A Appendix: Proof of Differential Privacy

In this appendix we aim to prove Theorem 4.1. Algorithm 1, though being an iterative process, can be decomposed into two steps.

1. Central server draws T adaptive queries from the j th data provider,

$$
H_{j}\left(S_{j}\right)=\left(H_{j}\left(S_{j}, Q^{(1)}\right), \ldots H_{j}\left(S_{j}, Q^{(T)}\right)\right)
$$

and $H_{j}\left(S_{j}\right) \in \otimes_{i=1}^{\top} \mathbb{R}^{d * k}$.
2. The central server calculates the output $Q_{d p}^{*}$ by post-processing of $H_{j}\left(S_{j}\right)$.
Theorem 4.1 states that the output $Q_{d p}^{*}$ and $H_{j}\left(S_{j}\right)$ is (ϵ, δ)-differentially private with respect to the presence of any sample. For any two sets of samples differing in only one data item: $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{n}\right\}$ and $S^{\prime}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{n}\right\}$, we aim to prove

$$
\begin{aligned}
\operatorname{Pr}\left(Q_{d p}^{*}\left(S^{\prime}\right) \subseteq R_{1}\right) & \leq e^{\epsilon} \operatorname{Pr}\left(Q_{d p}^{*}(S) \subseteq R_{1}\right)+\delta \\
\operatorname{Pr}\left(H_{j}\left(S^{\prime}\right) \subseteq R_{2}\right) & \leq e^{\epsilon} \operatorname{Pr}\left(H_{j}(S) \subseteq R_{2}\right)+\delta
\end{aligned}
$$

for all $R_{1} \in \mathbb{R}^{d \times k}$ and $R_{2} \in \otimes_{j=1}^{\top} \mathbb{R}^{d * k}$. Suppose sample \mathbf{x}_{i} is from the j th data provider, i.e. $\mathbf{x}_{i} \in S_{j}$. Our proof consists of three parts. In Lemma A.1, we prove that every query $H_{j}\left(S_{j}, Q^{(t)}\right)$ is differentially private. In Lemma A.2, we prove that adaptive composition of T queries $H_{j}\left(S_{j}\right)$ introduces more privacy error, but is still differentially private. In Lemma A.3, we argue that post-processing preserves privacy and thus $Q_{d p}^{*}$ is differentially private.
Lemma A. 1 (Gaussian Mechanism). For S_{j} and S_{j}^{\prime} differing in one data item, i.e. $S_{j}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{n_{j}}\right\}$, and $S_{j}^{\prime}=$ $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{n_{j}}\right\}$, and any measurable set $R \subseteq \mathbb{R}^{d \times k}$, we have

$$
\operatorname{Pr}\left(H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right) \leq e^{\epsilon} \operatorname{Pr}\left(H_{j}\left(S_{j}, Q^{(t)}\right) \in R\right)+\delta
$$

where $\sigma=2 \epsilon^{-1} \sqrt{2 \ln (2 / \delta)}$ with $0<\epsilon<1$ and $0<\delta<$ $1 / 2$.

Proof. For simplicity of notation, we omit the subscript j in the proof. In each iteration of Algorithm 1, $H\left(S, Q^{(t)}\right)=\widehat{\Sigma}(S) Q^{(t)}+G^{(t)} / n_{j}$, where $\widehat{\Sigma}$ is the sample covariance of the j th data provider, and $G^{(t)}$ is a $d \times k$ matrix with entry-wise i.i.d. normal random variable $N\left(0, \sigma^{2}\right)$. Note that

$$
\begin{gathered}
\quad \operatorname{Pr}\left(H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right) \\
\leq e^{\epsilon} \operatorname{Pr}\left(H_{j}\left(S_{j}, Q^{(t)}\right) \in R\right)+\delta
\end{gathered}
$$

for all $R \subseteq \mathbb{R}^{d \times k}$ is equivalent to

$$
\begin{gathered}
\quad \operatorname{Pr}\left(n_{j} H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right) \\
\leq e^{\epsilon} \operatorname{Pr}\left(n_{j} H_{j}\left(S_{j}, Q^{(t)}\right) \in R\right)+\delta
\end{gathered}
$$

for all $R \subseteq \mathbb{R}^{d \times k}$, where n_{j} is the number of samples. Without any lose of generality, we can let $n_{j}=1$ and $\left\|\mathbf{x}_{i}\right\|_{2} \leq 1$ (because of the boundedness assumption), we have

$$
\left\|\mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right\|_{F} \leq\left\|\mathbf{x}_{i}\right\|_{F}\left\|\mathbf{x}_{i}^{\top}\right\|_{F}=\left\|\mathbf{x}_{i}\right\|_{2}\left\|\mathbf{x}_{i}\right\|_{2} \leq 1
$$

and since $Q^{(t)} \in \mathbb{R}^{d \times k}$ is an orthonormal matrix, according to the rotation invariant property of Frobenius norm, we have

$$
\begin{align*}
& \left\|\widehat{\Sigma}(S) Q^{(t)}-\widehat{\Sigma}\left(S^{\prime}\right) Q^{(t)}\right\|_{F} \\
\leq & \left\|\widehat{\Sigma}(S)-\widehat{\Sigma}\left(S^{\prime}\right)\right\|_{F}=\frac{1}{n_{j}}\left\|\mathbf{x}_{i} \mathbf{x}_{i}^{\top}-\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}^{\prime \top}\right\|_{F} \\
\leq & \frac{1}{n_{j}}\left(\left\|\mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right\|_{F}+\left\|\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}^{\prime}\right\|_{F}\right) \leq \frac{2}{n_{j}}=2 \tag{A.1}
\end{align*}
$$

Denote $W=\widehat{\Sigma}(S) Q^{(t)}$ and $W^{\prime}=\widehat{\Sigma}\left(S^{\prime}\right) Q^{(t)}$. Let $\Delta W=W-W^{\prime} \in \mathbb{R}^{d \times k}$, and $R_{W}=\{X+W \mid X \in R\}$. From (A.1) we know $\|\Delta W\|_{F} \leq 2$. Now we have

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{j}\left(S_{j}, Q^{(t)}\right) \in R\right)=\operatorname{Pr}\left(W+G_{k}^{(t)} \in R\right) \\
= & \frac{1}{(\sqrt{2 \pi} \sigma)^{d k}} \int_{R_{W}} e^{-\frac{1}{2 \sigma^{2}}\|X\|_{F}^{2}} \mathrm{~d} \mu(X),
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right)=\operatorname{Pr}\left(W^{\prime}+G_{k}^{(t)} \in R\right) \\
= & \frac{1}{(\sqrt{2 \pi} \sigma)^{d k}} \int_{R_{W}} e^{-\frac{1}{2 \sigma^{2}}\|X-\Delta W\|_{F}^{2}} \mathrm{~d} \mu(X) .
\end{aligned}
$$

Let's take X and ΔW as $d \times k$ dimensional vectors. Since the Gaussian distribution is spherical and symmetric, we can assume that $\Delta W=\left(w_{1}, 0,0, \ldots\right)$ (only nonzero in the first entry) by change of basis. Denote w_{1} as the first entry of W and x_{1} as the first entry of X. Because of the symmetry of W and W^{\prime}, we assume $w_{1}>0$. Then we have

$$
\begin{aligned}
& \operatorname{Pr}\left(H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right) \\
= & \frac{1}{\sqrt{2 \pi} \sigma} \int_{R_{W}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{1}-w_{1}\right)^{2}} \mathrm{~d} \mu\left(x_{1}\right) \\
= & \frac{1}{\sqrt{2 \pi} \sigma} \int_{R_{W}} e^{-\frac{x_{1}^{2}}{2 \sigma^{2}}+\frac{2 x_{1} w_{1}-w_{1}^{2}}{2 \sigma^{2}}} \mathrm{~d} \mu\left(x_{1}\right) .
\end{aligned}
$$

Note that $x_{1}<\sigma^{2} \epsilon / w_{1}-w_{1} / 2$ implies

$$
\frac{2 x_{1} w_{1}-w_{1}^{2}}{2 \sigma^{2}}<\epsilon
$$

Let $R_{W}^{-}=R_{W} \cap\left(-\infty, \sigma^{2} \epsilon / w_{1}-w_{1} / 2\right)$, and $R_{W}^{+}=$
$R_{W} \cap\left(\sigma^{2} \epsilon / w_{1}-w_{1} / 2,+\infty\right)$. Now we have

$$
\begin{align*}
& \operatorname{Pr}\left(H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right) \\
= & \frac{1}{\sqrt{2 \pi} \sigma} \int_{R_{W}^{-}} e^{-\frac{x_{1}^{2}}{2 \sigma^{2}}+\frac{2 x_{1} w_{1}-w_{1}^{2}}{2 \sigma^{2}}} \mathrm{~d} \mu\left(x_{1}\right) \\
& +\frac{1}{\sqrt{2 \pi} \sigma} \int_{R_{W}^{+}} e^{-\frac{\left(x_{1}-w_{1}\right)^{2}}{2 \sigma^{2}}} \mathrm{~d} \mu\left(x_{1}\right) \\
\leq & \frac{1}{\sqrt{2 \pi} \sigma} e^{\epsilon} \int_{R_{W}^{-}} e^{-\frac{x_{1}^{2}}{2 \sigma^{2}}} \mathrm{~d} \mu\left(x_{1}\right)+\operatorname{Pr}_{x \sim N\left(0, \sigma^{2}\right)}\left(x>\frac{\sigma^{2} \epsilon}{w_{1}}-\frac{w_{1}}{2}\right) \\
\leq & e^{\epsilon} \operatorname{Pr}\left(H_{j}\left(S_{j}, Q^{(t)}\right) \in R\right)+\operatorname{Pr}_{x \sim N\left(0, \sigma^{2}\right)}\left(x>\frac{\sigma^{2} \epsilon}{w_{1}}-\frac{w_{1}}{2}\right) . \tag{A.2}
\end{align*}
$$

