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Abstract

Probabilistic programming is becoming an
attractive approach to probabilistic machine
learning. Through relieving researchers from
the tedious burden of hand-deriving inference
algorithms, not only does it enable devel-
opment of more accurate and interpretable
models but it also encourages reproducible
research. However, successful probabilistic
programming systems require flexible, generic
and efficient inference engines. In this work,
we present a system called Turing for flex-
ible composable probabilistic programming
inference. Turing has a intuitive modeling
syntax and supports a wide range of sampling
based inference algorithms. Most importantly,
Turing inference is composable: it combines
Markov chain sampling operations on subsets
of model variables, e.g. using a combination
of a Hamiltonian Monte Carlo (HMC) engine
and a particle Gibbs (PG) engine. This com-
posable inference engine allows the user to eas-
ily switch between black-box style inference
methods such as HMC, and customized infer-
ence methods. Our aim is to present Turing
and its composable inference engines to the
community and encourage other researchers
to build on this system to help advance the
field of probabilistic machine learning.

1 Introduction

Probabilistic model-based machine learning [Ghahra-
mani, 2015, Bishop, 2013] has been used successfully
for a wide range of problems and new applications are
constantly being explored. For each new application,
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however, it is currently necessary first to derive the
inference method, e.g. in the form of variational or
Markov chain Monte Carlo (MCMC) algorithm, and
then implement it in application-specific code. Worse
yet, building models from data is often an iterative
process, where a model is proposed, fit to data and
modified depending on its performance. Each of these
steps is time-consuming, error-prone and usually re-
quires expert knowledge in mathematics and computer
science, an impedance for researchers who are not ex-
perts. In contrast, deep learning methods have bene-
fited enormously from easy-to-use frameworks based on
automatic differentiation that implement end-to-end
optimisation. There is a real potential for automated
probabilistic inference methods (in conjunction with ex-
isting automated optimisation systems) to revolutionise
machine learning practice.

Probabilistic programming languages [Goodman et al.,
2008, Wood et al., 2014, Lunn et al., 2000, Minka et al.,
2014, Stan Development Team, 2014, Murray, 2013,
Pfeffer, 2001, 2009, Paige and Wood, 2014, Murray
et al., 2017] aim to fill this gap by providing a very
flexible framework for defining probabilistic models and
automating the model learning process using generic
inference engines. This frees researchers from writing
complex models by hand and enables them to focus
on designing a suitable model using their insight and
expert knowledge, and accelerates the iterative pro-
cess of model modification. Moreover, probabilistic
programming languages make it possible to implement
and publish novel learning and inference algorithms in
the form of generic inference engines. This enables fair
direct comparison between new and existing learning
and inference algorithms on the same set of problems,
something that is sorely needed by the scientific com-
munity. Furthermore, open problems that cannot be
solved by state-of-the-art algorithms can be published
in the form of challenging problem sets, allowing infer-
ence experts to easily identify open research questions
in the field.

In this work, we introduce a system for probabilistic ma-
chine learning called Turing. Turing is an expressive
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probabilistic programming language developed with
a focus on intuitive modelling syntax and inference
efficiency. The organisation of the remainder of this
paper is as follows. Section 2 sets up the problem and
notation. Section 3 describes the proposed inference
engines and Section 4 describe some techniques used
for the implementation of proposed engines. Section 5
discusses some related work. Section 6 concludes.

2 Background

In probabilistic modelling, we are often interested in the
problem of simulating from a probability distribution
p(θ | y, γ). Here, θ could represent the parameters of
interest, y some observed data and γ some fixed model
hyper-parameters. The target distribution p(θ | y, γ)
arises from conditioning a probabilistic model p(y, θ | γ)
on some observed data y.

2.1 Model as computer programs

One way to represent a probabilistic model is by using a
computer program. Perhaps the earliest and most influ-
ential probabilistic programming system so far is BUGS
[Lunn et al., 2000]. The BUGS language dates back
to 1990’s. In BUGS, a probabilistic model is encoded
using a simple programming language conveniently re-
sembling statistical notations. After specifying a BUGS
model and conditioning on some observed data, Monte
Carlo samples can be automatically drawn from the
model’s posterior distribution. Algorithm 2.1 shows
the generic structure of a probabilistic program.

