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Abstract

Minimizing a function over an intersection
of convex sets is an important task in opti-
mization that is often much more challenging
than minimizing it over each individual con-
straint set. While traditional methods such
as Frank-Wolfe (FW) or proximal gradient
descent assume access to a linear or quadratic
oracle on the intersection, splitting techniques
take advantage of the structure of each sets,
and only require access to the oracle on the in-
dividual constraints. In this work, we develop
and analyze the Frank-Wolfe Augmented La-
grangian (FW-AL) algorithm, a method for
minimizing a smooth function over convex
compact sets related by a “linear consistency”
constraint that only requires access to a lin-
ear minimization oracle over the individual
constraints. It is based on the Augmented
Lagrangian Method (ALM), also known as
Method of Multipliers, but unlike most exist-
ing splitting methods, it only requires access
to linear (instead of quadratic) minimization
oracles. We use recent advances in the anal-
ysis of Frank-Wolfe and the alternating di-
rection method of multipliers algorithms to
prove a sublinear convergence rate for FW-
AL over general convex compact sets and a
linear convergence rate over polytopes.

1 Introduction

The Frank-Wolfe (FW) or conditional gradient algo-
rithm has seen an impressive revival in recent years,
notably due to its very favorable properties for the
optimization of sparse problems (Jaggi, 2013) or over
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structured constraint sets (Lacoste-Julien and Jaggi,
2015). This algorithm assumes knowledge of a linear
minimization oracle (LMO) over the set of constraints.
This oracle is inexpensive to compute for sets such as
the `1 or trace norm ball. However, inducing complex
priors often requires to consider multiple constraints,
leading to a constraint set formed by the intersection of
the original constraints. Unfortunately, evaluating the
LMO over this intersection may be challenging even if
the LMOs on the individual sets are inexpensive.

The problem of minimizing over an intersection of con-
vex sets is pervasive in machine learning and signal
processing. For example, one can seek for a matrix
that is both sparse and low rank by constraining the
solution to have both small `1 and trace norm (Richard
et al., 2012) or find a set of brain maps which are
both sparse and piecewise constant by constraining
both the `1 and total variation pseudonorm (Gramfort
et al., 2013). Furthermore, some challenging optimiza-
tion problems such as multiple sequence alignment are
naturally expressed over an intersection of sets (Yen
et al., 2016a) or more generally as a linear relationship
between these sets (Huang et al., 2017).

The goal of this paper is to describe and analyze FW-
AL, an optimization method that solves convex opti-
mization problems subject to multiple constraint sets,
assuming we have access to a LMO on each of the set.

Previous work. The vast majority of methods pro-
posed to solve optimization problems over an inter-
section of sets rely on the availability of a projection
operator onto each set (see e.g. the recent reviews
(Glowinski et al., 2017; Ryu and Boyd, 2016), which
cover the more general proximal splitting framework).
One of the most popular algorithms in this frame-
work is the alternating direction method of multipliers
(ADMM), proposed by Glowinski and Marroco (1975),
studied by Gabay and Mercier (1976), and revisited
many times; see for instance (Boyd et al., 2011; Yan
and Yin, 2016). On some cases, such as constraints on
the trace norm (Cai et al., 2010) or the latent group
lasso (Obozinski et al., 2011), the projection step can
be a time-consuming operation, while the Frank-Wolfe
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LMO is much cheaper in both cases. Moreover, for
some highly structured polytopes such as those appear-
ing in alignment constraints (Alayrac et al., 2016) or
Structured SVM (Lacoste-Julien et al., 2013), there ex-
ists a fast and elegant dynamic programming algorithm
to compute the LMO, while there is no known practical
algorithm to compute the projection. Hence, the devel-
opment of splitting methods that use the LMO instead
of the proximal operator is of key practical interest.
Yurtsever et al. (2015) proposed a general algorithm
(UniPDGrad) based on the Lagrangian method which,
with some work, can be reduced to a splitting method
using only LMO as a particular case. We develop the
comparison with FW-AL in App. B.2.

Recently, Yen et al. (2016a) proposed a FW variant
for objectives with a linear loss function over an inter-
section of polytopes named Greedy Direction Method
of Multipliers (GDMM). A similar version of GDMM
is also used in (Yen et al., 2016b; Huang et al., 2017)
to optimize a function over a Cartesian product of
spaces related to each other by a linear consistency
constraint. The constraints are incorporated through
the augmented Lagrangian method and its convergence
analysis crucially uses recent progress in the analysis
of ADMM by Hong and Luo (2017). Nevertheless, we
argue in Sec. C.1 that there are technical issues in these
analysis since some of the properties used have only
been proven for ADMM and do not hold in the con-
text of GDMM. Furthermore, even though GDMM
provides good experimental results in these papers, the
practical applicability of the method to other problems
is dampened by overly restrictive assumptions: the loss
function is required to be linear or quadratic, leaving
outside loss functions such as logistic regression, and
the constraint needs to be a polytope, leaving outside
domains such as the trace norm ball.