Based on (A.1), we know $0<w_{1}=\|\Delta W\| \leq 2$. Next we prove that with $\sigma=2 \epsilon^{-1} \sqrt{2 \ln (2 / \delta)}$, the second term in (A.2) is bounded by δ.
Let $t=\sigma^{2} \epsilon / w_{1}-w_{1} / 2$, we first verify the following inequality

$$
\begin{equation*}
\ln (t / \sigma)+t^{2} /\left(2 \sigma^{2}\right)>\ln \left(\frac{1}{\sqrt{2 \pi} \delta}\right) \tag{A.3}
\end{equation*}
$$

Denote $\sigma=c / \epsilon$, where $c=2 \sqrt{2 \ln (2 / \delta)}$. We want the first term in the left-hand-side of (A.3) to be nonnegative, equivalently,

$$
\begin{equation*}
t / \sigma=\frac{c}{w_{1}}-\frac{\epsilon w_{1}}{2 c} \geq \frac{c}{2}-\frac{\epsilon}{c} \geq 1 \tag{A.4}
\end{equation*}
$$

where the second to last inequality is due to the fact that $w_{1} \leq 2$ and the function $a / w_{1}-w_{1} / b$ is a decreasing function of $w_{1}>0, a, b>0$.
Since $0<\delta<1 / 2, c=2 \sqrt{2 \ln (2 / \delta)} \geq 3.3$ and $\epsilon \leq 1$, we know (A.4) holds because

$$
\begin{align*}
\frac{t^{2}}{2 \sigma^{2}} & \geq(c / 2-\epsilon / c)^{2} / 2=\left(c^{2} / 4-\epsilon+\epsilon^{2} / c^{2}\right) / 2 \\
& \geq\left(c^{2} / 4-1+1 / c^{2}\right) / 2 \\
& \geq \ln (2 / \delta)-1 / 2 \geq 1 / 2 \tag{A.5}
\end{align*}
$$

which also implies that the second term of the left-handside of (A.3) is bounded, i.e.

$$
\begin{equation*}
\frac{t^{2}}{2 \sigma^{2}} \geq \ln (2 / \delta)-1 / 2 \geq \ln \left(\frac{1}{\sqrt{2 \pi} \delta}\right) \tag{A.6}
\end{equation*}
$$

Based on (A.4) and (A.6), we know that (A.3) holds. Taking exponential on both sides of (A.3) gives

$$
\frac{\sigma}{\sqrt{2 \pi}} \frac{1}{t} e^{-t^{2} /\left(2 \sigma^{2}\right)}<\delta
$$

which implies the tail bound

$$
\operatorname{Pr}_{x \sim N\left(0, \sigma^{2}\right)}(x>t)<\frac{\sigma}{\sqrt{2 \pi}} \frac{1}{t} e^{-t^{2} /\left(2 \sigma^{2}\right)}<\delta
$$

where the first inequality is Chernoff bound for normal random variables. Plug in this to (A.2), we concluded that

$$
\operatorname{Pr}\left(H_{j}\left(S_{j}^{\prime}, Q^{(t)}\right) \in R\right) \leq e^{\epsilon} \operatorname{Pr}\left(H_{j}\left(S_{j}, Q^{(t)}\right) \in R\right)+\delta
$$

Lemma A. 2 (Adaptive Composition). Let $S=$ $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{n}\right\}$ is the set of samples and $S^{\prime}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{n}\right\}$ is a neighboring set of S. Let $\mathcal{M}_{1}: S \rightarrow \mathcal{M}_{1}(S) \in \mathcal{C}_{1}$ is $\left(\epsilon_{1}, \delta_{1}\right)$ differentially private, and for $2 \leq k \leq m, s_{k-1} \in$ $\mathcal{C}_{k-1}, T_{k}:\left(S, s_{k-1}\right) \rightarrow T_{k}\left(S, s_{k-1}\right) \in \mathcal{C}_{k}$ is $\left(\epsilon_{k}, \delta_{k}\right)-$ differentially private. For each query T_{k}, its parameter s_{k-1} can be chosen adaptively according to previous queries $T_{1}, T_{2}, \ldots, T_{k-1}$. The adaptive composition $\left(T_{1}, T_{2}, \ldots, T_{m}\right)$ is $\left(\sum_{j=1}^{m} \epsilon_{j}, \sum_{j=1}^{m} \delta_{j}\right)$-differentially private. For all $R \subseteq \otimes_{j=1}^{m} \mathcal{C}_{j}$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{m}\right) \in R \mid S\right) \\
\leq & e^{\epsilon} \operatorname{Pr}\left(\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{m}\right) \in R \mid S^{\prime}\right)+\delta
\end{aligned}
$$

where $\epsilon=\sum_{j=1}^{m} \epsilon_{j}$, and $\delta=\sum_{j=1}^{m} \delta_{j}$.
Proof. Let's prove by induction. First we consider the case for $m=2$. Let μ be the probability measure. For any measurable set $R_{1} \in \mathcal{C}_{1}$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{M}_{1} \in R_{1} \mid S\right) & =\int_{R_{1}} p(x) \mathrm{d} \mu(x) \\
\operatorname{Pr}\left(\mathcal{M}_{1} \in R_{1} \mid S^{\prime}\right) & =\int_{R_{1}} p^{\prime}(x) \mathrm{d} \mu(x)
\end{aligned}
$$

where p, p^{\prime} are the Random-Nikodym derivatives of the left-hand-side with respect to the probability measure. Bases on the definition of differential privacy, we also have

$$
\operatorname{Pr}\left(\mathcal{M}_{1} \in R_{1} \mid S\right) \leq e^{\epsilon_{1}} \operatorname{Pr}\left(\mathcal{M}_{1} \in R_{1} \mid S^{\prime}\right)+\delta_{1}
$$

which is equivalent to

$$
\begin{equation*}
\int_{R_{1}}\left(p(x)-e^{\epsilon_{1}} p^{\prime}(x)\right) \mathrm{d} \mu(x) \leq \delta_{1} \tag{A.7}
\end{equation*}
$$

for any measurable $R_{1} \in \mathcal{C}_{1}$.
Let measurable set $R \in \mathcal{C}_{1} \otimes \mathcal{C}_{2}$. Fix $s_{1} \in \mathcal{C}_{1}$. Denote $R\left(s_{1}\right)=\left\{s_{2} \mid\left(s_{1}, s_{2}\right) \in R\right\} \in \mathcal{C}_{2}$. Since R is measurable, $R\left(s_{1}\right)$ is also measurable. Now we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S\right)=\operatorname{Pr}\left(\mathcal{M}_{2} \in R\left(s_{1}\right) \mid S\right) \\
& \leq e^{\epsilon_{2}} \min \left\{\operatorname{Pr}\left(\mathcal{M}_{2} \in R\left(s_{1}\right) \mid S^{\prime}\right), 1\right\}+\delta_{2} \\
& =e^{\epsilon_{2}} \min \left\{\operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right), 1\right\}+\delta_{2}
\end{aligned}
$$

Now we can prove the lemma with $m=2$ as follows

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) \in R \mid S\right) \\
= & \int_{\mathcal{C}_{1}} \operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S\right) p\left(s_{1}\right) \mathrm{d} \mu\left(s_{1}\right) \\
\leq & \int_{\mathcal{C}_{1}}\left(e^{\epsilon_{2}} \min \left\{\operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right), 1\right\}+\delta_{2}\right) p\left(s_{1}\right) \mathrm{d} \mu\left(s_{1}\right) \\
\leq & \int_{\mathcal{C}_{1}} e^{\epsilon_{2}} \min \left\{\operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right), 1\right\} p\left(s_{1}\right) \mathrm{d} \mu\left(s_{1}\right)+\delta_{2} \\
= & \int_{\mathcal{C}_{1}} e^{\epsilon_{2}} \min \left\{\operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right), 1\right\}\left(e^{\epsilon_{1}} p^{\prime}\left(s_{1}\right)+\right. \\
& \left.p\left(s_{1}\right)-e^{\epsilon_{1}} p^{\prime}\left(s_{1}\right)\right) \mathrm{d} \mu\left(s_{1}\right)+\delta_{2} \\
\leq & \int_{\mathcal{C}_{1}} e^{\epsilon_{2}} \min \left\{\operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right), 1\right\} e^{\epsilon_{1}} p^{\prime}\left(s_{1}\right) \mathrm{d} \mu\left(s_{1}\right) \\
& +\int_{\mathcal{C}_{1}}\left(p\left(s_{1}\right)-e^{\epsilon_{1}} p^{\prime}\left(s_{1}\right)\right) \mathrm{d} \mu\left(s_{1}\right)+\delta_{2} \\
\leq & e^{\epsilon_{1}+\epsilon_{2}} \int_{\mathcal{C}_{1}} \operatorname{Pr}\left(\left(s_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right) p^{\prime}\left(s_{1}\right) \mathrm{d} \mu\left(s_{1}\right)+\delta_{1}+\delta_{2} \\
= & e^{\epsilon_{1}+\epsilon_{2}} \operatorname{Pr}\left(\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) \in R \mid S^{\prime}\right)+\delta_{1}+\delta_{2} .
\end{aligned}
$$

Assume that the lemma holds for m. Now in the case of $m+1$, denote

$$
\mathcal{M}=\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{m}\right) \in R_{m} \subseteq \otimes_{j=1}^{m} \mathcal{C}_{j}
$$

From induction hypothesis, we know that \mathcal{M} is (ϵ, δ) differentially private, where $\epsilon=\sum_{j=1}^{m} \epsilon_{j}$ and $\delta=$ $\sum_{j=1}^{m} \delta_{j}$. Based on the lemma for $m=2$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(\mathcal{M}, \mathcal{M}_{m+1}\right) \in R_{m+1} \mid S\right) \\
\leq & e^{\epsilon+\epsilon_{m+1}} \operatorname{Pr}\left(\left(\mathcal{M}, \mathcal{M}_{m+1}\right) \in R_{m+1} \mid S^{\prime}\right)+\delta+\delta_{m+1}
\end{aligned}
$$

which means that the lemma holds for $m+1$. By mathematical induction, we conclude the proof.

Lemma A. 3 (Post-processing). Denote the set of samples as $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{n}\right\}$. Let randomized algorithm $\mathcal{M}(S) \in \mathcal{C}_{1}$ be (ϵ, δ)-differentially private and an arbitrary mapping $f: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$. Then $f \circ \mathcal{M}$ is (ϵ, δ)-differentially private.

Proof. Let sample set $S^{\prime}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{i}^{\prime}, \ldots, \mathbf{x}_{n}\right\}=$ $S \backslash\left\{\mathbf{x}_{i}\right\} \cup\left\{\mathbf{x}_{i}^{\prime}\right\}$ as a neighboring dataset of S. The $(\epsilon, \delta)-$ differential privacy of \mathcal{M} means that for any $R \subseteq \mathcal{C}_{1}$,

$$
\operatorname{Pr}\left(\mathcal{M}\left(S^{\prime}\right) \in R\right) \leq e^{\epsilon} \operatorname{Pr}(\mathcal{M}(S) \in R)+\delta
$$

For any $T \subseteq \mathcal{C}_{2}$, let $R(T)=\{x \mid f(x) \in T\}$. Now we have

$$
\begin{aligned}
& \operatorname{Pr}\left(f \circ \mathcal{M}\left(S^{\prime}\right) \in T\right) \\
= & \operatorname{Pr}\left(f\left(\mathcal{M}\left(S^{\prime}\right)\right) \in T\right)=\operatorname{Pr}\left(\mathcal{M}\left(S^{\prime}\right) \in R(T)\right) \\
\leq & e^{\epsilon} \operatorname{Pr}(\mathcal{M}(S) \in R(T))+\delta \\
= & e^{\epsilon} \operatorname{Pr}(f \circ \mathcal{M}(S) \in T)+\delta .
\end{aligned}
$$

By definition we know that $f \circ \mathcal{M}$ is also (ϵ, δ) differentially private.

Proof of Theorem 4.1. Based on Lemma A.1, we know that $H_{j}\left(S_{j}, Q\right)$ is $(\epsilon / T, \delta / T)$-differentially private given fixed Q. Then we can deduce from Lemma A. 2 that the adaptive composition

$$
H_{j}\left(S_{j}\right)=\left(H_{j}\left(S_{j}, Q^{(1)}\right), \ldots H_{j}\left(S_{j}, Q^{(T)}\right)\right)
$$

is (ϵ, δ)-differentially private. In Algorithm 1 , the output $Q_{d p}^{*}$ is obtained by post-processing of $H_{j}\left(S_{j}\right)$ and thus $Q_{d p}^{*}$ is (ϵ, δ)-differentially private.

B Appendix: Proof for the Main Theorem

B. 1 Notations

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ be samples drawn from underlying distribution, where d is the dimension and n is the number of samples. Denote $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ as the set of all the samples, and S_{i} as the sample set of i th data provider. Let $\Sigma \in \mathbb{R}^{d \times d}$ be the population covariance matrix of the generating distribution, and let $\widehat{\Sigma} \in \mathbb{R}^{d \times d}$ be sample covariance matrix, i.e. $\widehat{\Sigma}=\left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) / n$. Let the $d \times k$ matrix $Q^{*} \in \mathbb{R}^{d \times k}$ with orthogonal columns spans the k leading eigenspace of Σ.
Let $\mathcal{I} \subseteq\{1, \ldots d\}$ be an index set. For any matrix $M \in \mathbb{R}^{n \times m}$, denote $M_{\mathcal{I}} \in \mathbb{R}^{d \times d}$ as the restriction of M onto the rows and columns indexed by \mathcal{I}. Denote $M_{\mathcal{I}, *} \in \mathbb{R}^{n \times m}$ as the matrix M restricted on rows indexed by \mathcal{I}, with value 0 on rows not indexed by \mathcal{I}. Denote $\lambda_{k}(M)$ as the k-th leading eigenvalue of any matrix M, and we simplify the notation $\lambda_{k}(\Sigma)$ as λ_{k}. Define $\widehat{Q}(\mathcal{I}) \in \mathbb{R}^{d \times k}$ as a matrix with orthogonal columns which span the top k leading eigenspace of $\widehat{\Sigma}_{\mathcal{I}}$. Let $\widehat{Q}(\mathcal{I})^{\perp}$ be the matrix with orthogonal columns which span the subspace corresponding to $\lambda_{k+1}\left(\widehat{\Sigma}_{\mathcal{I}}\right), \ldots \lambda_{d}\left(\widehat{\Sigma}_{\mathcal{I}}\right)$.
We use the notation $\left\|Q^{*}\right\|_{2,0}$ to describe the number of non-zero rows of Q^{*} under row-wise ℓ_{2}-norm. Let $\left\|Q_{i, *}^{*}\right\|_{2}$ be the ℓ_{2}-norm of the i th row of Q^{*}, then we define

$$
\begin{equation*}
\left\|Q^{*}\right\|_{2,0}=\left\|\left(\left\|Q_{1, *}^{*}\right\|_{2},\left\|Q_{2, *}^{*}\right\|_{2}, \ldots,\left\|Q_{d, *}^{*}\right\|_{2}\right)\right\|_{0} \tag{B.1}
\end{equation*}
$$

which is the sparsity of row-support of Q^{*}.

B. 2 Assumptions

Assumption B.1. Assume that there exists $\alpha \in(0,1)$ such that $0<\alpha<1-\gamma$ and $\tau>0$ such that

$$
\begin{equation*}
\frac{2 k N(\sqrt{\hat{s}}+\sqrt{k}+\tau)}{n \alpha} \leq \frac{\lambda_{k}}{\sigma(\epsilon, \delta)} \tag{B.2}
\end{equation*}
$$

Here the noise-to-signal ratio parameter α is upperbounded by

$$
\begin{equation*}
\frac{\alpha}{1-\alpha} \leq \frac{1}{1+2 \sqrt{k}} \min \left\{\frac{1}{3}\left(1-\rho^{2}\right)^{3 / 2}, \frac{1}{6}\left(1-\rho^{1 / 4}\right)\right\} \tag{B.3}
\end{equation*}
$$

We also suppose the choice of thresholding parameter \widehat{s} satisfies the following condition

$$
\begin{equation*}
\widehat{s}=C_{1} \max \left\{\left\lceil\frac{4 k}{\left(\rho^{-1 / 2}-1\right)^{2}}\right\rceil, 1\right\} \cdot s^{*}, C_{1}>1 \tag{B.4}
\end{equation*}
$$

And the sample size n is large enough such that for a positive constant $C_{2}>0$

$$
\begin{align*}
\Psi(2 \widehat{s}) & =C_{2} \cdot \frac{\sqrt{\lambda_{1} \lambda_{k+1}}}{\lambda_{k}-\lambda_{k+1}} \cdot \sqrt{\frac{\widehat{s} \cdot(k+\log d)}{n}} \\
& \leq \min \left\{\frac{1}{24}\left(1-\rho^{2}\right)^{3 / 2}, \frac{1}{6}\left(1-\rho^{1 / 4}\right)\right\} \tag{B.5}
\end{align*}
$$

Initialization of the algorithm $Q^{(0)}$ satisfies

$$
\begin{equation*}
\left\|Q^{(0) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \min \left\{\frac{\rho^{1 / 2} \sqrt{\left(1-\rho^{1 / 2}\right)}}{2}, \frac{\rho^{1 / 2}}{4}\right\} \tag{B.6}
\end{equation*}
$$

Assumption Justifications.

- Let us remark that equation (B.2) essentially uses the parameter α, τ to bound the noise-to-signal ratio $\sigma(\epsilon, \delta) / \lambda_{k}$. Under mild privacy constraint when the signal-to-noise ratio $\lambda_{k} / \sigma(\epsilon, \delta)$ is sufficiently large or the sample number n is sufficiently large, we can find $\tau>0$ and $\alpha \in(0,1-\gamma)$ small enough to satisfy the constraints (B.2) (B.3). Note that (B.2) does not involve dimension d and thus this constraint on sample number n does not scale with d.
- The effective sample size is n / N in (B.2), which characterizes the effect of having samples stored in a distributed system with N data providers.
- The condition (B.4) on choice of sparsity parameter \widehat{s} ensures that we would not lose too much information in the thresholding procedure where only \widehat{s} rows are preserved and others are set to zero. When the effective eigengap $\rho=\gamma /(1-\alpha)$ is close to one, the parameter \widehat{s} has to be comparatively large because the problem becomes ill-conditioned and we cannot afford to lose accuracy in the thresholding procedure.
- The assumption on good initial value for nonconvex optimization (B.6) is a common practice in the literature of sparse PCA and privacy-preserving PCA such as [47] and [18].

B. 3 Sketch Of Proof

Now we present a sketch of proof for Theorem 4.3 together with three lemmas supporting the proof. Please
see \S B. 1 for the meaning of notation $\widehat{Q}(\mathcal{I})^{\perp}$ and $Q^{* \perp}$ in the following lemmas.
Lemma B. 2 analyzes the privacy preservation step in Algorithm 1 by presenting a contractive relationship between $\left\|V^{(t) \top} \widehat{\hat{Q}}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}$ and $\left\|Q^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}$. It is shown in (B.15) in Appendix \S B. 5 that

$$
V^{(t)}=\text { Orthogonalize }\left(\widehat{\Sigma} Q^{(t)}+\frac{N}{n} G^{(t)}\right)
$$

The contractive relationship means that although Gaussian noise matrices are added, the noise is only effective in \widehat{s} rows thanks to the thresholding procedure and can be controlled in high dimensional setting.
Lemma B.2. Let \mathcal{I} be the index of the row-support of $Q^{(t)}$. If we have

$$
\begin{equation*}
\left\|Q^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}<1 / 2 \tag{B.7}
\end{equation*}
$$

for $t=1,2, \ldots, T$ and assume that there exists $\alpha \in$ $(0,1)$ such that $0<\alpha<1-\gamma$, and $\tau>0$ such that (B.2) in Assumption B. 1 is satisfied. Denote $\rho=\gamma /(1-\alpha) \in$ $(0,1)$. We have the following result

$$
\begin{equation*}
\left\|V^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}} \leq \frac{\left\|Q^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}^{2}}} \cdot \rho+\frac{\alpha}{2(1-\alpha)} \tag{B.8}
\end{equation*}
$$

holds for $t=1,2, \ldots, T$ with probability at least $1-$ $2 T e^{-2 \tau^{2}}$.

Proof. Please see Appendix §B. 5 for a detailed proof.

The thresholding procedure in Algorithm 1 aims to impose sparsity in every iteration. However, as we do not know the true support of the k leading eigenspace, thresholding could bring in some extra error. The following lemma analyzes the thresholding error.
Lemma B.3. Remember that the true model sparsity s^{*} is defined as the sparsity level of the row support of Q^{*} whose columns span the leading k-dimensional principal subspace of Σ. Given the sparsity parameter \widehat{s} in Algorithm 1, if $\sqrt{s^{*} / \widehat{s}} \leq 1$ and $\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq 1 / 2$. We have

$$
\begin{equation*}
\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right)\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \tag{B.9}
\end{equation*}
$$

Proof. Please see Appendix §B. 6 for a detailed proof.

The above two lemmas analyze the privacy-preserving and thresholding steps in each iteration, based on which we can now proceed to prove the contractive property of each iteration in Algorithm 1. The function Ψ in (B.10) is defined in (B.5).

Lemma B.4. Under Assumption B.1, suppose we have

$$
\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \min \left\{\sqrt{\left(1-\rho^{1 / 2}\right)}, 1 / 2\right\}
$$

where $C_{1} \geq 1$ is a constant. We can show that

$$
\begin{align*}
\left\|Q^{(t+1) \top} \widehat{Q}^{* \perp}\right\|_{\mathrm{F}} & \leq \rho^{1 / 4} \cdot\left\|Q^{(t) \top} \widehat{Q}^{* \perp}\right\|_{\mathrm{F}}+3 \rho^{1 / 2} \cdot \Psi(\widehat{s}) \\
& +\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) \frac{\alpha}{2(1-\alpha)} \tag{B.10}
\end{align*}
$$

with probability at least

$$
\begin{equation*}
1-2 e^{-\tau^{2} / 2}-4 /(n-1)-1 / d-6 \log n / n-1 / n \tag{B.11}
\end{equation*}
$$

Proof. The proof is based on Lemma B. 2 and Lemma B.3. Please see Appendix \S B. 7 for details of proof.

From the contractive property (B.10) of each iteration in Lemma B.4, we can derive the estimation error in Theorem 4.3. Please see Appendix $\S B .8$ for a detailed proof.

B. 4 Technical Preliminaries

We will first present some auxiliary lemmas here before going into the proof of Lemma B.2, Lemma B.3, Lemma B. 4 and Theorem 4.3 in \S B. 5 BB.6, §B. 7 and §B. 8 respectively.
The estimation error of the eigenspace will be analyzed in terms of subspace distance between two k dimensional linear subspace \mathcal{U}, \mathcal{V} in \mathbb{R}^{d}. Denote U and V as two $d \times k$ matrices whose orthonormal columns span the linear subspace \mathcal{U} and \mathcal{V}. Denote U^{\perp} and V^{\perp} as two $d \times(d-k)$ matrices whose orthonormal columns span the linear subspace \mathcal{U}^{\perp} and \mathcal{V}^{\perp} orthogonal to \mathcal{U} and \mathcal{V} respectively. The orthogonal projection matrices for \mathcal{U}, \mathcal{V} are denoted as Π_{u}, Π_{v}.
Lemma B.5. Singular values of $\Pi_{u} \Pi_{v}^{\perp}$ are zeros after the top k entries

$$
s_{1}, s_{2}, \ldots, s_{k}, 0,0, \cdots, 0
$$

Canonical angles between \mathcal{U} and \mathcal{V} are defined as

$$
\theta_{i}(U, V)=\arcsin \left(s_{i}\right), i=1,2, \ldots, k
$$

Let $\Theta(U, V)=\operatorname{diag}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$. The distance between \mathcal{U} and \mathcal{V} can be characterized as

$$
\begin{aligned}
\mathcal{D}[\mathcal{U}, \mathcal{V}] & =\|\sin \Theta(U, V)\|_{\mathrm{F}}=\left\|U^{\top} V^{\perp}\right\|_{\mathrm{F}}=\left\|V^{\top} U^{\perp}\right\|_{\mathrm{F}} \\
& =\frac{1}{\sqrt{2}}\left\|\Pi_{u}-\Pi_{v}\right\|_{\mathrm{F}}=\left\|\Pi_{u} \Pi_{v}^{\perp}\right\|_{\mathrm{F}}=\left\|\Pi_{u}^{\perp} \Pi_{v}\right\|_{\mathrm{F}}
\end{aligned}
$$

Besides we have the property similar to Pythagorean theorem

$$
\begin{equation*}
\left\|U^{\top} V^{\perp}\right\|_{\mathrm{F}}^{2}+\left\|U^{\top} V\right\|_{\mathrm{F}}^{2}=k \tag{B.12}
\end{equation*}
$$

Proof. Please see Theorem I.5.5 in [39] and Theorem 2.5.1 in [2] for details of proof.

Before the proof we present a lemma here which will be useful in the proof of Lemma B.7.
Lemma B.6. For any $\mathcal{I} \subseteq\{1,2, \ldots, d\}$ with $|\mathcal{I}| \leq d / 2$, the condition

$$
\|\widehat{\Sigma}-\Sigma\|_{2,|\mathcal{I}|} \leq C_{1} \lambda_{1} \sqrt{\frac{|\mathcal{I}| \log d}{n}}
$$

holds with probability at least $1-1 / n$.
Proof. The proof follows from Lemma 3.2.4 in [40].
Lemma B.7. Assume that there exists $\alpha \in(0,1)$ such that $0<\alpha<1-\gamma$ and $\tau>0$ sufficiently large such that

$$
\begin{equation*}
\sigma \leq \frac{\alpha \lambda_{k+1}}{2 k(\sqrt{\widehat{s}}+\sqrt{k}+\tau)} \tag{B.13}
\end{equation*}
$$

Let matrix G be a $\widehat{s} \times k$ matrix with i.i.d. Gaussian $N\left(0, \sigma^{2}\right)$ entries. Let \mathcal{I} be the row support in thresholding step in Algorithm 1. We have

$$
\begin{equation*}
\left\|G^{(t)}\right\|_{\mathrm{F}} \leq \alpha \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) / 2 \tag{B.14}
\end{equation*}
$$

holds for all $t=1,2, \ldots, T$ with probability at least $1-2 T e^{-\tau^{2} / 2}$.

Proof. Based on the Tracy-Widom fluctuations in [35], we have

$$
\mathbb{P}\left\{\left\|G^{(t)}\right\|_{2}>\sigma(\sqrt{\widehat{s}}+\sqrt{k}+\tau)\right\} \leq 2 e^{-\tau^{2} / 2}
$$

Since we have assumption (B.13), it follows that

$$
\begin{aligned}
& \mathbb{P}\left\{\left\|G^{(t)}\right\|_{2}>\frac{\alpha \lambda_{k+1}}{2 k}\right\} \\
\leq & \mathbb{P}\left\{\left\|G^{(t)}\right\|_{2}>\sigma(\sqrt{\widehat{s}}+\sqrt{k}+\tau)\right\} \leq 2 e^{-\tau^{2} / 2}
\end{aligned}
$$

Besides we have $\left\|G^{(t)}\right\|_{\mathrm{F}} \leq k\left\|G^{(t)}\right\|_{2}$, it follows that

$$
\begin{aligned}
& \mathbb{P}\left\{\left\|G^{(t)}\right\|_{\mathrm{F}}>\frac{\alpha \lambda_{k+1}}{2}\right\} \\
\leq & \mathbb{P}\left\{k\left\|G^{(t)}\right\|_{2}>\frac{\alpha \lambda_{k+1}}{2}\right\} \leq 2 e^{-\tau^{2} / 2}
\end{aligned}
$$

From Lemma B. 6 we have
$\lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) \geq \lambda_{k}-\|\widehat{\Sigma}-\Sigma\|_{2,|\mathcal{I}|} \geq \lambda_{k}-\frac{\lambda_{k}-\lambda_{k+1}}{4} \geq \lambda_{k+1}$, which implies

$$
\begin{aligned}
& \mathbb{P}\left\{\left\|G^{(t)}\right\|_{\mathrm{F}}>\frac{\alpha \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right)}{2}\right\} \\
\leq & \mathbb{P}\left\{\left\|G^{(t)}\right\|_{\mathrm{F}}>\frac{\alpha \lambda_{k+1}}{2}\right\} \leq 2 e^{-\tau^{2} / 2}
\end{aligned}
$$

Hence the probability that (B.14) holds for $t=$ $1,2, \ldots, T$ is $1-2 T e^{-\tau^{2} / 2}$.

