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Abstract

We consider the problem of learning sparse
polymatrix games from observations of strate-
gic interactions. We show that a polynomial
time method based on `

1,2

-group regularized
logistic regression recovers a game, whose
Nash equilibria are the ✏-Nash equilibria of
the game from which the data was generated
(true game), in O �m4d4 log(pd)

�

samples of
strategy profiles — where m is the maximum
number of pure strategies of a player, p is the
number of players, and d is the maximum de-
gree of the game graph. Under slightly more
stringent separability conditions on the payoff
matrices of the true game, we show that our
method learns a game with the exact same
Nash equilibria as the true game. We also
show that ⌦ (d log(pm)) samples are neces-
sary for any method to consistently recover a
game, with the same Nash-equilibria as the
true game, from observations of strategic in-
teractions. We verify our theoretical results
through simulation experiments.

1 Introduction and Related Work

Motivation. Many complex real-world data can be
thought of as resulting from the behavior of a large
number of self-interested trying to myopically or locally
maximize some utility. Over the past several decades,
non-cooperative game theory has emerged as a power-
ful mathematical framework for reasoning about such
strategic interactions between self-interested agents.
Traditionally, research in game theory has focused on

Proceedings of the 21st International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,

Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

computing the Nash equilibria (NE) (c.f. [BSK06] and
[JLB11]) — which characterizes the stable outcome of
the overall behavior of self-interested agents — cor-
related equilibria (c.f. [KKLO03]), and other solution
concepts given a description of the game. Computing
the price of anarchy (PoA) for graphical games, which
in a sense quantifies the inefficiency of equilibria, is
also of tremendous interest (c.f. [BZR11]). The afore-
mentioned problems of computing the NE, correlated
equilibria and PoA can be thought of as inference prob-
lems in graphical games, and require a description of
the game, i.e., the payoffs of the players. In many real-
world settings, however, only the behavior of the agents
are observed, in which case inferring the latent payoffs
of the players from observations of behavioral data
becomes imperative. This problem of learning a game
from observations of behavioral data, i.e., recovering
the structure and parameters of the player payoffs such
that the Nash equilibria of the game, in some sense,
approximates the Nash equilibria of the true game, is
the primary focus of the paper.

Recovering the underlying game from behavioral data
is an important tool in exploratory research in po-
litical science and behavioral economics, and recent
times have seen a surge of interest in such problems
(c.f. [IO14, HO15, GH16, GJ16, GH17]). For instance,
in political science, [IO14] identified the most influ-
ential senators in the U.S congress — a small coali-
tion of senators whose collective behavior forced every
other senator to a unique choice of action — by learn-
ing a linear influence game from congressional voting
records. [GJ16] showed that a tree-structured polyma-
trix game 1 learned from U.S. Supreme Court data was
able to recover the known ideologies of the justices.
However, many open problems remain in this area of
active research. One such problem is whether there
exists efficient (polynomial time) methods for learning
polymatrix games [Jan68] from noisy observations of

1
[GJ16] call their game a potential game even though

the formulation of their game is similar to ours.
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strategic interactions. This is the focus of the current
paper.

Related Work. Various methods have been pro-
posed for learning games from data. [HO15] proposed
a maximum-likelihood approach to learn “linear influ-
ence games” — a class of parametric graphical games
with linear payoffs. However, in addition to being ex-
ponential time, the maximum-likelihood approach of
[HO15] also assumed a specific observation model for
the strategy profiles. [GH16] proposed a polynomial
time algorithm, based on `

1

-regularized logistic regres-
sion, for learning linear influence games. They again
assumed the specific observation model proposed by
[HO15] in which the strategy profiles (or joint actions)
were drawn from a mixture of uniform distributions:
one over the pure-strategy Nash equilibria (PSNE) set,
and the other over the complement of the PSNE set.
[GH17] obtained necessary and sufficient conditions
for learning linear influence games under arbitrary ob-
servation model. Finally, [GJ16] use a discriminative,
max-margin based approach, to learn tree structured
polymatrix games. However, their method is exponen-
tial time and they show that learning polymatrix games
is NP-hard under this max-margin setting, even when
the class of graphs is restricted to trees. Furthermore,
all the aforementioned works, with the exception of
[GJ16], consider binary strategies only. In this paper,
we propose a polynomial time algorithm for learning
polymatrix games, which are non-parametric graphical
games where the pairwise payoffs between players are
characterized by matrices (or pairwise potential func-
tions). In this setting, each player has a finite number
of pure-strategies.