Contributions. Our main contribution is the devel-
opment of a novel variant of FW for the optimization
of a function over product of spaces related to each
other by a linear consistency constraint and its rigor-
ous analysis. We name this method Frank-Wolfe via
Augmented Lagrangian method (FW-AL). With re-
spect to Yen et al. (2016a,b); Huang et al. (2017), our
framework generalizes GDMM by providing a method
to optimize a general class of functions over an intersec-
tion of an arbitrary number of compact sets, which are
not restricted to be polytopes. Moreover, we argue that
the previous proofs of convergence were incomplete: in
this paper, we prove a new challenging technical lemma
providing a growth condition on the augmented dual
function which allows us to fix the missing parts.

We show that FW-AL converges for any smooth objec-
tive function. We prove that a standard gap measure

converges linearly (i.e., with a geometric rate) when
the constraint sets are polytopes, and sublinearly for
general compact convex sets. We also show that when
the function is strongly convex, the sum of this gap
measure and the feasibility gives a bound on the dis-
tance to the set of optimal solutions. This is of key
practical importance since the applications that we con-
sider (e.g., minimization with trace norm constraints)
verify these assumptions.

The paper is organized as follows. In Sec. 2, we in-
troduce the general setting, provide some motivating
applications and present the augmented Lagrangian
formulation of our problem. In Sec. 3, we describe the
algorithm FW-AL and provide its analysis in Sec. 4.
Finally, we present illustrative experiments in Sec. 5.

2 Problem Setting

We will consider the following minimization problem,

minimize
x(1),...,x(k)

f(x(1), . . . ,x(k)) ,

s.t. x(k) ∈ Xk, k ∈ [K],

K∑
k=1

Akx
(k) = 0 ,

(OPT)

where f : Rm → R is a convex differentiable func-
tion and for k ∈ [K], Xk ⊂ Rdk are convex compact
sets and Ak are matrices of size d × dk. We will call
the constraint

∑K
k=1Akx

(k) = 0 the linear consistency
constraint, motivated by the marginalization consis-
tency constraints appearing in some of the applications
of our framework as described in Sec. 2.1. One im-
portant potential application is the intersection of
multiple sets. The simple K = 2 example can be
expressed with A1 = I and A2 = −I. We assume
that we have access to the linear minimization oracle
LMOk(r) ∈ arg mins∈Xk 〈s, r〉 , k ∈ [K]. We denote
by X ∗ the set of optimal points of the optimization
problem (OPT) and we assume that this problem is
feasible, i.e., the set of solutions is non empty.

2.1 Motivating Applications

We now present some motivating applications of our
problem setting, including examples where special case
versions of FW-AL were used. This previous work pro-
vides additional evidence for the practical significance
of the FW-AL algorithm.

Multiple sequence alignment and motif discovery (Yen
et al., 2016a) are problems in which the domain is de-
scribed as an intersection of alignment constraints and
consensus constraints, two highly structured polytopes.
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The LMO on both sets can be solved by dynamic pro-
graming whereas there is no known practical algorithm
to project onto. A factorwise approach to the dual of
the structured SVM objective (Yen et al., 2016b) can
also be cast as constrained problem over a Cartesian
product of polytopes related to each other by a linear
consistency constraint. As often in structured predic-
tion, the output domain grows exponentially, leading to
very high dimensional polytopes. Once again, dynamic
programming can be used to compute the linear oracle
in structured SVMs at a lower computational cost than
the potentially intractable projection. The algorithms
proposed by Yen et al. (2016a) and Yen et al. (2016b)
are in fact a particular instance of FW-AL, where the
objective function is respectively linear and quadratic.

Finally, simultaneously sparse (`1 norm constraint) and
low rank (trace norm constraint) matrices (Richard
et al., 2012) is another class of problems where the con-
straints consists of an intersection of sets with simple
LMO but expensive projection. This example is a novel
application of FW-AL and is developed in Sec. 5.

2.2 Augmented Lagrangian Reformula-
tion

It is possible to reformulate (OPT) into the prob-
lem of finding a saddle point of an augmented La-
grangian (Bertsekas, 1996), in order to split the con-
straints in a way in which the linear oracle is computed
over a product space. We first rewrite (OPT) as follows:

min
x(k)∈Xk, k∈[K]

f(x) s.t. Mx = 0 , (1)

where x :=
(
x(1), . . . ,x(K)

)
and M := [A1, . . . , Ak] is

such that,

Mx = 0⇔
K∑
k=1

Akx
(k) = 0 . (2)

We can now consider the augmented Lagrangian for-
mulation of (1), where y is the dual variable:

minimize
(x(1),...,x(K))

max
y∈Rd

L(x(1), . . . ,x(K),y)

s.t. x(k) ∈ Xk, k ∈ {1, . . . ,K}
L(x,y) := f(x) + 〈y,Mx〉+ λ

2 ‖Mx‖
2.

(OPT2)

We note X := X1 × · · · × XK ⊂ Rd1+...+dK = Rm for
notational simplicity. This formulation is the one onto
which our algorithm FW-AL is applied.

Notation and assumption. In this paper, we de-
note by ‖ · ‖ the `2 norm for vectors (resp. spectral

norm for matrices) and dist(x, C) := infx′∈C ‖x− x′‖
its associated distance to a set. We assume that f is
L-smooth on Rm, i.e., differentiable with L-Lipschitz
continuous gradient:

‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖ ∀x,x′ ∈ Rm . (3)

This assumption is standard in convex optimiza-
tion (Nesterov, 2004). Notice that the FW algorithm
does not converge if the objective function is not at
least continuously differentiable (Nesterov, 2016, Exam-
ple 1). In our analysis, we will also use the observation
that λ

2 ‖M · ‖
2 is generalized strongly convex.1 We say

that a function h is generalized strongly convex when
it takes the following general form:

h(x) := g(Ax) + 〈b,x〉 , ∀x ∈ Rm , (4)

where A ∈ Rd×m and g is µg-strongly convex w.r.t.
the Euclidean norm on Rd with µg > 0. Recall that a
µg-strongly (differentiable) convex function g : Rd → R
is one such that, ∀x,x′ ∈ Rd,

g(x) ≥ g(x′) + 〈x− x′,∇g(x′)〉+
µg
2
‖x− x′‖2 .

3 FW-AL Algorithm

Our algorithm takes inspiration from both Frank-Wolfe
and the augmented Lagrangian method. The aug-
mented Lagrangian method alternates a primal update
on x (approximately) minimizing2 the augmented La-
grangian L(·,yt), with a dual update on y by taking a
gradient ascent step on L(xt+1, ·). The FW-AL algo-
rithm follows the general iteration of the augmented
Lagrangian method, but with the crucial difference
that Lagrangian minimization is replaced by one Frank-
Wolfe step on L(·,yt). The algorithm is thus composed
by two loops: an outer loop presented in (6) and an
inner loop noted FW which can be chosen to be one
of the FW step variants described in Alg. 1 or 2.

FW steps. In FW-AL we need to ensure that the
FW inner loop makes sufficient progress. For general
sets, we can use one iteration of the classical Frank-
Wolfe algorithm with line-search (Jaggi, 2013) as given
in Algorithm 2. When working over polytopes, we can
get faster (linear) convergence by taking one non-drop
step (defined below) of the away-step variant of the FW

1This notion has been studied by Wang and Lin (2014)
and in the Frank-Wolfe framework by Beck and Shtern
(2016) and Lacoste-Julien and Jaggi (2015).

2An example of approximate minimization is taking
one proximal gradient step, as used for example, in the
Linearized ADMM algorithm (Goldfarb et al., 2013; Yang
and Yuan, 2013).
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Algorithm 1 Away-step Frank-Wolfe (one non-drop
step) : (Lacoste-Julien and Jaggi, 2015)

1: input: (x, S, A, ϕ) (ϕ is the objective)
2: drop_step ← true (initialization of the boolean)
3: while drop_step = true do
4: s← Lmo (∇ϕ(x))
5: v ∈ arg maxv∈S 〈∇ϕ(x),v〉
6: gFW ← 〈∇ϕ(x),x− s〉 (Frank-Wolfe gap)
7: gA ← 〈∇ϕ(x),v − x〉 (Away gap)
8: if gFW ≥ gA then (FW direction is better)
9: d← s− x and γmax ← 1

10: else (Away direction is better)
11: d← x− v and γmax ← αv/(1− αv)
12: end if
13: Compute γ∈arg minγ∈[0,γmax] ϕ (x+ γd)
14: if γ < γmax then (first non-drop step)
15: drop_step ← false
16: end if
17: Update x← x+ γd
18: Update αv according to (5)
19: Update S ← {v ∈ A s.t. αv > 0} (active set)
20: end while
21: return: (x,S)

Algorithm 2 FW(one step) : (Frank and Wolfe, 1956)

1: input: (x, ϕ)
2: Compute s← arg min

s∈X
〈s,∇ϕ(x)〉

3: γ ∈ arg minγ∈[0,1] ϕ(x+ γ(s− x))
4: Update x← (1− γ)x+ γs
5: return: x

algorithm (AFW) (Lacoste-Julien and Jaggi, 2015), as
described in Algorithm 1. Other possible variants are
discussed in Appendix A. We denote by xt and yt the
iterates computed by FW-AL after t steps and by At
the set of atoms previously given by the FW oracle
(including the initialization point). If the constraint
set is the convex hull of a set of atoms A, the iterate
xt has a sparse representation as a convex combination
of the first iterate and the atoms previously given by
the FW oracle. The set of atoms which appear in
this expansion with non-zero weight is called the active
set St. Similarly, since yt is by construction in the cone
generated by {Mxs}s≤t, the iterate yt is in the span
of MAt, that is, they both have the sparse expansion:

xt =
∑
v∈St

α(t)
v v, and yt =

∑
v∈At

ξ(t)
v Mv , (5)

When we choose to use the AFW Alg. 1 as inner
loop algorithm, it can choose an away direction to
remove mass from “bad” atoms in the active set, i.e.
to reduce α(t)

v for some v (see L11 of Alg. 1), thereby
avoiding the zig-zagging phenomenon that prevents

FW Augmented Lagrangian method (FW-AL)
At each iteration t ≥ 1, we update the primal variable
blocks xt with a Frank-Wolfe step and then update the
dual multiplier yt using the updated primal variable: xt+1 = FW(xt;L(·,yt)) ,

yt+1 = yt + ηtMxt+1 ,
(6)

where ηt > 0 is the step size for the dual update and
FW is either Alg. 1 or Alg. 2 (see more in App. A).

FW from achieving a faster convergence rate (Lacoste-
Julien and Jaggi, 2015). On the other hand, the max-
imal step size for an away step can be quite small
(γmax = α(t)

v /1−α(t)
v , where α(t)

v is the weight of the away
vertex in (5)), yielding to arbitrary small suboptimality
progress when the line-search is truncated to such small
step-sizes. A step removing an atom from the active
set is called a drop step (this is further discussed in
Appendix A), and Alg. 1 loops until a non-drop step is
obtained. It is important to be able to upper bound the
cumulative number of drop-steps in order to guarantee
the termination of the inner loop Alg. 1 (Alg. 1 ends
only when it performs a non-drop step). In App. A.1
we prove that the cumulative number of drop-steps
after t iterations cannot be larger than t+ 1.

4 Analysis of FW-AL

Solutions of (OPT2) are called saddle points, equiva-
lently a vector (x∗,y∗) ∈ X ×Rd is said to be a saddle
point if the following is verified for all (x,y) ∈ X ×Rd ,

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗) . (7)

Our assumptions (convexity of f and X , feasibility of
Mx = 0, and crucially boundedness of X ) are sufficient
for strong duality to hold (Boyd and Vandenberghe,
2004, Exercise 5.25(e)). Hence, the set of saddle points
is not empty and is equal to X ∗ ×Y∗, where X ∗ is the
set of minimizer of (OPT) and Y∗ the set of maximizers
of the augmented dual function d:

d(y) := min
x∈X
L(x,y) . (8)

One of the issue of ALM is that it is a non-feasible
method and thus the function suboptimality is no
longer a satisfying convergence criterion (since it can be
negative). In the following section, we explore alterna-
tives criteria to get a sufficient condition of convergence.
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4.1 Convergence Measures

Variants of ALM (also known as the methods of multi-
pliers) update at each iteration both the primal variable
and the dual variable. For the purpose of analyzing
the popular ADMM algorithm, Hong and Luo (2017)
introduced two positive quantities which they called
primal and dual gaps that we re-use in the analysis of
our algorithm. Let xt and yt be the current primal
and dual variables after t iterations of the FW-AL
algorithm (6), the dual gap is defined as

∆
(d)
t := d∗ − d(yt) where d(yt) := min

x∈X
L(x,yt) (9)

and d∗ := maxy∈Rd d(y). It represents the dual subop-
timality at the t-th iteration. On the other hand, the
“primal gap” at iteration t is defined as

∆
(p)
t := L(xt+1,yt)− d(yt), t ≥ 0 . (10)

Notice that ∆
(p)
t is not the suboptimality associated

with the primal function p(·) := maxy∈Rd L(·,y) (which
is infinite for every non-feasible x). In this paper, we
also define the shorthand,

∆t := ∆
(p)
t + ∆

(d)
t . (11)

It is important to realize that since ALM is a non-
feasible method, the standard convex minimization
convergence certificates could become meaningless. In
particular, the quantity f(xt)− f∗ might be negative
since xt does not necessarily belong to the constraint
set of (OPT). This is why it is important to consider
the feasibility ‖Mx‖2.

In their work, