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Appendix A Detailed Proofs

Proof of Lemma 1 (Minimum eigenvalue of population Hessian).
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A little calculation shows that the double derivative of `(x;✓0
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where F 0
(a) is the derivative of F (t; a) with respect to t. Since F (t; a) is a linear function of t, F 0
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Proof of Lemma 2 (Minimum eigenvalue of finite sample Hessian).
To simply notation in the proof we will denote S

i

by S. The (j, k) block of H(D;✓
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i

, can
be written as:

H
j,k

(D;✓
S

) =

n

X

l=1

X

a2Ai

�i

(a,x
(l)

�i

;✓
S

)f i,j(a, x
(l)

j

)(f i,k(a, x
(l)

k

))

T

| {z }

Bj,k(D;✓S)

�
n

X

l=1

X

a,b2Ai

�i

(a,x
(l)

�i

;✓
S

)f i,j(a, x
(l)

j

)f i,k(b, x
(l)

k

)

T

| {z }

Rj,k(D;✓S)

,

where the matrices B and R have been defined above (blockwise). Since the matrix R is positive semi-definite
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Setting � =

1/2 we get:
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Controlling the probability of error to be at most � we obtain the lower bound on the number of samples.

Proof of Lemma 3 (Gradient bound).
A simple calculation shows that
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where �i

(·) has been defined in (12). Let g(x(1), . . . ,x(n)

) = (g
j

(x(1), . . . ,x(n)

))

j2{0}[Ni
, where g

j

(·) =

k 1

n

P

n

l=1

@ `

i
(x

(l)
;✓i

)

@✓i,j k
2

. Then kg(·)k1 = krLi

(D;✓i

)k1,2

and kE
x

[g(·)]k1 = kE
x

⇥r`i(x;✓i

)

⇤k1,2

= ⌫. Then,
for any x(l) 6= x(l)

0
we have that:

|g
j

(x(1), . . . ,x(l), . . . ,x(n)

)� g
j

(x(1), . . . ,x(l)

0
, . . . , g

j

(x(n)

)|

=

1

n

�

�

�

�

�

f i,j(x
(l)

0

i

, x
(l)

0

j

)� f i,j(x
(l)

i

, x
(l)

j

) +

X

a2Ai

�i

(a,x
(l)

�i

;✓i

)f i,j(a, x
(l)

j

)� �i

(a,x
(l)

0

�i

;✓i

)f i,j(a, x
(l)

0

j

)

�

�

�

�

�

2

 1

n

⇣

2 +

X

a2Ai

(�i

(a,x
(l)

�i

;✓i

))

2

+ (�i

(a,x
(l)

0

�i

;✓i

))

2

⌘1
/2

 1

n
(2 + 2)

1
/2

=

2/n,

where in the last line we used the fact that
P

a
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(a, ·) = 1 along with the Cauchy-Schwartz inequality. Then
using the McDiarmid’s inequality we have:
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where in the third line we used the reverse triangle inequality. Setting the probability of error to be � and solving
for t, we prove our claim.

Proof of Lemma 4 (Minimum population eigenvalue at arbitrary parameter).
To simply notation in the proof we will denote S
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where ✓̄ = t✓i
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Thus, A(x;✓) = B(x;✓)�R(x;✓), where the matrices B and R have been defined above (block-wise). Observe
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Putting together (21), (22), (23) and (24) we get
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Proof of Lemma 5 (Error of the i-th estimator on the support set).
To simplify notation in the proof, we will write S instead of S

i

. Recall that Li

(D;✓) is the empirical loss for
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which takes the value 0 at the true parameter ✓i, i.e., eF (0) = 0. Let b�
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Putting together (25), (26) and (27) we get:
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Finally, coming back to our assumption that b  2Cmin/(m2
(di+1)), it is easy to show that the assumption holds if

the regularization parameter � satisfies:

�  C2

min

3m2

(d
i

+ 1)

