 0
$$

for all $0<\alpha \leq 1$, implying that $\frac{d(\alpha)}{\alpha}$ is a nondecreasing function for $\alpha \in(0,1]$. Therefore,

$$
\frac{d(\alpha)}{\alpha} \leq \frac{d(1)}{1}
$$

which proves (4) for $\alpha \in(0,1]$. Since $d(0)=f\left(x^{*}\right)=0$, (4) in fact holds for all $\alpha \in[0,1]$.

Proposition 1 If $f(\cdot)$ is star-convex and smooth with bounded gradient in \mathcal{X}, then $f(\cdot)$ is weakly pseudo-convex.

Proof: From Lemma 1, we have

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \leq \nabla f(x)^{\top}\left\|x-x^{*}\right\| \\
& \leq M \frac{\nabla f(x)^{\top}\left(x-x^{*}\right)}{\|\nabla f(x)\|}
\end{aligned}
$$

where the last inequality is due to the bounded gradient condition $\|\nabla f(x)\| \leq M$ for $x \in \mathcal{X}$.

Proposition 2 If $f(\cdot)$ has bounded gradient and satisfies the acute angle condition, then $f(\cdot)$ is weakly pseudoconvex.

Proof: For all $x \in \mathcal{X}$, we have

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \leq M\left\|x-x^{*}\right\| \\
& \leq \frac{M}{Z} \frac{\nabla f(x)^{\top}\left(x-x^{*}\right)}{\|\nabla f(x)\|}
\end{aligned}
$$

where the first inequality follows from the bounded gradient assumption while the second inequality is due to the acute angle condition.

Proposition 3 If $f(\cdot)$ has bounded gradient and satisfy the α-homogeneity with respect to its minimum, i.e., there exists $\alpha>0$ satisfying

$$
f\left(t\left(x-x^{*}\right)+x^{*}\right)-f\left(x^{*}\right)=t^{\alpha}\left(f(x)-f\left(x^{*}\right)\right)
$$

for all $x \in \mathcal{X}$ and $t \geq 0$ where $x^{*}=\arg \min _{x \in \mathcal{X}} f(x)$, then $f(\cdot)$ is weak pseudo-convex.

Proof: By taking the derivative of the equation (3) with respective to t and letting $t=1$, we have

$$
\nabla f(x)^{\top}\left(x-x^{*}\right)=\alpha\left(f(x)-f\left(x^{*}\right)\right)
$$

Therefore, we have

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & =\frac{1}{\alpha} \nabla f(x)^{\top}\left(x-x^{*}\right) \\
& \leq \frac{M}{\alpha} \frac{\nabla f(x)^{\top}\left(x-x^{*}\right)}{\|\nabla f(x)\|}
\end{aligned}
$$

which satisfies the weak pseudo-convexity condition with $K=\frac{M}{\alpha} . \square$