Algorithm 2.1. A generic probabilistic program.

Input: data y and hyper-parameter γ
Step 1: Define global parameters

θglobal ∼ p(· | γ); (1)

Step 2: For each observation yn, define (local) latent
variables and compute likelihoods

θlocal
n ∼ p(· | θlocal

1:n−1, θ
global, γ) (2)

yn ∼ p(· | θlocal
1:n , θglobal, γ) (3)

where n = 1, 2, . . . , N .

Above model variables (or parameters) are divided

into two groups: θlocal
n denotes model parameters (or

latent variables) specific to observation yn, such as a
mixture indicator for a data item in mixture models,

and θglobal denote global parameters.

Currently there are two main approaches to probabilis-
tic programming. The first approach is based on the
idea that probabilistic programs should only support

the family of models we can perform efficient inference.
Although motivated from a pragmatic point of view,
this approach has leads to a fruitful collection of soft-
ware systems including BUGS, Stan [Stan Development
Team, 2014], and Infer.NET [Minka et al., 2014].

The second approach to probabilistic programming
relaxes constraints imposed by existing inference al-
gorithms, and attempts to introduce languages that
are flexible enough to encode arbitrary probabilistic
models.

2.2 Inference for probabilistic programs

Probabilistic programs can only realize their flexibility
potential when accompanied with efficient inference
engines. To explain how inference in probabilistic pro-
gramming works, we consider the the following HMM
example with K states:

πk ∼ Dir(θ)

φk ∼ p(γ) (k = 1, 2, . . . ,K)

zt | zt−1 ∼ Cat(· | πzt−1) (4)

yt | zt ∼ h(· | φzt) (t = 1, 2, . . . , N)

Here Dir and Cat denote the Dirichlet and Categorical
distribution respectively. The complete collection of
parameters in this model is {π1:K , φ1:K , z1:T }. An effi-
cient Gibbs sampler with the following series of three
steps is often used for Bayesian inference:

Step 1: Sample z1:T ∼ z1:T | φ1:K , π1:K , y1:T ;
Step 2: Sample φk ∼ φk | z1:T , y1:T , γ;
Step 3: Sample πk ∼ πk | z1:T , θ (k = 1, . . . ,K).

2.3 Computation graph based inference

One challenge of performing inference for probabilistic
programs is about how to obtain the computation graph
between model variables. This is in contrast with
graphical models, where the dependence structure (or
computation graph) is normally static and known ahead
of time. For example, consider variables in the HMM
model, the chain z1, z2, . . . , zT is dependent, while other
variables are independent given this chain. However,
when the HMM model is represented in the form of
a probabilistic program (i.e.θ = {π1:K , φ1:K , z1:T }, cf
Algorithm 2.1), we no longer have the computation
graph between model parameters.

For certain probabilistic programs, it is possible to
construct the computation graph between variables
through static analysis. This is the approach taken by
the BUGS language [Lunn et al., 2000] and infer.NET
[Minka et al., 2014]. Once the computation graph
is constructed, a Gibbs sampler or message passing
algorithm [Minka, 2001, Winn and Bishop, 2005] can
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Sampler
Support discrete
variables?

Require gradients? Require adaption?
Support universal
programs?

Composable MCMC
operator?

HMC No Yes Yes No Yes
NUTS No Yes Yes No Yes
IS Yes No No Yes No
SMC Yes No No Yes No
PG Yes No No Yes Yes
PMMH Yes No No Yes Yes
IPMCMC Yes No No Yes Yes

Table 1: Supported Monte Carlo algorithms in Turing (v0.4).

be applied to each random node of the computation
graph. However, one caveat of this approach is that the
computation graph underlying a probabilistic program
needs to be fixed during inference time. For programs
involving stochastic branches, this requirement may
not be satisfied. In such cases, we have to resort to
other inference methods.