2

,

The lower bound on the number of samples is obtained by ensuring that the lower bound on � is less than the
upper bound. The final claim follows from using the high probability bound on krL(✓i
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Proof of Lemma 6 (Error of the i-th parameter estimator).
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write L(✓) instead of Li
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Y =



xT

1

Xx
1

xT

1

Xx
2

xT

2

Xx
1

xT

2

Xx
2

�

2 R2⇥2.
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Note that xT

1

Xx
1

 �
max

(X
1,1

) and xT

2

Xx
2

 �
max

(X
2,2

) for all x. Thus, using the variational characterization
of the maximum eigenvalue of X we get:

�
max

(X) = max

kxk2=1

xTXx

= max

{c=(kx1(x)k2,kx2(x)k2) : kxk2=1}
cTYc

 max

kck2=1

cTYc = �
max

(Y)  Tr (Y) (since Y is positive semi-definite)

 �
max

(X
1,1

) + �
max

(X
2,2

),

where the third line follows from the fact that the maximization is over a superset of the set {c =

(kx
1

(x)k
2

, kx
2

(x)k
2

) : kxk
2

= 1}.

Appendix B Details of Synthetic Experiments

We generated random polymatrix games G by first generating random graphs over p players with degree exactly d,
and number of pure strategies m = 3 per player. For each edge (i, j) in the graph, we set the payoffs as follows:

ui,i

(a) = 0 (8a 2 [3])

ui,j

(a, b) ⇠ N (0, 2) (8a 2 [2] ^ b 2 [3])

ui,j

(3, b) = 0 (8b 2 [3])

We then generated a data set D from the game using the local noise model (5), with the noise parameter
q
i

= 0.6 for all i 2 [p]. We then used our method to learn a game bG from the data set D, and computed
1
h

NE(bG) = NE(G)
i

. We then estimated the probability of successful PSNE recovery, Pr
n

NE(bG) = NE(G)
o

,
across 40 randomly sampled polymatrix games. Figure 1 plots the probability of successful PSNE recovery as the
number of samples is varied as n = 10

c

(d+ 1)

2

log(

2p(d+1)/�) and for various values of d 2 {1, 3, 5}, with c being
the control parameter and � = 0.01.

Appendix C Experiments on real-world data

We validated our method on three publicly available real-world data sets containing (a) U.S. supreme court
justices rulings, (b) voting records of senators from the 114th U.S. congress, and (c) roll-call votes in the U.N.
General Assembly. We present evaluations of our method for each of the data set below.

C.1 Supreme court voting records

We analyzed two data sets of supreme court rulings: the first data set contains rulings of 9 justices across 512 cases
spanning years 2010 to 2014, while the second data set contains rulings of 8 justices across 75 cases from year 2015
onwards 3. We pre-processed the data, according the available code book, to map the vote of each justice, which
was originally an integer between 1 to 8, to an integer between 1 to 3. Votes {1, 3, 4, 5} were mapped to 1 and was
interpreted as “voting with majority”, votes {6, 7, 8} were mapped to 2 and was interpreted as “not participating
in the decision” , while vote 3 was mapped to 2 and was interpreted as “dissent”. Thus, after pre-processing, each
justice’s vote was an integer between 1 to 3, with 1 corresponding to majority, 2 corresponding to abstention, and
3 corresponding to dissent.

After pre-processing the data, we learned a polymatrix game over supreme court justices using our algorithm.
The regularization parameter � was set according to Theorem 1 with reasonable values for different unknown
population parameters. A more principled way to chose the regularization parameter � is to assume a specific
observation model, for instance, the global or local noise model, and then using crossvalidation to maximize the
log-likelihood. The game graphs are shown in Figure 2 and the PSNE sets are shown in Table 1 for the two
supreme court rulings data sets (years 2010-2014 and year 2015 onwards).