Our Contributions. We propose an `
1,2

group-
regularized logistic regression method to learn poly-
matrix games, which has been considered by [GJ16]
and is a generalization of linear influence games consid-
ered by [GH17]. We make no assumptions on the latent
payoff functions and show that our polynomial time
algorithm recovers an "-Nash equilibrium of the true
game 2, with high probability, if the number of samples
is O �m4d4 log(pd)

�

, where p is the number of players,
d is the maximum degree of the game graph and m
is the maximum number of pure-strategies of a player.
Under slightly more stringent separability conditions
on the payoff functions of the underlying game, we
show that our method recovers the Nash equilibria set
exactly. We further generalize the observation model
from [GH17] in the sense that we allow strategy profiles

2
By the phrase “recovering the Nash equilibria” we mean

that we learn a game with the same Nash equilibria as the

true game. We use this phrase elsewhere in the paper for

brevity.

in the non-Nash equilibria set to have zero measure.
This should be compared with the results of [GJ16] who
show that learning tree-structured polymatrix games is
NP-hard under a max-margin setting. We also obtain
necessary conditions on learning polymatrix games and
show that ⌦ (d log(pm)) samples are required by any
method for recovering the PSNE set of a polymatrix
game from observations of strategy profiles.

Finally, we conclude this section by referring the reader
to the work of [JRVS11] who analyze `

1,2

-regularized
logistic regression for learning undirected graphical
models. However, our setting differs from that of learn-
ing discrete graphical models in many ways. First,
unlike discrete graphical models, where the underlying
distribution over the variables is described by a po-
tential function that factorizes over the cliques of the
graph, we make no assumptions whatsoever on the gen-
erative distribution of data. Further, we are interested
in recovering the PSNE set of a game, since the graph
structure in generally unidentifiable from observational
data, whereas [JRVS11] obtain guarantees on the graph
structure of the discrete graphical model. As a result,
our theoretical analysis and proofs differ significantly
from those of [JRVS11].

2 Notation and Problem Formulation

In this section, we introduce our notation and formally
define the problem of learning polymatrix games from
behavioral data.

Polymatrix games. A p-player polymatrix game is
a graphical game where the set of nodes of the graph
denote players and the edges correspond to two-player
games. We will denote the graph by G = ([p], E), where
[p]

def

= {1, . . . , p} is the vertex set and E ✓ [p] ⇥ [p] is
set of directed edges. An edge (i, j) 2 E denotes the
directed edge i  j. Each player i has a set of pure-
strategies or actions A

i

, and the set of pure-strategy
profiles or joint actions of all the p players is denoted
by A = ⇥

i2[p]

A
i

. We will denote A�i

def

= ⇥
j2�i

A
j

.
With each edge (i, j) 2 E is associated a payoff matrix
ui,j

: A
i

⇥ A
j

! R, such that ui,j

(x
i

, x
j

) gives the
finite payoff of the i-th player (with respect to the j-th
player), when player i plays x

i

2 A
i

and player j plays
x
j

2 A
j

. We assume that (i, j) 2 E, if and only if
ui,j

(·, ·) 6= 0. Given a strategy profile x 2 A, the total
payoff, or simply the payoff, of the i-th player is given
by the following potential function:

ui

(x
i

,x�i

;G) = ui,i

(x
i

) +

X

j2Ni

ui,j

(x
i

, x
j

), (1)

where N
i

(G)

def

= {j 2 [p]|(i, j) 2 E} is the set of
neighbors of i in the graph G, and ui,i

: A
i

! R
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gives the (finite) individual payoff of i for playing x
i

.
We will denote the number of neighbors of player i

by d
i

def

= |N
i

(G)|, and the maximum degree of the
graph G by d = max{d

1

, . . . , d
p

}. A polymatrix game
G = (G,U) is then completely defined by a graph
G = ([p], E) and a collection of potential functions
U(G) = {ui

: A�i

! R}
i2[p]

, where each of the payoff
functions ui

(·;G) decomposes according to (1). Finally,
we will also assume that the number of strategies of
each player, m

i

def

= |A
i

|, is non-zero and O (1) with
respect to p and d, and that m

def

= max{m
i

}.

Nash equilibria of polymatrix games. The pure-
strategy Nash equilibria (PSNE) set for the game G =

(G,U) is given by the set of strategy profiles where no
player has any incentive to unilaterally deviate from
its strategy given the strategy profiles of its neighbors,
and is defined as follows:

NE(G) =
⇢

x 2 A
�

�

�

x
i

2 argmax

a2Ai

ui

(a,x�i

)

�

. (2)

The set of "-Nash equilibria of the game G are those
strategy profiles where each player can gain at most "
payoff by deviating from its strategy, and is defined as
follows:

"-NE(G) =
n

x 2 A | ui

(x
i

,x�i

) � ui

(a,x�i

)� ",

8a 2 A
i

and 8i 2 [p]
o

. (3)

Observation model. Without getting caught up in
the dynamics of gameplay — something that is difficult
to observe or reason about in real-world scenarios — we
abstract the learning problem as follows. Assume that
we are given “noisy” observations of strategy profiles,
or joint actions, D = {x(l) 2 A}

l2[n]

drawn from a
game G = (G,U). The noise process models our uncer-
tainty over the individual actions of the players due to
observation noise, for instance, when we observe the
actions through a noisy channel, or due to the unob-
served dynamics of gameplay during which equilibrium
is reached. By “observations drawn from a game” we
simply mean that there exists a distribution P, from
which the strategy profiles are drawn, satisfying the
following condition:

8x,x0 such that x 2 NE(G) and x0 2 A \ NE(G) :
P(x) > P(x0

).

The above condition ensures that the signal level is
more than the noise level. This should be compared
with the observation model of [GH17], who assume
that 8x0 2 A \ NE(G),P(x0

) > 0. Our observation
model thus encompasses specific observation models
considered in prior literature [HO15, GH16]: the global

and local noise model. The global noise model is pa-
rameterized by a constant q 2 (

NE(G)/|A|, 1) such that
the probability of observing a strategy profile x 2 A is
given by a mixture of two uniform distributions:

P
g

(x;G) = q
1 [x 2 NE(G)]

|NE(G)| + (1� q)
1 [x /2 NE(G)]
|A|� |NE(G)| .

(4)

In the local noise model, we observe strategy profiles x
from the PSNE set with each entry (strategy) corrupted
independently. Therefore, in the local noise model we
have the following distribution over strategy profiles:

P
l

(x;G) = 1

|NE(G)|⇥
X

y2NE(G)

p

Y

i=1

(q
i

)

1[xi=yi]

✓

1� q
i

m
i

� 1

◆

1[xi 6=yi]

, (5)

with q
i

> 0.5 for all i 2 [p].

In essence, we assume that we observe multiple “stable
outcomes” of the game, which may or may-not be
in equilibria. Treating the outcomes of the game as
“samples” observed across multiple “plays” of the same
game is a recurring theme in the literature for learning
games (c.f. [HO15], [GH16], [GH17], [GJ16]).

The learning problem then corresponds to recovering
a game bG = (

bG, bU) from D such that NE(bG) = NE(G)
with high probability. Given that computing a single
Nash equilibria is PPAD-complete [DGP09], any effi-
cient learning algorithm must learn the game without
explicitly computing or enumerating the Nash equilibria
of the game. It has also been shown that even comput-
ing an "-Nash equlibria is hard under the exponential
time hypothesis for PPAD [Rub16]. We also empha-
size that we do not observe any information about the
latent player payoffs, and neither do we impose any
restrictions on the payoffs for obtaining our "-Nash
equilibria guarantees. Also, note that in our definition
of the learning problem, we do not impose any restric-
tion on the “closeness” of the recovered graph bG to the
true graph G. This is because multiple graphs G can
give rise to the same PSNE set under different payoff
functions and thus be unidentifiable from observations
of joint actions alone (see section 4.4.1 of [HO15] for a
counter example.)

3 Method

In this section, we describe our method for learning
polymatrix games from observational data. The indi-
vidual and pairwise payoffs can be equivalently written,
in linear form, as follows:

ui,i

(x
i

) = (✓i,0

)

T f i,0(x
i

),

ui,j

(x
i

, x
j

) = (✓i,j

)

T f i,j(x
i

, x
j

),
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where for j 2 N
i

, f i,j(x
i

, x
j

) =

(1 [x
i

= a, x
j

= b])
a2Ai, b2Aj and ✓i,j

=

(✓i,j
a,b

)

a2Ai, b2Aj , f i,0(x
i

) = (1 [x
i

= a])
a2Ai and

✓i,0

= (✓i,0
a

)

a2Ai . Note that f i,j 2 {0, 1}(mimj),
✓i,j 2 R(mimj) 6= 0, f i,0(x

i

) 2 {0, 1}mi , and
✓i,0 2 Rmi . Let

✓i

def

= (✓i,0,✓i,1, . . . ,✓i,i�1,✓i,i+1, . . . ,✓i,p

),

f i(x
i

,x�i

)

def

= (f i,0(x
i

), f i,1(x
i

, x
1

), . . . , f i,i�1

(x
i

, x
i�1

),

f i,i+1

(x
i

, x
i+1

), . . . , f i,p(x
i

, x
p

)), (6)

with ✓i,j

= 0 for j > 0 ^ j /2 N
i

,
and ✓i 2 R(mi+

P
j2�i mimj), f i(x

i

,x�i

) 2
{0, 1}(mi+

P
j2�i mimj). Thus the payoff for the

i-th player can be written, in linear form, as:

ui

(x
i

,x�i

) = (✓i

)