2.4 Hamiltonian Monte Carlo based
inference

For the family of models whose log probability is point-
wise computable and differentiable, there exists an
efficient sampling method using Hamiltonian dynamics.
Developed as an extension of the Metropolis algorithm,
Hamiltonian Monte Carlo [Neal et al., 2011, HMC] uses
Hamiltonian dynamics to produce minimally correlated
proposals. Within HMC, the slow exploration of the
state space, originating from the diffusive behavior of
MH’s random-walk proposals, is avoided by augmenting
the state space of the target distribution p(θ) with a
d-dimensional vector r. The resulting joint distribution
is as follows:

p(θ, r) = p(θ)p(r), p(r) = N (0, ID) (5)

HMC operates through alternating between two types
of proposals. The first proposal randomizes r (also
known as the momentum variable), leaving the state θ
unchanged. The second proposal changes both θ and r
using simulated Hamiltonian dynamics as define by

H(θ, r) = E(θ) +K(r) (6)

where E(θ) ≡ − log p(θ), K(r) is a ‘kinetic energy’
such as K(r) = rT r/2. These two proposals would
produce samples from the joint distribution p(θ, r).
The distribution p(θ, r) is separable, so the marginal
distribution of θ is the desired distribution p(θ). Hence,
we can obtain a sequence of samples for θ by simply
discarding the momentum variables r.

The limitation of HMC is that it cannot sample from
distributions that are not differentiable, or involving dis-
crete variables. Probabilistic programming languages

with stochastic branches [Goodman et al., 2008, Mans-
inghka et al., 2014, Wood et al., 2014], such as con-
ditionals, loops and recursions, poses a substantially
more challenging Bayesian inference problem because
inference engines have to manage varying number of
model dimensions, dynamic computation graph and so
on.

2.5 Simulation based inference

Currently, most inference engines for universal proba-
bilistic programs (those involving stochastic branches)
use forward-simulation based sampling methods such
as rejection sampling (RS), sequential Monte Carlo
(SMC), and particle MCMC [Andrieu et al., 2010].
Goodman et al. [2008] first proposed to use RS to
performance inference in universal probabilistic pro-
gramming languages. Although mathematically sound,
RS is notorious for its poor performance in high di-
mensional problems. Wood et al. [2014] were first to
use SMC and particle MCMC to sample from complex
target (posterior) distributions defined by universal
probabilistic programs. The key to this application of
particle MCMC is to note that a probabilistic program
implicitly defines a high-order Markovian state space
model, with a potentially unbounded order of depen-
dency between model variables. It is worth noting that
in order to simplify implementation, almost all existing
implementations of these sampling algorithms use the
(conditional) prior as proposals.

3 Composable MCMC inference

Our proposed composable inference method makes use
of the HMC algorithm in Section 2.4 and the particle
Gibbs (PG) algorithm in Section 2.5. In order to de-
scribe the proposed method for probabilistic programs,
we consider Latent Dirichlet Allocation (LDA) as a
working example.

Algorithm 3.1. Turing code for the LDA model.
@model lda(K,M,N,w,d,β,α) = begin

θ = Vector{Vector{Real}}(M)
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for m = 1:M

θ[m] ∼ Dirichlet(α)
end

φ = Vector{Vector{Real}}(K)

for k = 1:K

φ[k] ∼ Dirichlet(β)
end

z = tzeros(Int, N)

for n = 1:N

z[n] ∼ Categorical(θ[d[n]])
w[n] ∼ Categorical(φ[z[n]])

end

end

In algorithm 3.1, variables θ, φ and z denote model
parameters, variables K,M, N, d, β and α denote hyper-
parameters and w denote observed data. Once a model
is defined, providing data and performing inference is
intuitive.

model = lda(K,V,M,N,w,d,β,α)
sample(model, engine)

Here model is the variable name referencing a instanti-
ated model with data, engine is an MCMC engine that
we want to use. For example, in order to run a particle
Gibbs algorithm to sample all model parameters, we
could use:

spl = PG(n,m)

sample(model, spl)

This would run a PG sampler with n particles for m
iterations. Alternatively, if we want to run a blocked
Gibbs sampler on the LDA model in Turing, we could
use:

spl2 = Gibbs(1000,PG(10,2,:z),HMC(2,0.1,5,:φ,:θ))
sample(model, spl2)

It is worth noting that in the spl2 engine we have
split model variables into two subsets and assigned
these subsets to two samplers PG and HMC. In gen-
eral, we could split of variables in many different ways.
In engine spl, we split them according to whether a
parameter is differentiable w.r.t. to the target distribu-
tion so that we can run a HMC engine on variable θ
and φ, and a PG engine on variable z.