3
All the data sets are publicly available at http://scdb.wustl.edu.

http://scdb.wustl.edu
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From 2 it is clear that our method recovers the well-established ideologies of the supreme court justices. This is
especially evident for the graph learned from the first data set — there are two strongly connected components
corresponding to the conservative and liberal bloc within the supreme court. The PSNE set recovered by our
algorithm is also quite revealing. In both the data sets, a unanimous vote of 1 is a Nash equilibrium. Justice
Kennedy, who has a moderate jurisprudence, always votes with the majority in the PSNE set. Further, strategy
profiles where the conservative blocs and liberal blocs vote unanimously but dissent against each other are also
in the PSNE set. In the second data set, there is a strongly connected component between the justice Kagan,
Kennedy, and Breyer — this also bears out in the corresponding PSNE set where the strategies of the three
justices are identical.

To compute the price of anarchy (PoA), we shifted all the payoff matrices by a constant to make the payoffs
non-negative. Note that this does not change the PSNE set of the game. The price of anarchy was computed
to be the ratio between the maximum welfare across all strategy profiles and the minimum welfare across all
strategy profiles in the PSNE set. The PoA for the two data sets were, respectively, 1.9104 and 1.6115.

Roberts

Scalia

Kennedy

Thomas

Ginsburg
Breyer

Alito

Sotomayor
Kagan Roberts

Kennedy

Thomas

Ginsburg

Breyer

Alito

Sotomayor

Kagan

Figure 2: The graphical game recovered from supreme court rulings data set 1 (years 2010-2014) on the left, and
data set 2 (year 2015 onwards) on the right. Justice Thomas, Scalia, Roberts and Alito are widely known to be
conservative and are denoted by the color | | , while Justice Breyer, Kagan, Sotomayor and Ginsburg, who are

known to have a more liberal jurisprudence, are denoted by color | | . Justice Kennedy, who has a reputation of

being moderate, is denoted by the color | | . The game graph was generated by adding all edges (i, j) if the
corresponding payoff matrix ui,j was not all zeros. The average “influence” from j to i was calculated as the mean
absolute payoff, i.e., 1

6

P

3

a=2

P

3

b=1

|ui,j

(a, b)|. The thickness of the edge denotes this influence of player j on i.
Only the top 50% of the edges, in terms of influence, are shown.

|Thomas| |Scalia| |Alito| |Roberts| |Kennedy| |Breyer| |Kagan| |Ginsburg| |Sotomayor|
1 1 1 1 1 1 1 1 1
1 1 1 1 1 3 3 3 3
2 2 2 2 1 2 2 2 2
3 3 3 3 1 1 1 1 1
3 3 3 3 1 3 3 3 3

|Thomas| |Alito| |Roberts| |Kennedy| |Breyer| |Kagan| |Ginsburg| |Sotomayor|
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
2 2 2 2 2 2 3 3
3 3 3 2 2 2 3 3

Table 1: The PSNE set learned from supreme court rulings data sets 1704 (top) and 1705 (bottom) respectively.
Colors represent |conservative| , |liberal| , and |neutral| justices respectively. The price of anarchy for the
two data sets was computed to be 1.9 and 1.6 respectively.
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C.2 Senate voting records

We analyzed U.S. congressional voting records for the second session of the 114th congress (January 4, 2016 to
January 3, 2017) 4. The data set comprised of the votes of 100 senators on 63 bills. The votes were pre-processed
to take one of the three values: 1 (“yes”), 2 (“abstention”), and 3 (“no”). After pre-processing the data set we ran
our algorithm to recover a polymatrix game from congressional voting records. Figure 3 shows the recovered
game graph. Once again our method recovers the connected components corresponding the republicans and
democrats. Interestingly, the connected components also have a nice geographic interpretation, for instance, the
graph groups senators from Idaho, New Mexico, New York and midwestern states in their respective connected
components. Strategy profiles where the overwhelming majority of senators in a connected component vote “yes”
are in equilibria.
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Cardin Casey
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Ernst