T f i(x
i

,x�i

). (7)

The learning problem then corresponds to learning
the parameters ✓i for each player i. The sparsity
pattern of ✓i identifies the neighbors of i. The way
this differs from the binary strategies considered by
[GH17] is that the parameters ✓i have a group-sparsity
structure, i.e., for all j > 0 ^ j /2 N

i

the entire
group of parameters ✓i,j is zero. In order to en-
sure that the payoffs are finite, we will assume that
the parameters for the i-th player belong to the set
⇥

i

def

= {y 2 R(mi+
P

j2�i mimj) | kyk1 <1}.
Our approach for estimating the parameters ✓i is to
perform one-versus-rest multinomial logistic regression
with `

1,2

group-sparse regularization. In more detail,
we obtain estimators b✓i by solving the following opti-
mization problem for each i 2 [p]:

b✓i

= argmin

✓2⇥

i

Li

(D;✓) + �k✓k
1,2

, (8)

Li

(D;✓) =
1

n

n

X

l=1

`i(x(l)

;✓), (9)

`i(x;✓) = � log

 

exp(✓T f i(x
i

,x�i

))

P

a2Ai
exp(✓T f i(a,x�i

))

!

, (10)

where k✓k
1,2

=

P

j2[p]

k✓
j

k
2

, with ✓
j

being the j-th
group of ✓. When referring to a block of a matrix
or vector we will use bold letters, e.g, ✓

j

denotes the
j-th group or block of ✓, while ✓

j

denotes the j-th
element of ✓. In general, we define the `

a,b

group struc-
tured norm as follows: k✓k

a,b

= k(k✓
1

k
b

, . . . , k✓
p

k
b

)k
a

.
Also, when using group structured norms, we will
use the group structure as shown in (6), i.e., we
will assume that there are p groups and, in the con-
text of the i-th player, the sizes of the groups are:
{m

i

,m
i

m
1

, . . . ,m
i

m
i�1

,m
i

m
i+1

, . . . ,m
i

m
p

}. Finally,
we will define the support set of ✓i as the set of
all indices corresponding to the active groups, i.e.,

S
i

= {(j, k)|j 2 {0}[N
i

and k 2 [m
i

] for j = 0, k 2
[m

i

m
j

] for j > 0}, where j can be thought of as in-
dexing the groups, while k can be thought of as the
indexing the elements within the j-th group. Thus,
|S

i

| = m
i

+

P

j2Ni
m

i

m
j

.

After estimating the parameters b✓i for each i 2
[p], the payoff functions are simply estimated to be
bui

(x
i

,x�i

) = (

b✓i

)

T f i(x
i

,x�i

). Finally, the graph
bG = ([p], bE) is given by the group-sparsity structure of
buis, i.e., bui,j

(·, ·) 6= 0 =) (i, j) 2 bE.

4 Sufficient Conditions

First, we obtain sufficient conditions on the number of
samples n to ensure successful PSNE recovery. Since
our theoretical results depend on certain properties
of the Hessian of the loss function defined above, we
introduce the Hessian matrix in this paragraph. Let
Hi

(x;✓) denote the Hessian of `i(x;✓). A little cal-
culation shows that the (j, k)-th block of the Hessian
matrix for the i-th player is given as:

Hi

j,k

(x;✓) =
X

a2Ai

�i

(a,x�i

;✓)f i,j(a, x
j

)(f i,k(a, x
k

))

T�
n⇣

X

a2Ai

�i

(a,x�i

;✓)f i,j(a, x
j

)

⌘

⇥
⇣

X

a2Ai

�i

(a,x�i

;✓)f i,k(a, x
k

)

⌘

T

o

, (11)

�i

(x,x�i

;✓) =
exp(✓T f i(x,x�i

))

P

a2Ai
exp(✓T f i(a,x�i

))

, (12)

where we have overloaded the notation f i,j(x
i

, x
j

) to
also include f i,0(x

i

), i.e., we let f i,0(x
i

, x
0

)

def

= f i,0(x
i

).
We will denote the i-th expected Hessian matrix at any
parameter ✓ 2 ⇥

i as Hi

(✓) = E
x

⇥

Hi

(x;✓)
⇤

, and the
i-th Hessian matrix at the true parameter ✓i as Hi

(✓i

).
We will also drop the superscript i from the i-th Hessian
matrix, whenever clear from context. We will denote
the finite sample version of Hi

(✓i

) by Hi

(D,✓i

), i.e.,
Hi

(D,✓i

) =

1

n

P

n

l=1

Hi

(x(l),✓i

). Finally, we will de-
note the Hessian matrix restricted to the true support
set S

i

by: Hi

(·;✓i

Si
) 2 R|Si|⇥|Si|. In order to prove our

main result, we will present a series of technical lem-
mas slowly building towards our main result. Detailed
proofs of the lemmas are given in Appendix A.

The following lemma states that the i-th population
Hessian is positive definite. Specifically, the i-th popu-
lation Hessian evaluated at the true parameter ✓i, are
positive definite with the minimum eigenvalue being
C

min

. We prove the following lemma by showing that
the loss function given by (10), when restricted to an
arbitrary line, is strongly convex as long as the payoffs
are finite.
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Lemma 1 (Minimum eigenvalue of population Hes-
sian). For ✓i 2 ⇥

i, �
min

(Hi

(✓i

))

def

= C
min

> 0.

Given that population Hessian matrices are positive-
definite, we then show that the finite sample Hessian
matrices, evaluated at any parameter ✓

Si , are positive
definite with high probability. We use tools from ran-
dom matrix theory developed by [Tro12] to prove the
following lemma.
Lemma 2 (Minimum eigenvalue of finite sample Hes-
sian). Let ✓ 2 ⇥

i be any arbitrary vector and let
�
min

(Hi

(✓
Si))

def

= �
min

> 0. Then, if the number of
samples satisfies the following condition:

n � 8(d
i

+ 1)

�
min

log

✓

m
i

(1 + d
i

m)

�

◆

,

then �
min

(Hi

(D;✓
Si)) � �min

2

with probability at least
1� � for some � 2 (0, 1).

Now that we have shown that the loss function given by
(10) is strongly convex (Lemmas 1 and 2), we exploit
strong convexity to control the difference between the
true parameter and the estimator k✓i�b✓ik

1,2

. However,
before proceeding further, we need to bound the `1,2

norm of the gradient, as done in the following lemma.
We prove the lemma by using McDiarmid’s inequality
to show that in each group the finite sample gradient
concentrates around the expected gradient, and then
use a union bound over all the groups to control the
`1,2

norm.
Lemma 3 (Gradient bound). Let
kE

x

⇥r`i(x;✓i

)

⇤k1,2

= ⌫, then we have that

krLi

(D;✓i

)k1,2

 ⌫ +
r

2

n
log

⇣

2(d
i

+ 1)

�

⌘

,

with probability at least 1� �.

Note that the expected gradient at the parameter ✓i

does not vanish, i.e., kE
x

⇥r`i(x;✓i

)

⇤k1,2

= ⌫. This
is because of the mismatch between the generating
distribution P and the softmax distribution used for
learning the parameters, as in (10). Indeed, if the data
were drawn from a Markov random field, which induces
a softmax distribution on the conditional distribution
of node given the rest of the nodes, the parameter ⌫ = 0.
However this is not the case for us. An unfortunate
consequence of this is that, even with an infinite number
of samples, our method will not be able to recover
the parameters ✓i exactly. Thus, without additional
assumptions on the payoffs, our method only recovers
the "-Nash equilibrium of the game.

With the required technical results in place, we are
now ready to bound k✓i� b✓ik

1,2

. Our analysis has two

steps. First, we bound the norm in the true support
set, i.e., k✓i

Si
� b✓i

Si
k
1,2

. Then, we show that the norm
of the difference between the true parameter and the
estimator, outside the support set, is a constant factor
(specifically 3) of the difference in the support set.
For the first step with use a proof technique originally
developed by [RBLZ08] in a different context, while the
second step follows from matrix algebra and optimality
of the estimator b✓i for the problem (8).

The following technical lemma, which will be used later
on in our proof to bound kb✓i

S

� ✓i

S

k
1,2

, lower bounds
the minimum eigenvalue of the i-th population Hessian
at an arbitrary parameter ✓ 2 ⇥

i, in terms of the
minimum eigenvalue of the i-th population Hessian at
the true parameter ✓i.
Lemma 4 (Minimum population eigenvalue at arbi-
trary parameter). Let ✓ 2 ⇥

i be any vector. Then the
minimum eigenvalue of i-th population Hessian matrix
evaluated at ✓

Si is lower bounded as follows:

�
min

(Hi

(✓
Si)) � �min

(Hi

(✓i

Si
))

� 1

4

(d
i

+ 1)m2k✓
Si � ✓i

Si
k
1,2

.

Now, we are ready to bound the difference between
the true parameter ✓i and its estimator b✓i, in the true
support set S

i

.
Lemma 5 (Error of the i-th estimator on the support
set). If the regularization parameter and number of
samples satisfy the following condition:

� � 2

 

⌫ +

s

2

n
log

✓

2(d
i

+ 1)

�

◆

!

,

n >
2

N(m, d
i

)

log

✓

2(d
i

+ 1)

�

◆

,

where N(m, d
i

) = {Cmin/(36m2
(di+1)

2
) � ⌫}2, and

C
min

def

= �
min

(Hi

(✓i

Si
)); then with probability at least

1� �, for some � 2 (0, 1), we have:

kb✓i

Si
� ✓i

Si
k
1,2

 6(d
i

+ 1)

C
min

�. (13)

Next, we bound the difference between the true param-
eter ✓i and its estimator b✓i.
Lemma 6 (Error of the i-th parameter estimator).
Under the same conditions on the regularization param-
eter and number of samples as in Lemma 5 we have,
with probability at least 1� � for some � 2 (0, 1),

kb✓i � ✓ik
1,2

 24(d
i

+ 1)

C
min

�.

Now that we have control over k✓i� b✓ik
1,2

for all i 2 [p],
we are ready to prove our main result concerning the
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sufficient number of samples needed by our method to
guarantee PSNE recovery with high probability.
Theorem 1. Let G = (G,U), with U = {ui

: A�i

!
R}

i2[p]

, be the true potential graphical game over p
players and maximum degree d, from which the data
set D is drawn. Let bG = (

bG, bU), with bU = {bui

: A�i

!
R}

i2[p]

, be the game learned from the data set D by
solving the optimization problem (8) for each i 2 [p].
Then if the regularization parameter and the number of
samples satisfy the condition:

� � 2

 

⌫ +

s

2

n
log

✓

2p(d+ 1)

�

◆

!

,

n > max

(

2

N(m, d)
log

✓

2p(d+ 1)

�

◆

,

8(d+ 1)

C
min

log

✓

m(1 + dm)

�

◆

)

,

where N(m, d) = {Cmin/(36m2
(d+1)

2
)�⌫}2, then we have

that the following hold with probability at least 1 � �,
for some � 2 (0, 1):

(i) NE(bG) = "-NE(G), with " = 48(di+1)

Cmin
�.

(ii) Additionally, if the true game G satisfies the con-
dition: 8i 2 [p], 8(x

i

,x�i

), (x0
i

,x�i

) 2 A such
that (x

i

,x�i

) 2 NE(G) ^ (x0
i

,x�i

) /2 NE(G) =)
ui

(x
i

,x�i

) > ui

(x0
i

,x�i

) + ". Then, NE(bG) =

NE(G).

Proof. Note that kf i(x
i

,x�i

)k1,2

=

max{kf i,0(x
i

)k
2

, kf i,1(x
i

, x
1

)k
2

, . . . , kf i,p(x
i

, x
p

)k
2

} =

1, for any x 2 A, since each binary vector f i,j(x
i

, x
j

)

has a single “1” at exactly one location. Then, from
the Cauchy-Schwartz inequality, Lemma 6, and a
union bound over all players, we have that:

(8x 2 A, 8i 2 [p]) |bui

(x
i

,x�i

)� ui

(x
i

,x�i

)|
= |(b✓i � ✓i

)

T f i(x
i

,x�i

)|
 kb✓i � ✓ik

1,2

kf i(x
i

,x�i

)k1,2

= kb✓i � ✓ik
1,2

 24(d
i

+ 1)

C
min

� =

"

2

, (14)

with probability at least 1 � p�. Now consider any
x 2 NE(bG) and any i 2 [p]. Since x 2 NE(bG), we have
from (14), (8x0

i

2 A
i

):

ui

(x
i

,x�i

) +

"/2 � bui

(x
i

,x�i

) � bui

(x0
i

,x�i

)

=) ui

(x
i

,x�i

) � bui

(x0
i

,x�i

)� "/2

=) ui

(x
i

,x�i

) � ui

(x0
i

,x�i

)� ",
where the last line again follows from (14). This proves
that NE(bG) ✓ "-NE(G). Using exactly the same

arguments as above, we can also show that for any
x 2 NE(G):

bui

(x
i

,x�i

) � bui

(x
i

,x�i

)� " (8x0
i

2 A
i

),

which proves that NE(G) ✓ "-NE(bG). Thus we have
that NE(bG) = "-NE(G), i.e., the set of joint strategy
profiles x 2 NE(bG) form an "-Nash equilibrium set
of the true game G. This proves our first claim. For
our second claim, consider any (x

i

,x�i

) 2 NE(G) and
(x0

i

,x�i

) /2 NE(G). Then:

ui

(x
i

,x�i

) > ui

(x0
i

,x�i

) + "

=) bui

(x
i

,x�i

) +

"/2 > bui

(x0
i

,x�i

)� "/2 + "

=) bui

(x
i

,x�i

) > bui

(x0
i

,x�i

)

=) (x
i

,x�i

) 2 NE(bG) ^ (x0
i

,x�i

) /2 NE(bG),

where the first line holds by assumption, and the sec-
ond line again follows from (14). Thus we have that
NE(G) = NE(bG). By setting the probability of er-
ror p� = �0 for some �0 2 (0, 1) we prove our claim.
The second part of the lower bound on the number of
samples is due to Lemma 2.

Remark 1. The sufficient number of samples needed
by our method to guarantee PSNE recovery, with proba-
bility at least 1� �, scales as O �m4d4 log(pd/�)

�

. This
should be compared with the results of [JRVS11] for
learning undirected graphical models. They show that
O �m2d2 log(m2p)

�

are sufficient for learning m-ary
discrete graphical models. However, their sample com-
plexity hides a constant K that is related to the maxi-
mum eigenvalue of the scatter matrix, which we have
upper bounded by m2d2 in our case, leading to a slightly
higher sample complexity.

Remark 2. Note that as n ! 1, the regularization
parameter �! 2⌫, where ⌫ is the maximum norm of
the expected gradient at the true parameter ✓i across all
i 2 [p]. Thus, even with an infinite number of samples,
our method recovers the "-Nash equlibria set of the true
game with "! 96(di+1)⌫

Cmin
as n!1.

5 Necessary Conditions

In this section, we obtain an information-theoretic lower
bound on the number of samples needed to learn sparse
polymatrix games. Let G

p,d,m

be set of polymatrix
games over p players, with degree at most d, and max-
imum number of strategies per player being m. Our
approach for doing so is to treat the inference procedure
as a communication channel, where nature picks a game
G⇤ from the set G

p,d,m

and then generates a data set
D of n strategy profiles. A decoder  : An ! G

p,d,m

then maps D to a game bG 2 G
p,d,m

. We wish to obtain
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lower bounds on the number of samples required by
any decoder  to recover the true game consistently.
In this setting, we define the minimax estimation error
as follows:

p
err

= min

 

sup

G⇤2Gp,d,m

Pr {NE( (D)) 6= NE(G⇤
)} ,

where the probability is computed over the data distri-
bution. For obtaining necessary conditions on the sam-
ple complexity, we assume that the data distribution fol-
lows the global noise model described in (4). The follow-
ing theorem prescribes the number of samples needed
for learning sparse polymatrix games. Our proof of the
theorem constitutes constructing restricted ensembles
of “hard-to-learn” polymatrix games, from which na-
ture picks a game uniformly at random and generates
data. We then use the Fano’s technique to lower bound
the minimax error. The use of restricted ensembles
is customary for obtaining information-theoretic lower
bounds, c.f. [SW12, WWR10].
Theorem 2. If the number of samples n 
log(m

d�m)

(

p
d)

2 log 2

� 1, then estimation fails with p
err

� 1/2.

Proof. Consider the following restricted ensemble eG ⇢
G

p,d,m

of p-player polymatrix games with degree d, and
the set of pure-strategies of each player being A

i

= [m].
Each G = (G,U) 2 eG

p,d,m

is characterized by a set
I of influential players, and a set Ic

def

= [p] \ I of
non-influential players, with |I| = d. The graph G
is a complete (directed) bipartite graph from the set
I to Ic. After picking the graph structure G, nature
fixes the strategies of the influential players to some
a 2 {b 2 [m]

|I| | 9i, j 2 I such that b
i

6= b
j

}. Finally,
the payoff matrices are chosen as follows:

ui,i

(x
i

) = 1 [x
i

= a
i

] (8i 2 I)
uj,j

(x
j

) =

1

(2x
j

)

(8j 2 Ic

)

uj,i

(x
j

, x
i

) = 1 [x
j

= x
i

] (8i 2 I ^ j 2 Ic

).

Therefore, each G 2 eG game has a exactly one unique
Nash equilibrium where the influential players play a
(decided by nature) and the non-influential players play
maj(a) — where maj(a) returns the majority strategy
among a, and in case of a tie between two or more
strategies it returns the numerically lowest strategy
(recall that the pure-strategy set for each player is [m]).
Thus we have that |eG| = (md �m)

�

p

d

�

. Nature picks
a game G uniformly at random from eG by randomly
selecting a set of d players as “influential”, and then
selecting a strategy profile a uniformly at random for
the influential players and setting the payoff matrices
as described earlier. Nature then generates a dataset

D using the global noise model with parameter q 2
(

1/mp, 2/(mp
+1)]. Then from the Fano’s inequality we

have that:

p
err

� 1� I(D;G) + log 2

H(G) , (15)

where I(·; ·) and H(·) denote mutual information and
entropy respectively. The mutual information I(D;G)
can be bounded, using a result by [Yu97], as follows:

I(D;G)  1

|eG|2
X

G12eG

X

G22eG

KL
�PD|G=G1

�

�PD|G=G2

�

,

(16)

where PD|G=G1
(respectively PD|G=G2

) denotes the data
distribution under G

1

(respectively G
2

). The KL diver-
gence term from 16 can be bounded as follows:

KL
�PD|G=G1

�

�PD|G=G2

�

= n
X

x2A
PD|G=G1

log

PD|G=G1

PD|G=G2

= n

(

X

x2NE(G1)

q log
q(mp � 1)

1� q
+

X

x2NE(G2)

(1� q)

mp � 1

log

1� q

q(mp � 1)

)

=

n(qmp � 1)

mp � 1

log

✓

q(mp � 1)

1� q

◆

 n log

✓

q(mp � 1)

1� q

◆

 n log 2, (17)

where the first line follows from the fact that the sam-
ples are i.i.d , the second line follows from the fact the
the distributions PD|G=G1

and PD|G=G2
assign the same

probability to x 2 A \ (NE(G
1

)[NE(G
2

)), and the
last line follows from the fact that q 2 (

1/mp, 2/(mp
+1)].

Putting together (15), (16) and (17), we have that if

n  log(md �m)

�

p

d

�

2 log 2

� 1,

then p
err

� 1/2. Since, learning the ensemble G is
at least as hard as learning a subset of G, our claim
follows.

Remark 3. From the above theorem we have that, the
number of samples needed by any conceivable method,
to recover the PSNE set consistently, is ⌦ (d log(pm)),
assuming that d = o(p). Therefore, the method based
on `

1,2

-regularized logistic regression is information-
theoretically optimal in the number of players, for learn-
ing sparse polymatrix games.
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Figure 1: Estimated probability of exact recovery of the PSNE set computed across 40 randomly sampled
polymatrix games with the number of samples set to n = 10

c

(d + 1)

2

log(

2p(d+1)/�), where c is the control
parameter shown in the x-axis, and � = 0.01.

6 Experiments

In order to validate our theoretical results, we per-
formed various synthetic experiments by sampling a
random polymatrix game, generating data from the
sampled game, and then using our method to learn
the game from the sampled data. We estimated the
probability that our method learns the “correct” game,
i.e., a game with the same PSNE set as the true game,
across 40 randomly sampled games for each value of
p 2 {7, 11, 15} and d 2 {1, 3, 5}. The results are shown
in Figure 1. We observe that the scaling of the sam-
ple complexity prescribed by Theorem 1 indeed holds
in practice. The results show a phase transition be-
havior, where if the number of samples is less than
c(d+1)

2

log(

p(d+1)/�), for some constant c, then PSNE
recovery fails with high probability, while if the num-
ber of samples is at least C(d + 1)

2

log(

p(d+1)/�), for
some constant C, then PSNE recovery succeeds with
high probability. More details about our synthetic
experiments can be found in Appendix B.

We also evaluated our algorithm on real-world data
sets containing (i) U.S. supreme court rulings, (ii) U.S.
congressional voting records, and (iii) U.N. General
Assembly roll-call votes.

Our algorithm recovers connected components corre-
sponding to liberal and conservative blocs of justices
within the Supreme Court of the U.S. The Nash equi-
libria consists of strategy profiles where all justices
vote unanimously, as well as strategy profiles where the
conservative and liberal blocs vote unanimously but in
opposition to each other.

The game graph recovered from congressional voting
records, groups Democrats and Republicans in separate
components. Moreover, we observed that the connected
components groups senators belonging to the same

state or geographic region together. The recovered
PSNE set sheds light on the voting patterns of senators
— senators belonging to the same connected component
vote (almost) identically on bills.

Finally, on the U.N. voting data set our method recov-
ered connected components comprising of Arab League
countries and Southeast Asian countries respectively.
As was the case with the aforementioned data sets, the
PSNE set grouped countries that vote almost identi-
cally on U.N. resolutions.

We were also able to compute the price of anarchy
(PoA) for each data set, which quantifies the degra-
dation of performance caused by selfish behavior of
non-cooperative agents. For the two supreme court
voting data sets, the PoA was 1.9 and 1.6 respectively.
For the congressional voting data set the PoA was 2.6,
while for the united nations voting data set the PoA
was 3.0. More details and results from our real-world
experiments can be found in Appendix C.

7 Concluding Remarks

We conclude this exposition with a discussion of poten-
tial avenues for future work. In this paper we consid-
ered the problem of learning a very general, and widely
used, class of graphical games called polymatrix games,
involving players with pure strategies. One can also
consider mixed strategies, which would entail learning
distributions, instead of “sets”, under the framework of
non-cooperative maximization of utility. Further, one
can also consider other solution concepts like correlated
equilibria.
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