In this work, we assume the split of these variables is
performed manually by users and fed to the inference
engine. It is worth pointing out the split of variables
does not need to be mutual exclusive (i.e. we can
split parameters into overlapping subsets) as long as
the union of all subsets contains all model parameters.
Given a split, we can sample the variables in a series
of MCMC steps, e.g.:

Step 1: Sample z using a particle Gibbs sampler

z ∼ z | θ, α, β,K, V,M,N,w, d (7)

Step 2: Sample θ using a Hamiltonian Monte Carlo
sampler

θ ∼ θ | z, α, β,K, V,M,N,w, d (8)

In general, even in cases where we can sample all model
parameters using the same engine, splitting variables
could be beneficial. For example, we could split model
parameters in several subsets, and run a separate HMC
engine with a different configuration on each subset of
parameters: Gibbs(HMC(:θ1), HMC(:θ2). Such split
HMC algorithm could be helpful for faster exploration
of target distributions at low computation cost in lo-
gistic regression [Neal et al., 2011].

3.1 A family of MCMC operators

Turing supports a wide range of sampling algorithms
include Hamiltonian Monte Carlo, particle Gibbs, No-
U-Turns, particle Marginal MH, and interactive particle
MCMC (see Table 1). Each algorithm can be used as a
component algorithm for building a desirable MCMC
algorithm.

Importantly, the HMC are implemented in a generic
way such that they support models with dynamic di-
mensions, constrained variables (e.g. truncated Gaus-
sian) and vectorized computation of certain indepen-
dent random variables. We also implemented the NUTS
variant of HMC. Some further implementation details
are presented in section 4.2. Below we show a few
example engines built using these MCMC operators.

• Gibbs(HMC(stepSize, nLeapfrog, :θ),
PG(nParticle, nIter, :z))
• Gibbs(NUTS(stepSize, nLeapfrog, :θ, :z),
PG(nParticle, nIter, :z))
• Gibbs(PMMH(SMC(nParticles, :z), :θ),
HMC(stepSize, nLeapfrog, :θ, :z),
PG(nParticle, nIter, :z))

One advantage of composing MCMC algorithms is that
it can combine the flexibility and efficiency of different
sampling methods. For example, particle Gibbs is a
generic sampler that can be applied to arbitrary pro-
grams including those with stochastic branches, while
HMC is a sampler that is most efficient when sampling
differentiable model parameters. HMC alone is not a
valid inference algorithms for programs with discrete
variables, but when used together with PG, we have
both the universality of PG and efficiency of HMC.
Furthermore, new samplers can be straightforwardly
implemented in Turing. In fact, some MCMC opera-
tors are already contributed by community developers,
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such as PMMH [Andrieu et al., 2010] and IPMCMC
[Rainforth et al., 2016] in Table 1.

4 Implementation and Experiments

4.1 The Turing library

Turing is implemented as a library for the Julia lan-
guage. Turing models are defined by normal Julia
programs supported by two probabilistic operations:
‘assume’ and ‘observe’. Both of these operations are
indicated by the tilde operator, e.g. x ∼ Normal(0, 1),
where the left hand side is a variable name and the right
hand side is a distribution. Distributions are declared
in their standard mathematical form, e.g. Normal(0, 1)
or Beta(2, 3).

Since Turing programs are normal Julia programs,
they can utilize the rich numerical and statistical li-
braries of Julia. For example, the distributions pack-
age provides a comprehensive collection of probability
functions. The forward mode automatic differentia-
tion library supports all continuous distributions found
within Julia’s distribution package.