B. 5 Proof of Lemma B. 2

Proof of Lemma B.2. For the Gaussian noise matrix $G_{i}^{(t)}$ used by data owner i in iteration t, we simply denote it as $G^{(t)}$. Remind that the notation $\widehat{Q}(\mathcal{I})$ is a row-sparse matrix with row support in \mathcal{I}. We use $V_{\mathcal{I}, *} \in$ $\mathbb{R}^{d \times k}$ to denote the matrix whose rows are restricted on the index set \mathcal{I}, and it is set to zeros for the rows not indexed by \mathcal{I}. From (B.12) we have

$$
\begin{aligned}
& \left\|V^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}} \\
= & \left(k-\left\|V^{(t) \top} \widehat{Q}(\mathcal{I})\right\|_{\mathrm{F}}^{2}\right)^{1 / 2}=\left(k-\left\|V_{\mathcal{I}, *}^{(t) \top} \widehat{Q}(\mathcal{I})\right\|_{\mathrm{F}}^{2}\right)^{1 / 2} .
\end{aligned}
$$

With the goal to analyze the subspace distance $\left\|V^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}$, we can focus on $V_{\mathcal{I}, *}^{(t)}$ instead of $V^{(t)}$ in our analysis. Note that

$$
\begin{align*}
H_{i}^{(t)} & =\widehat{\Sigma}_{i} Q^{(t)}+\frac{1}{n_{i}} G^{(t)}, \\
V^{(t)} R_{1} & =K^{(t)}=\frac{\sum_{i=1}^{N} n_{i} H_{i}^{(t)}}{\sum_{i=1}^{N} n_{i}}=\widehat{\Sigma} \cdot Q^{(t)}+\frac{N}{n} G^{(t)} \tag{B.15}
\end{align*}
$$

where $\widehat{\Sigma}$ is the sample covariance for the samples of all the N data owners. Besides, since $G^{(t)}$ is a random matrix with i.i.d entries $N\left(0, \sigma(\epsilon, \delta)^{2}\right)$. We will denote $\sigma=N \sigma(\epsilon, \delta) / n$ and assume that $G^{(t)}$ is entrywise i.i.d with $N\left(0, \sigma^{2}\right)$. We now have

$$
V^{(t)} R_{1}=K^{(t)}=\widehat{\Sigma} \cdot Q^{(t)}+G^{(t)}
$$

and the standard deviation $\sigma=N \sigma(\epsilon, \delta) / n$ satisfies the requirement (B.13) because of the (B.2) in Assumption B.1.

By taking restriction on the rows indexed by \mathcal{I}, we obtain

$$
\begin{equation*}
V_{\mathcal{I}, *}^{(t)} \cdot R_{1}=\widehat{\Sigma}_{\mathcal{I}} \cdot Q^{(t)}+G_{\mathcal{I}, *}^{(t)} \tag{B.16}
\end{equation*}
$$

Let the eigen-decomposition of $\widehat{\Sigma}_{\mathcal{I}}$ be

$$
\widehat{\Sigma}_{\mathcal{I}}=\widehat{Q}(\mathcal{I}) \Lambda_{0} \widehat{Q}(\mathcal{I})^{\top}+\widehat{Q}(\mathcal{I})^{\perp} \Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top}
$$

where Λ_{0} is the diagonal matrix of the top k eigenvalues of $\widehat{\Sigma}_{\mathcal{I}}$, and Λ_{1} is the diagonal matrix of the rest of eigenvalues in decreasing order.
Equation (B.16) can be written as

$$
\begin{align*}
V_{\mathcal{I}, *}^{(t)} \cdot R_{1}= & \widehat{Q}(\mathcal{I}) \Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} \cdot Q^{(t)} \\
& +\widehat{Q}(\mathcal{I})^{\perp} \Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} \cdot Q^{(t)}+G_{\mathcal{I}, *}^{(t)} \tag{B.17}
\end{align*}
$$

If $\widehat{Q}(\mathcal{I})^{\top}$ and $\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top}$ are used to multiply both sides of (B.17) respectively, we can have the following two
equations

$$
\begin{gather*}
\widehat{Q}(\mathcal{I})^{\top} V_{\mathcal{I}, *}^{(t)} R_{1}=\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}, \tag{B.18}\\
{\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} V_{\mathcal{I}, *}^{(t)} R_{1}=\Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}+\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} G_{\mathcal{I}, *}^{(t)} .} \tag{B.19}
\end{gather*}
$$

Note that $\widehat{Q}(\mathcal{I})^{\top} Q^{(t)}$ and $\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}$ are both $k \times k$ square matrices. We prove that the right-hand-side of equation (B.18) is non-singular by showing that the smallest singular value of the right-hand-side is positive. From the perturbation theory for singular value decomposition in [38], we have

$$
\begin{align*}
& \sigma_{k}\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right] \\
\geq & \sigma_{k}\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}\right]-\left\|\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right\|_{2} \\
\geq & \lambda_{k}\left(\widehat{\Sigma_{\mathcal{I}}}\right) \cdot \sigma_{k}\left[\widehat{Q}(\mathcal{I})^{\top} Q^{(t)}\right]-\left\|\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right\|_{2} . \tag{B.20}
\end{align*}
$$

According to the Pythagorean relation (B.12), we can derive that

$$
\begin{aligned}
\sigma_{k}\left[\widehat{Q}(\mathcal{I})^{T} Q^{(t)}\right] & =\sqrt{1-\sigma_{1}\left[\left(\widehat{Q}(\mathcal{I})^{\perp}\right)^{\top} Q^{(t)}\right]^{2}} \\
& \geq \sqrt{1-\left\|\left(\widehat{Q}(\mathcal{I})^{\perp}\right)^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}>0
\end{aligned}
$$

Since $\widehat{Q}(\mathcal{I}) \in \mathbb{R}^{d \times k}$ has orthonormal columns, the following equation holds with probability at least $1-$ $2 T e^{-\tau^{2} / 2}$

$$
\begin{aligned}
& \left.\| \widehat{Q}(\mathcal{I})^{T} \cdot G_{\mathcal{I}, *}^{(t)}\right)\left\|_{2} \leq\right\| G_{\mathcal{I}, *}^{(t)} \|_{2} \\
\leq & \alpha \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) \sqrt{1-\left\|\left(\widehat{Q}(\mathcal{I})^{\perp}\right)^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}<\alpha \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) / 2
\end{aligned}
$$

The last inequality follows from the fact that $\left\|\left(\widehat{Q}(\mathcal{I})^{\perp}\right)^{\top} Q^{(t)}\right\|_{\mathrm{F}}<1 / 2$, and the high probability claim follows from Lemma B.7.
Putting the above two equations into equation (B.20) gives

$$
\begin{align*}
& \sigma_{k}\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right] \\
\geq & (1-\alpha) \lambda_{k}\left(\widehat{\boldsymbol{\Sigma}}_{\mathcal{I}}\right) \sqrt{1-\left\|\left(\widehat{Q}(\mathcal{I})^{\perp}\right)^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}>0 \tag{B.21}
\end{align*}
$$

and thus $\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}$ is non-singular. From equation (B.21) and (B.18) we have

$$
R_{1}^{-1}=\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right]^{-1} \cdot \widehat{Q}(\mathcal{I})^{\top} V_{\mathcal{I}, *}^{(t)} .
$$

Combining the above equation with equation (B.19), we have

$$
\begin{align*}
& {\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} V_{\mathcal{I}, *}^{(t)}=\left(\Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}+\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} G_{\mathcal{I}, *}^{(t)}\right) } \\
\times & {\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right]^{-1} \cdot \widehat{Q}(\mathcal{I})^{\top} V_{\mathcal{I}, *}^{(t)} . } \tag{B.22}
\end{align*}
$$

The Frobenius norm of the right-hand-side of equation (B.22) can be upper bounded by

$$
\begin{align*}
& \left\|\left(\Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}+\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} G_{\mathcal{I}, *}^{(t)}\right)\right\|_{\mathrm{F}} \\
\times & \left\|\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right]^{-1}\right\|_{2}\left\|\widehat{Q}(\mathcal{I})^{\top} V_{\mathcal{I}, *}^{(t)}\right\|_{2} \tag{B.23}
\end{align*}
$$

The first part can be further controlled in the following way

$$
\begin{aligned}
&\left\|\Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}+\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} G_{\mathcal{I}, *}^{(t)}\right\|_{\mathrm{F}} \\
& \leq\left\|\Lambda_{1}\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}+\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} G_{\mathcal{I}, *}^{(t)}\right\|_{\mathrm{F}} \\
& \leq \lambda_{k+1}\left(\widehat{\Sigma}_{\mathcal{I}}\right)\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}+\left\|G_{\mathcal{I}, *}^{(t)}\right\|_{\mathrm{F}} .
\end{aligned}
$$

The second part can also be upper bounded as

$$
\begin{align*}
& \left\|\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right]^{-1}\right\|_{2} \\
= & \frac{1}{\sigma_{k}\left[\Lambda_{0} \widehat{Q}(\mathcal{I})^{\top} Q^{(t)}+\widehat{Q}(\mathcal{I})^{\top} G_{\mathcal{I}, *}^{(t)}\right]} \\
\leq & \frac{1}{(1-\alpha) \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) \sqrt{1-\left\|\left(\widehat{Q}(\mathcal{I})^{\perp}\right)^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \tag{B.25}
\end{align*}
$$

where the second inequality follows from equation (B.21). The third part is obviously upper bounded

$$
\begin{equation*}
\left\|\widehat{Q}(\mathcal{I})^{\top} V_{\mathcal{I}, *}^{(t)}\right\|_{2} \leq\left\|\widehat{Q}(\mathcal{I})^{\top}\right\|_{2}\left\|V_{\mathcal{I}, *}^{(t)}\right\|_{2} \leq 1 \tag{B.26}
\end{equation*}
$$

After we put equation (B.24), (B.25), (B.26) into (B.23),
equation (B.22) can be upper-bounded by

$$
\begin{align*}
& \frac{\lambda_{k+1}\left(\widehat{\Sigma}_{\mathcal{I}}\right)\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}+\left\|G_{\mathcal{I}, *}^{(t)}\right\|_{\mathrm{F}}}{(1-\alpha) \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) \sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \\
\leq & \frac{\lambda_{k+1}\left(\widehat{\Sigma}_{\mathcal{I}}\right)\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}+\alpha \lambda\left(\widehat{\Sigma}_{\mathcal{I}}\right) / 2}{(1-\alpha) \lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I}}\right) \sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \\
\leq & \frac{1}{1-\alpha} \frac{\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \cdot \frac{\lambda_{k+1}\left(\widehat{\Sigma}_{\mathcal{I}}\right)}{\lambda_{k}\left(\widehat{\Sigma}_{\mathcal{I})}\right.} \\
& +\frac{\alpha}{2(1-\alpha) \sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \\
\leq & \frac{1}{1-\alpha} \frac{\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \cdot \frac{\lambda_{k+1}(\Sigma)+\|\widehat{\Sigma}-\Sigma\|_{2,|\mathcal{I}|}}{\lambda_{k}(\Sigma)-\|\widehat{\Sigma}-\Sigma\|_{2,|\mathcal{I}|}} \\
& +\frac{\alpha}{\sqrt{3}(1-\alpha)} \\
\leq & \frac{1}{1-\alpha} \frac{\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \frac{3 \lambda_{k+1}(\Sigma)+\lambda_{k}(\Sigma)}{\lambda_{k+1}(\Sigma)+3 \lambda_{k}(\Sigma)} \\
& +\frac{\alpha}{\sqrt{3}(1-\alpha)} \\
& =\frac{\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{\mathrm{F}}^{2}}} \cdot \rho+\frac{\alpha}{\sqrt{3}(1-\alpha)} . \tag{B.27}
\end{align*}
$$

Since the columns of $\widehat{Q}(\mathcal{I})^{\perp}$ are eigenvectors of the row sparse matrix $\widehat{\Sigma}_{\mathcal{I}}$, the rows of $\widehat{Q}(\mathcal{I})^{\perp}$ must also be restricted on the set of index \mathcal{I}, and thus

$$
\left\|\widehat{Q}(\mathcal{I})^{\perp} V^{(t)}\right\|_{\mathrm{F}}=\left\|\widehat{Q}(\mathcal{I})^{\perp} V_{\mathcal{I}, *}^{(t)}\right\|_{\mathrm{F}}
$$

Based on the above equation, (B.27) and (B.22) we have

$$
\left\|\widehat{Q}(\mathcal{I})^{\perp} V^{(t)}\right\|_{F} \leq \frac{\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{F}}{\sqrt{1-\left\|\left[\widehat{Q}(\mathcal{I})^{\perp}\right]^{\top} Q^{(t)}\right\|_{F}^{2}}} \cdot \rho+\frac{\alpha}{\sqrt{3}(1-\alpha)},
$$

which is equivalent to

$$
\left\|V^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}} \leq \frac{\left\|Q^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}}^{2}}} \cdot \rho+\frac{\alpha}{\sqrt{3}(1-\alpha)}
$$

The entire proof holds with probability at least 1 $T e^{-\tau^{2} / 2}$.

B. 6 Proof of Lemma B. 3

Proof. In this proof we will analyze the error in each iteration induced by the thresholding procedure. Denote \mathcal{I} as the set of index used for thresholding in the current iteration. Also let \mathcal{I}^{*} to be ground truth of the
row support of Q^{*} whose columns span the leading k eigenspace of the population covariance matrix Σ in our model. Under this notation, we have $\widehat{s}=|\mathcal{I}|$ and $s=|S|$. Since the thresholding comes from the difference between \mathcal{I} and \mathcal{I}^{*}, our analysis relies on these critical quantities

$$
\mathcal{I}_{1}=\mathcal{I}^{*} \backslash \mathcal{I}, \quad \mathcal{I}_{2}=\mathcal{I}^{*} \cap \mathcal{I}, \quad \mathcal{I}_{3}=\mathcal{I} \backslash \mathcal{I}^{*}
$$

Now we compare the approximation accuracy between $\widetilde{Q}^{(t)}$ and $V^{(t)}$

$$
\begin{align*}
&\left\|Q^{* \top} \widetilde{Q}^{(t)}\right\|_{\mathrm{F}}=\left\|Q^{* \top} V^{(t)}+Q^{* \top}\left(\widetilde{Q}^{(t)}-V^{(t)}\right)\right\|_{\mathrm{F}} \\
& \leq\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}-\left\|Q^{* \top}\left(\widetilde{Q}^{(t)}-V^{(t)}\right)\right\|_{\mathrm{F}} \\
&=\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}-\left\|\left(Q_{\mathcal{I}_{1}, *}^{*}\right)^{\top} V_{\mathcal{I}_{1}, *}^{(t)}\right\|_{\mathrm{F}} . \tag{B.28}
\end{align*}
$$

On the other hand, we can easily get the upper bound

$$
\begin{align*}
& \left\|Q^{* \top} \widetilde{Q}^{(t)}\right\|_{\mathrm{F}}=\left\|Q^{* \top} Q^{(t)} R_{2}\right\|_{\mathrm{F}} \leq\left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}} \cdot\left\|R_{2}\right\|_{2} \\
= & \left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}} \cdot\left\|Q^{(t+1)} R_{2}\right\|_{2}=\left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}} \cdot\left\|\widetilde{Q}^{(t)}\right\|_{2} \\
= & \left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}} \cdot\left\|V_{\mathcal{I}, *}^{(t)}\right\|_{2} \leq\left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}} \cdot\left\|V^{(t)}\right\|_{2} \\
= & \left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}}, \tag{B.29}
\end{align*}
$$

where we use the facts that $Q^{(t+1)}$ has orthogonal columns and

$$
\begin{aligned}
& \left\|V_{\mathcal{I}, *}^{(t)}\right\|_{2}=\max _{\|x\|_{2}=1}\left\|x^{\top} V_{\mathcal{I}, *}^{(t)}\right\|_{2} \\
\leq & \max _{\|x\|_{2}=1}\left\|x^{\top} V^{(t)}\right\|_{2}=\left\|V_{2}^{(t)}\right\|_{2}
\end{aligned}
$$

Based on (B.28) and (B.29) we have

$$
\begin{equation*}
\left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}} \geq\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}-\left\|Q_{\mathcal{I}_{1}, *}^{*}\right\|_{2}\left\|V_{\mathcal{I}_{1}, *}^{(t)}\right\|_{\mathrm{F}} \tag{B.30}
\end{equation*}
$$

First of all we want to show the following

$$
\begin{equation*}
\left\|Q_{\mathcal{I}_{1}, *}^{*}\right\|_{2} \leq\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \tag{B.31}
\end{equation*}
$$

which is very intuitive because when $Q^{(t+1)}$ is very close in subspace distance to Q^{*}, the index set \mathcal{I} selected in the thresholding procedure would cover the true row support \mathcal{I}^{*} effectively and the thus index set $\mathcal{I}_{1}=$ $\mathcal{I}^{*} \backslash \mathcal{I}$ must only over rows with very small norm. Hence the norm of $Q_{\mathcal{I}_{1}, *}^{*}$ can be controlled by the subspace distance. To be precise with our reasoning, first notice that

$$
\begin{align*}
& \left\|Q_{\mathcal{I}_{1}, *}^{*}\right\|_{\mathrm{F}}^{2}+\left\|Q_{\mathcal{I}_{2}, *}^{*}\right\|_{\mathrm{F}}^{2}=\left\|Q_{\mathcal{I}^{*}, *}^{*}\right\|_{\mathrm{F}}^{2} \\
= & \left\|Q^{*}\right\|_{\mathrm{F}}^{2} \leq k \cdot\left\|Q^{*}\right\|_{2}^{2}=k \tag{B.32}
\end{align*}
$$

We also have

$$
\begin{align*}
&\left\|\left(Q^{*}\right)^{\top} Q^{(t+1)}\right\|_{\mathrm{F}}=\left\|\left(Q_{\mathcal{I}_{2}, *}^{*}\right)^{\top} Q^{(t+1)}\right\|_{\mathrm{F}} \\
& \leq\left\|Q_{\mathcal{I}_{2}, *}^{*}\right\|_{\mathrm{F}} \cdot\left\|Q^{(t+1)}\right\|_{2}=\left\|Q_{\mathcal{I}_{2}, *}^{*}\right\|_{\mathrm{F}} . \tag{B.33}
\end{align*}
$$