FeinsteinFischer

Grassley Hatch
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Hirono

Hoeven

Isakson

King

Klobuchar
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Moran

Murphy

Murray

Peters

Portman
Reed

Risch
Roberts

Rounds

Schatz

Schumer

Shaheen

Stabenow

Thune

Tillis

Udall

Whitehouse

Wicker
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SD
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NC
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Figure 3: The game graph learned from 114th U.S. congressional voting records. Only nodes with degree greater
than one are shown. Colors represent the following: |Democrat| , |Republican| , |Independent| . The
graph on the right shows the states that the senators belong to. The thickness of the edges denote the amount of
influence, computed as the mean absolute payoff, between the senators. Only nodes with degree at least 1 are
shown.

|Baldwin| |Bennet| |Blumenthal| |Cardin| |Casey| |Coons| |Feinstein| |King| |Klobuchar| |Peters| |Shaheen| |Stabenow|
1 1 1 1 1 1 1 1 1 1 1 1

|Cochran| |Roberts| |Rounds| |Wicker|
1 1 1 1

|Fischer| |Hoeven| |Moran| |Thune|
1 1 1 1
3 3 3 3

|Hirono| |Reed| |Schumer| |Whitehouse|
1 1 1 1
3 3 3 3

|Blunt| |Boozman| |Burr| |Capito| |Cassidy| |Coats| |Corker| |Cornyn| |Daines| |Ernst| |Grassley| |Hatch| |Isakson| |McCain| |McConnell| |Portman| |Tillis|
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1
1 3 3 3 1 3 3 3 1 1 3 3 1 3 3 1 3
3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1
3 3 3 3 1 3 3 3 1 1 3 3 1 3 3 2 3
3 3 3 3 1 3 3 3 1 1 3 3 1 3 3 3 3

Table 2: The PSNE set for the major connected components in the game graph learned from congressional voting
records. The combined number of Nash equilibria computed across senators with degree at least 1 was 144 and
the price of anarchy was computed to be 2.6297.

C.3 United Nations voting data

In our final real-world experiment we analyzed roll-call votes in the U.N. General Assembly. The data set
4
The data set is publicly available at http://www.senate.gov/legislative/votes.htm

http://www.senate.gov/legislative/votes.htm
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contained votes of 193 countries for 847 U.N. resolutions 5. Each vote could take one of the three values in
{1, 2, 3}, with 1 denoting “yes”, 2 denoting “abstention”, and 3 denoting “no”. The game graph learned from the
data set is shown in Figure 4 while the PSNE set is shown in Table 3. As evident from Figure 4 our method
recovered two major connected components: the first consisting of members of the Arab League, and the second
consisting of majorly Southeast Asian countries and a few other Caribbean islands. The PSNE set once again
comprised of strategy profiles where the overwhelming members of a connected component voted “yes”. Within
the component corresponding to the Arab league, Saudi Arabia, U.A.E., and Bahrain made up a small coalition
of countries that voted identically in the PSNE set.

Tunisia

Algeria

Oman

Bahrain

UAE

Jamaica

Barbados

Brunei

Bangladesh

Malaysia

Sri Lanka

Cambodia

Djibouti

Qatar

Egypt

Philippines

Eritrea

Guyana

Zambia Indonesia
JordanMorocco

Kuwait
Saudi Arabia

Libya

Mali

Guatemala
Peru

Senegal
Singapore

SudanThailand

Togo

Yemen

Figure 4: The game graph learned from United Nations voting data set. Nodes belonging to the same connected
component have the same color. Only countries with degree at least 1 are shown.

Algeria Bahrain Djibouti Egypt Jordan Kuwait Libya Morocco Oman Qatar Saudi Arabia Sudan Tunisia UAE Yemen
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 2 1 1 2 1

Barbados Bangladesh Brunei Cambodia Eritrea Guyana Indonesia Jamaica Malaysia Mali Philippines Senegal Singapore Sri Lanka Thailand Togo Zambia
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 1 1 1 2 1 2 1 1 1 2 1 1 1 1
1 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2

Table 3: The PSNE set for the two major connected components in the game graph learned from United Nations
voting data set. The total number of PSNE was 24 and the price of anarchy was computed to be 3.07.

5
The data set can be downloaded from https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.

1/12379.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/12379
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/12379
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