4.1.1 Efficient particle Gibbs implementation

One critical implementation detail about particle Gibbs
engine is the duplication of particles during the resam-
pling step of SMC. We define running program states
as the sequence of memory states (ie (θ, z1:N )) that
arises during the sequential execution of probabilistic
programs. Monte Carlo based inference engines op-
erates on the space of program states, and requires
manipulating (e.g. fork, discard or mutate) program
states to implement certain operations such as accept-
ing/rejecting MCMC proposals or resampling SMC
particles.

We use coroutine for implementing particle Gibbs.
Coroutines can be viewed as a generalization of a func-
tions, with the property that they can be suspended
and resumed at multiple points. In essence coroutines
are a lightweight tool for designing programs in terms
of several interacting processes without introducing
the overhead or concurrency problems associated with
running multiple processes simultaneously.

4.1.2 Automatic differentiation

Simulating Hamiltonian dynamics for the HMC step re-
quires the gradient of log p(θ | z1:N , γ). These gradients
can be obtained automatically when given a computer
program defining log p(θ | z1:N , γ), through automatic
differentiation (AD) techniques [Baydin et al., 2015].
In this work, we first make use of a technique called
vector mode forward differentiation for its simplicity

and efficiency. The main concept behind the vector
mode forward differentiation is the multidimensional
dual number, whose behavior on scalar functions is
defined by:

f(θ +

D∑
i=1

yiεi) = f(θ) + f ′(θ)

D∑
i=1

yiεi (9)

where εiεj = 0 for i 6= j (i, j = 1, . . . , D). Through
storing more ε components we can perform a vector
forward-mode implementation of the AD algorithm
developed by Khan and Barton [2015].

More generally, for n input vector of length D and a
chunk size N , it takes dDN e passes through function
f to compute grad f(θ). So, using bigger chunk size
N reduces the passes through f , but at the cost of
additional memory.

Vector mode forward AD is very efficient for small
models (e.g. models with less than 50 parameters).
However, when models get bigger, reverse mode AD
becomes more efficient since it only requires evaluat-
ing the target function once (probability distribution
functions have only one output). For these reasons,
Turing supports both forward mode and reverse mode
AD. Since the AD implementations used by Turing are
generic, any Julia library can straightforwardly make
their function differentiable through very minimal or
no changes of its code. This means any Julia library
can make uses of Turing’s MCMC engines1.

4.1.3 Vectorized random variables

Turing also supports vectorized sampling for i.i.d vari-
ables using the following syntax:

rv = Vector(10)

rv ∼ [Normal(0, 1)]

Here rv is defined as a vector with each element fol-
lowing a Normal distribution.

Underlying this vectorized random variable syntax,
Turing calls the corresponding random number gener-
ator that generates multiple random numbers or evalu-
ates the density on multiple inputs, in parallel. This
vectorization feature can substantially speed-up run-
time of probabilistic models with i.i.d. variables, which
are common in probabilistic modeling.

1Supplementary materials contain a notebook,
diff-eq.ipynb illustrating how to use Turing in conjunc-
tion with DifferentialEquation.jl to perform Bayesian
inference on the parameters of a differential equation when
given noisy observations.
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Figure 1: Trace plot of 50,0000 samples from a mixture of Gaussian (top) and the log joint-probability for 10,000
iterations of the SV models run by NUTS and Gibbs engines (bottom). Here NUTS, for both examples, uses
10,000 iterations to adapt the step-size; PG-as-Gibbs-component uses 5 particles for the GMM example and 50
for the SV model. Note that thinning is performed here in Gibbs, i.e. intermediate samples within Gibbs steps
are dropped, for the SV model, but is disabled, i.e. intermediate PG and HMC samples are collected, for the
mixture example.

4.1.4 Constrained random variables

Random variables can follow particular distributions
with constrained support. Before performing any MH
based sampling algorithm (like HMC) on models con-
taining such constrained variables, Turing transforms
them into un-constrained Euclidean space.

More specifically, there are three types of constraints.
The first constraint type contains univariate random
variables with bounds, e.g. random variables that follow
a Gamma distribution are positive, or those following
a Beta distribution are between 0 and 1. The second
constraint type includes multivariate variables with
simplex constraints, i.e. elements of the vector should
sum up to 1. A typical example is the Dirichlet dis-
tribution. Finally the third type of constraints comes
from matrix-variate distributions. For instance, ran-
dom variables following a Wishart distribution should
be positive-definite.

4.1.5 MCMC output analysis

In Turing, the following statistics for each MCMC
chain can be calculated by calling the describe func-
tion: 1) mean, 2) standard deviation, 3) naive standard
error, 4) Monte Carlo standard error (MCSE), 5) ef-
fective sample size (ESS), and 6) quantiles of 2.5%,
25.0%, 50.0%, 75.0% and 97.5%. In addition to these
basic quantities, highest posterior density intervals can
be computed by hpd, cross-correlations by cor, lag-
autocorrelations by autocor, state space change rate
(per iteration) by changerate and deviance informa-
tion criterion by dic.

4.2 Finding the right inference engine

To demonstrate how to explore different inference en-
gines for a certain model, we performed an illustrative
comparison of the NUTS and Gibbs(PG, HMC) engine
on several probabilistic models. We only report two
scenarios that we found to be challenging for the NUTS
engine to perform well. The models used together with
inference engine configuration are briefly described in
the coming section. Full code to reproduce the results
is provided as supplementary material.

4.2.1 Models and inference engine setup

Stochastic Volatility Model: the collection of pa-
rameters is {φ, σ, µ, h1:N}. All these parameters are
differentiable with respect to the target distribution,
so the NUTS algorithm is directly applicable.

µ ∼ Ca(0, 10)), φ ∼ Un(−1, 1), σ ∼ Ca(0, 5), (σ > 0)

h1 ∼ N (µ, σ/
√

1− φ2), hn ∼ N (µ+ φ(hn−1 − µ), σ)

yn ∼ N (0, exp(hn/2)) (n = 2, 3, . . . , N).

(10)

Here Ca and Un denote the Cauchy and Uniform dis-
tribution respectively. In our experiments, we use the
following inference engines

spl1 = NUTS(1e4, 1e3, 0.65)

spl2 = Gibbs(1e4, PG(5, 1, :h),

NUTS(1,1e3,0.65,:µ,:φ,:σ))

More specifically, for NUTS 1000 adaption steps are
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Figure 2: Density estimation of 50,000 samples from a GMM with 5 Gaussian components by NUTS and Gibbs.
Here each Gibbs step consists of a PG step using 5 particles, and an NUTS step with 500 iterations. Bars are
normalized histogram of samples and the solid line is the exact density of the underlying GMM.

used for warm-up, 0.65 is the adaption target for dual
averaging.

Gaussian Mixture Model: the collection of param-
eters of interest is {z, θ}, where parameter θ is differen-
tiable, parameter z is not. To run the NUTS algorithm,
we integrate out z and sample θ only.

µ = (µ1:K), σ = (σ1:K), π = (p1:K)

z ∼ Cat(π), θ ∼ N (µz, σz)
(11)

We use the following inference engines:

spl3 = NUTS(5e4, 1000, 0.65)

spl4 = Gibbs(5e4,PG(5,1,:z),

NUTS(5e2,1e3,0.65,:θ))

In this group of experiment, the above GMM model
with different sets of parameters are used: the first
GMM model has 5 mixtures that are close to each
other, while the second as well separated mixtures,
each covering a small region of the sampling space.
For each GMM, we collect 10, 000 samples using using
either the Gibbs or the NUTS engine.

4.2.2 Results

Figure 1 shows a trace of parameter θ for GMM model
(top), and a trace of the samples’ log-likelihoods for
the SV model (bottom). Figure 2 shows the estimated
histogram for each engine together with the exact den-
sity. For the SV model, the trace shows that NUTS

and Gibbs(PG, HMC) engine have converged to simi-
lar values of log-likelihoods. However, for the GMM
model, the NUTS engine seem get stuck in some modes
of the target distribution, as shown in the top panel of
fig. 1. This behavior can also be seen from the samples
histogram in fig. 2. The NUTS engine only explores 2
modes for the GMM whose components are far from
each other, while leaving the other 3 modes unidenti-
fied. The Gibbs engine seems to successfully explore
all high probability regions.

4.3 A simple runtime comparison between
Stan and Turing

Table 2 shows some illustrative benchmarking results
between Turing and Stan, using the same HMC algo-
rithm on a variety of popular machine learning models2.
Overall, Turing is between 0.7 to 20 times slower than
Stan. In general, these runtime numbers are very sensi-
tive to specific model implementations: the same LDA
model can be implemented in several different ways in
Turing, because in Turing a user can use all language
features and numerical capabilities from Julia. After
trying a few different implementations for LDA, we
could find a version that is substantially faster than
others. In fact, the fastest version is faster then the cor-
responding high optimized Stan implementation. We
believe that this is an important advantage of building a
probabilistic programming system through embedding

2This benchmark can be reproduced using the script in
the benchmark folder of Turing’s repository.
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Table 2: Runtime comparison between Turing vs Stan using the same HMC sampling algorithm. For Turing,
both forward mode (F) and reverse mode (R) are used. For Stan, only reverse mode AD is used. Ratio (R) is the
runtime ratio between reverse mode Turing and reverse mode Stan, while Ratio (F) is the runtime ratio between
forward mode Turing and reverse mode Stan. For models with more than 100,000 dimensions, we were unable to
run HMC with forward AD. These runtime numbers should not be considered as serious benchmarking results
since the runtime is highly model and implementation dependent.

Model Dimensionality
Time (R)

Ratio (R) Ratio (F)
Turing (s) Stan (s)

High-dimensional Gaussian 100,000 351.4 ± 15.06 90.31 ± 0.23 4.38 —
Latent Dirichlet Allocation 550 156.8 ± 7.79 205.3 ± 2.41 0.76 7.74
Naive Bayes 400 630.4 ± 2.65 37.27 ± 0.42 16.91 152.21
Stochastic Volatility 100,003 12.04 ± 0.65 0.58 ± 0.02 20.87 —
Hidden Markov Model 275 274.97 ± 2.97 21.85 ± 0.09 12.58 324.67

in a high performance general-purpose programming
language than creating new languages which are often
limited by language features and numerical capabilities.

5 Related Work

The closest related work to composable inference is that
of Mansinghka et al. [2014] and Zinkov and Shan [2016],
which share the goal of composing MCMC algorithms
for probabilistic inference. Our particle Gibbs engine
is a new implementation of Wood et al. [2014], Paige
and Wood [2014], but with a more efficient mechanism
(coroutines) for representing particles. In addition, our
particle Gibbs could be used in conjunction with other
inference engines including HMC.

We purposely designed Turing’s syntax to be similar to
BUGS [Lunn et al., 2000] and Stan [Gelman et al., 2015],
however Turing is more expressive than BUGS and
Stan because it supports stochastic branches. More-
over, Turing has a much smaller code base because
many functionalities of Turing, such as automatic–
differentiation and probability functions are based on
Julia’s rich numerical capacities.

6 Conclusion

In this work we have presented a machine learning
language that supports flexible composable probabilis-
tic inference. The proposed language supports a wide
range of basic Markov chain sampling algorithms. Some
of these sampling algorithms can be used as black-box
style inference methods while others can be used as part
of a composed inference engine. In order to illustrate
the utility of the proposed language, we empirically
compared several inference engines for several popular
machine learning models.

In particular, we compared a HMC engine that im-
plements the NUTS algorithm [Hoffman and Gelman,

2014], and a Gibbs engine, which samples model param-
eters through iterating a series of particle Gibbs and
HMC updates. The Gibbs engine, although motivated
to sample model parameters that are not differentiable
w.r.t. the target distribution, turns out to be a helpful
complement for the HMC engine for sampling target
distributions with isolated modes. Another advantage
of the composed Gibbs engine is that it can be universal,
i.e. applicable to arbitrary probabilistic models includ-
ing those involving discrete variables and stochastic
control flows.

Furthermore, the current Gibbs engine implementation
in Turing is suboptimal and requires a full sweep of
the model function in order to update one variable.
This inefficiency can be addressed by leveraging dy-
namic computational graphs to explicitly represent
dependency relationships between model variables. We
leave this development and application as an avenue
for future work.
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