If we combine the two equations (B.32) and (B.33), we have

$$
\begin{gathered}
\left\|Q_{\mathcal{I}_{1}, *}^{*}\right\|_{2} \leq\left\|Q_{\mathcal{I}_{1}, *}^{*}\right\|_{\mathrm{F}} \leq \sqrt{k-\left\|Q_{\mathcal{I}_{2}, *}^{*}\right\|_{\mathrm{F}}^{2}} \\
\leq \sqrt{k-\left\|\left(Q^{*}\right)^{\top} Q^{(t+1)}\right\|_{\mathrm{F}}^{2}}=\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}}
\end{gathered}
$$

which is exactly what we want to show in (B.31). Secondly we also have to give an upper bound for $\left\|V_{\mathcal{I}_{1}, *}^{(t)}\right\|_{\mathrm{F}}$. Following similar arguments in (B.32), we have

$$
\begin{aligned}
& \left\|V_{\mathcal{I}_{1} \cup \mathcal{I}_{2}, *}^{(t)}\right\|_{\mathrm{F}}^{2}+\left\|V_{\mathcal{I}_{3}, *}^{(t)}\right\|_{\mathrm{F}}^{2}=\left\|V_{\mathcal{I}_{1} \cup \mathcal{I}_{2} \cup \mathcal{I}_{3}}^{(t)}\right\|_{\mathrm{F}} \\
\leq & \left\|V^{(t)}\right\|_{\mathrm{F}}^{2} \leq k \cdot\left\|V^{(t)}\right\|_{2}^{2}=k
\end{aligned}
$$

based on which we can show that

$$
\begin{align*}
& k-\left\|V_{\mathcal{I}_{3}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \geq\left\|V_{\mathcal{I}_{1} \cup \mathcal{I}_{2}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \geq\left\|Q^{* \top} V_{\mathcal{I}_{1} \cup \mathcal{I}_{2}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \\
= & \left\|Q^{* \top} V_{\mathcal{I}^{*}, *}^{(t)}\right\|_{\mathrm{F}}^{2}=\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}^{2} . \tag{B.34}
\end{align*}
$$

Besides, we also need the following inequality based on the definition of the thresholding procedure

$$
\begin{align*}
& \frac{1}{\left|\mathcal{I}_{1}\right|}\left\|V_{\mathcal{I}_{1}, *}^{(t)}\right\|_{\mathrm{F}}^{2}=\frac{1}{\left|\mathcal{I}_{1}\right|} \sum_{i \in \mathcal{I}_{1}}\left\|V_{i, *}^{(t)}\right\|_{2}^{2} \\
\leq & \frac{1}{\left|\mathcal{I}_{3}\right|} \sum_{i \in \mathcal{I}_{3}}\left\|V_{i, *}^{(t)}\right\|_{2}^{2}=\frac{1}{\left|\mathcal{I}_{3}\right|}\left\|V_{\mathcal{I}_{3}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \tag{B.35}
\end{align*}
$$

Combining (B.34) and (B.35), and note the fact that $a / b \leq(a+c) /(b+c)$ for $0<a \leq b, c>0$, we have

$$
\begin{align*}
& \left\|V_{\mathcal{I}_{1}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \leq \frac{\left|\mathcal{I}_{1}\right|}{\left|\mathcal{I}_{3}\right|}\left\|V_{\mathcal{I}_{3}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \leq \frac{\left|\mathcal{I}_{1}\right|+\left|\mathcal{I}_{2}\right|}{\left|\mathcal{I}_{3}\right|+\left|\mathcal{I}_{2}\right|}\left\|V_{\mathcal{I}_{3}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \\
= & \frac{s^{*}}{\widehat{s}}\left\|V_{\mathcal{I}_{3}, *}^{(t)}\right\|_{\mathrm{F}}^{2} \leq \frac{s^{*}}{\widehat{s}}\left(k-\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}^{2}\right) . \tag{B.36}
\end{align*}
$$

By the Pythagorean property (B.12), we can derive the upper bound as

$$
\begin{equation*}
\left\|V_{\mathcal{I}_{1}, *}^{(t)}\right\|_{\mathrm{F}} \leq \sqrt{\frac{s^{*}}{\widehat{s}^{*}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \tag{B.37}
\end{equation*}
$$

Finally we can prove the lemma with (B.30), (B.31) and (B.37). Simply putting (B.31) and (B.37) into (B.30), we have

$$
\begin{align*}
\left\|Q^{* \top} Q^{(t+1)}\right\|_{\mathrm{F}} & \geq\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}} \\
& -\sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \tag{B.38}
\end{align*}
$$

By our assumption $\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}<1 / 2$ and (B.12), we have

$$
\begin{align*}
& \left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}=\left\|V^{(t) \top} Q^{*}\right\|_{\mathrm{F}} \\
= & \sqrt{k-\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2}}>\sqrt{k-1 / 2} \\
\geq & \sqrt{k / 2} \geq\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} / \sqrt{2} . \tag{B.39}
\end{align*}
$$

Based on the above equation and $s^{*}<\widehat{s}$, it can be shown that the right-hand side of (B.38) is nonnegative

$$
\begin{aligned}
& \left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}-\sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
& >\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}-\frac{1}{\sqrt{2}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \geq 0
\end{aligned}
$$

where the last inequality follows from (B.39). If we take square of both sides of (B.38), we have

$$
\begin{aligned}
& \left\|Q^{* \top} Q^{(t+1)}\right\|_{\mathrm{F}}^{2} \geq\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}^{2} \\
& -2\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}} \sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
& +\left(\sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}}\right)^{2} \\
& \geq\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}^{2} \\
& -2\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}} \sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}}
\end{aligned}
$$

Again we use the Pythagorean property (B.12) and obtain

$$
\begin{aligned}
& \left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2}=k-\left\|Q^{* \top} Q^{(t)}\right\|_{\mathrm{F}}^{2} \\
\leq & k-\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}}^{2} \\
& +2\left\|Q^{* \top} V^{(t)}\right\|_{\mathrm{F}} \sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
\leq & \left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2} \\
& +2 \sqrt{k} \sqrt{\frac{s^{*}}{\widehat{s}}}\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}}
\end{aligned}
$$

This quadratic inequality implies

$$
\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq\left(1+2 \sqrt{\frac{k \cdot s^{*}}{\widehat{s}}}\right)\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}
$$

B. 7 Proof of Lemma B. 4

First of all we will have to prove that this result holds.
Lemma B.8. For n sufficiently large, and $S^{*} \subseteq \mathcal{I}$, we have

$$
\left\|Q^{* \top} \widehat{Q}(\mathcal{I})^{\perp}\right\|_{\mathrm{F}} \leq C_{1} \cdot \frac{\sqrt{\lambda_{1} \lambda_{k+1}}}{\lambda_{k}-\lambda_{k+1}} \cdot \sqrt{\frac{|\mathcal{I}| \cdot(k+\log d)}{n}}
$$

which holds with probability at least $1-4 /(n-1)-$ $1 / d-6 \log n / n$.

Proof. The proof is an extension from the deviation for main upper bound analysis [41]. The details of the proof can be found in Appendix B of [43].

Now we give the proof of Lemma B.4.
Proof. In this proof we denote $\mathcal{I}_{1}=\mathcal{I} \cup \mathcal{I}^{*}$ as the union of the row-support of Q^{*} and $Q^{(t)}$. Under this notation we have $\left|\mathcal{I}_{1}\right| \leq s^{*}+\widehat{s}$. Besides for sufficiently large n Lemma B. 8 implies that we can assume that $\left\|Q^{* \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}} \leq 1 / 2$.
Since the assumptions of Lemma B. 2 are all satisfied here, we have the result of Lemma B. 2

$$
\begin{align*}
\left\|V^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}} \leq & \frac{\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}^{2}}} \cdot \rho \\
& +\frac{\alpha}{\sqrt{3}(1-\alpha)}, \tag{B.40}
\end{align*}
$$

where $\rho=\gamma /(1-\alpha)$ follows the same notation in Lemma B.2.
Triangle inequality of subspace distance and Lemma B. 8 implies that

$$
\begin{align*}
& \left|\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}}-\left\|Q^{(t+1) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}\right| \\
& \leq\left\|Q^{* \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}} \leq \Psi\left(\left|\mathcal{I}_{1}\right|\right) \tag{B.41}\\
& \left|\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}-\left\|V^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}\right| \\
& \leq\left\|Q^{* \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}} \leq \Psi\left(\left|\mathcal{I}_{1}\right|\right) \tag{B.42}
\end{align*}
$$

Combining equation (B.40) and (B.42) we obtain

$$
\begin{align*}
& \left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq\left\|V^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}+\Psi\left(\left|\mathcal{I}_{1}\right|\right) \\
& \leq \frac{\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}^{2}}} \cdot \rho+\frac{\alpha}{\sqrt{3}(1-\alpha)}+\Psi\left(\left|\mathcal{I}_{1}\right|\right) \tag{B.43}
\end{align*}
$$

Here we define an auxiliary function $f(z)=z / \sqrt{1-z^{2}}$. Since $f(z)$ is convex for $-1<z<1$, we have
$f\left(z_{2}\right)-f\left(z_{1}\right) \leq f^{\prime}\left(z_{2}\right)\left(z_{2}-z_{1}\right)=\left(1-z_{2}^{2}\right)^{-\frac{3}{2}}\left(z_{2}-z_{1}\right)$.
If we have $z_{1}=\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}$ and $z_{2}=$ $\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}$, it follows that

$$
\begin{align*}
& \frac{\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}^{2}}} \leq \frac{\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2}}} \\
& +\Psi\left(\left|\mathcal{I}_{1}\right|\right)\left(1-\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}^{-\frac{3}{2}}\right) \tag{B.44}
\end{align*}
$$

Since we have assumed that $\Psi(2 \widehat{s}) \leq 1 / 24$, equation (B.41) implies that

$$
\begin{aligned}
\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}} & \leq\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}+\Psi\left(\left|\mathcal{I}_{1}\right|\right) \\
& \leq 1 / 2+1 / 24 \leq \sqrt{2} / 2
\end{aligned}
$$

where the last inequality follows from the fact that $\left|\mathcal{I}_{1}\right| \leq \widehat{s}+s^{*} \leq 2 \widehat{s}$. Due to the fact that the function $f(z)$ is increasing, we have

$$
\begin{equation*}
\left(1-\left\|Q^{(t) \top} \widehat{Q}\left(\mathcal{I}_{1}\right)^{\perp}\right\|_{\mathrm{F}}^{-\frac{3}{2}}\right) \leq(1-1 / 2)^{-\frac{3}{2}}<3 \tag{B.45}
\end{equation*}
$$

And thus (B.44) and (B.45) implies an upper bound for the right-hand side of (B.43)

$$
\begin{align*}
\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} & \leq \frac{\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2}}} \cdot \rho+3 \rho \Psi\left(\left|\mathcal{I}_{1}\right|\right) \\
& +\Psi\left(\left|\mathcal{I}_{1}\right|\right)+\frac{\alpha}{\sqrt{3}(1-\alpha)} \tag{B.46}
\end{align*}
$$

Remind that Lemma B. 3 has the following result

$$
\begin{equation*}
\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right)\left\|V^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \tag{B.47}
\end{equation*}
$$

Combining (B.46) and (B.47), we obtain

$$
\begin{align*}
& \left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
& \leq\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) \frac{\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}}{\sqrt{1-\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2}}} \cdot \rho \\
+ & 3 \rho\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) \Psi\left(\left|\mathcal{I}_{1}\right|\right)+\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) \Psi\left(\left|\mathcal{I}_{1}\right|\right) \\
+ & \left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) \frac{\alpha}{\sqrt{3}(1-\alpha)} . \tag{B.48}
\end{align*}
$$

Under our assumption

$$
\widehat{s}=C_{1} \max \left\{\left\lceil\frac{44}{\left(\rho^{-1 / 2}-1\right)^{2}}\right\rceil, 1\right\} \cdot s^{*}
$$

$$
\text { and }\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \min \left\{\sqrt{\left(1-\rho^{1 / 2}\right)}, 1 / 2\right\}
$$

with $C_{1}>1$, we have

$$
\begin{equation*}
1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}} \leq \rho^{-1 / 2}, \quad \frac{1}{\sqrt{1-\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}^{2}}} \leq \rho^{-1 / 4} \tag{B.49}
\end{equation*}
$$

Plugging (B.49) into (B.48) and note that $\left|\mathcal{I}_{1}\right| \leq 2 \widehat{s}$, we obtain

$$
\begin{align*}
& \left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \rho^{1 / 4}\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}+3 \rho^{1 / 2} \Psi(\tag{s}\\
+ & \left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right)\left(\Psi(2 \widehat{s})+\frac{\alpha}{\sqrt{3}(1-\alpha)}\right)
\end{align*}
$$

Since our proof depends on high probability result Lemma B. 6 and Lemma B. 7 in (B.58) and (B.59). The entire proof holds with probability at least

$$
1-2 e^{-\tau^{2} / 2}-4 /(n-1)-1 / d-6 \log n / n-1 / n
$$

B. 8 Proof of Main Theorem

Proof. To simplify notation, we introduce

$$
\omega=\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right)\left(\Psi(2 \widehat{s})+\frac{\alpha}{\sqrt{3}(1-\alpha)}\right)
$$

We will prove by mathematical induction that for $t=$ $2, \ldots, T$,

$$
\begin{align*}
\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} & \leq \rho^{(t-1) / 4}\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
& +\frac{3 \rho^{1 / 2}}{1-\rho^{1 / 4}} \Psi(2 \widehat{s})+\frac{\omega}{1-\rho^{1 / 4}} \tag{B.50}
\end{align*}
$$

First of all we have the assumption for the initial value $Q^{(0)}$

$$
\begin{equation*}
\left\|Q^{(0) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \min \left\{\sqrt{\frac{\rho\left(1-\rho^{1 / 2}\right)}{2}}, \frac{\sqrt{2 \rho}}{4}\right\}<1 \tag{B.51}
\end{equation*}
$$

Based on Lemma B.3, the Initialization step of Algorithm 1 implies that

$$
\begin{equation*}
\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right)\left\|Q^{(0) \top} Q^{* \perp}\right\|_{\mathrm{F}} \tag{B.52}
\end{equation*}
$$

By our assumption on \widehat{s} (B.4), we have

$$
\begin{equation*}
1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}} \leq \frac{1}{\sqrt{\rho}} \tag{B.53}
\end{equation*}
$$

Combining (B.51), (B.52) and (B.53), we have

$$
\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \min \left\{\frac{\sqrt{1-\rho^{1 / 2}}}{2}, \frac{1}{4}\right\}
$$

which means the condition of Lemma B. 4 is satisfied and hence

$$
\begin{aligned}
& \left\|Q^{(2) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \rho^{1 / 4}\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}}+3 \rho^{1 / 2} \Psi(2 \widehat{2})+\omega \\
& \leq \rho^{1 / 4}\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}}+\frac{3 \rho^{1 / 2}}{1-\rho^{1 / 4}} \Psi(2 \widehat{s})+\frac{\omega}{1-\rho^{1 / 4}}
\end{aligned}
$$

Thus we have proved (B.50) holds for $t=2$. Now suppose (B.50) holds for $t \geq 2$, we want to prove that it also holds for the case for $t+1$. We notice that

$$
\begin{align*}
& \rho^{(t-1) / 4}\left\|Q^{(t) T} Q^{* \perp}\right\|_{\mathrm{F}} \leq\left\|Q^{(t) T} Q^{* \perp}\right\|_{\mathrm{F}} \\
\leq & \min \left\{\sqrt{\frac{\left(1-\rho^{1 / 2}\right)}{2}}, \frac{\sqrt{2}}{4}\right\} . \tag{B.54}
\end{align*}
$$

Under the assumption (B.3) and (B.5), we also have

$$
\begin{align*}
& \frac{1}{1-\rho^{1 / 4}}\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right)\left(\Psi(2 \widehat{s})+\frac{\alpha}{\sqrt{3}(1-\alpha)}\right) \\
\leq & \frac{1}{4} \min \left\{\sqrt{1-\rho^{1 / 2}}, \frac{1}{2}\right\}, \tag{B.55}\\
& \frac{3 \rho^{1 / 2}}{1-\rho^{1 / 4}} \Psi(2 \widehat{s}) \leq \frac{1}{4} \min \left\{\sqrt{1-\rho^{1 / 2}}, \frac{1}{2}\right\} . \quad \text { (В. } \tag{B.56}
\end{align*}
$$

Plugging (B.54), (B.56) and (B.55) into the right-hand side of (B.50), we find out that $\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}$ satisfies the condition of Lemma B. 4

$$
\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \min \left\{\sqrt{1-\rho^{1 / 2}}, \frac{1}{2}\right\} .
$$

And thus Lemma B. 4 implies that
$\left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \leq \rho^{1 / 4}\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}}+3 \rho^{1 / 2} \Psi(2 \widehat{s})+\omega$.

If we plug (B.50) into the right-hand side of (B.57), we have

$$
\begin{aligned}
& \left\|Q^{(t+1) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
\leq & \rho^{1 / 4}\left(\rho^{(t-1) / 4}\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}}+\frac{3 \rho^{1 / 2}}{1-\rho^{1 / 4}} \Psi(2 \widehat{s})+\frac{\omega}{1-\rho^{1 / 4}}\right) \\
+ & 3 \rho^{1 / 2} \Psi(2 \widehat{s})+\omega \\
\leq & \rho^{t / 4}\left\|Q^{(1) \top} Q^{* \perp}\right\|_{\mathrm{F}}+\frac{3 \rho^{1 / 2}}{1-\rho^{1 / 4}} \Psi(2 \widehat{s})+\frac{\omega}{1-\rho^{1 / 4}} .
\end{aligned}
$$

By mathematical induction, we know that (B.50) holds for $t=1,2, \ldots, T$. By simply replacing $\Psi(2 \widehat{s})$ by the definition of Ψ, and also noticing the assumption B.4, we have our result

$$
\begin{aligned}
\left\|Q^{(t) \top} Q^{* \perp}\right\|_{\mathrm{F}} & \leq \rho^{t / 4}\left\|Q^{(0) \top} Q^{* \perp}\right\|_{\mathrm{F}} \\
+ & \frac{C_{1}}{1-\rho^{1 / 4}} \frac{\sqrt{\lambda_{1} \lambda_{k+1}}}{\lambda_{k}-\lambda_{k+1}} \sqrt{\frac{k s^{*}(k+\log d)}{n}} \\
& +\frac{\alpha}{\sqrt{3}\left(1-\rho^{1 / 4}\right)(1-\alpha)}\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) \\
& \leq \rho^{t / 4} \min \left\{\sqrt{1-\rho^{1 / 2}}, \frac{1}{2}\right\} \\
& +\frac{C_{1}}{1-\rho^{1 / 4}} \frac{\sqrt{\lambda_{1} \lambda_{k+1}}}{\lambda_{k}-\lambda_{k+1}} \sqrt{\frac{k s^{*}(k+\log d)}{n}} \\
& +\frac{\alpha}{\sqrt{3}\left(1-\rho^{1 / 4}\right)(1-\alpha)}\left(1+2 \sqrt{\frac{k s^{*}}{\widehat{s}}}\right) .
\end{aligned}
$$

Since the proof depends on high probability result Lemma B. 3 and Lemma B.5, our result holds for $t=$ $1,2, \ldots, T$ with probability at least

$$
1-2 T e^{-\tau^{2} / 2}-4 /(n-1)-1 / d-6 \log n / n-1 / n
$$

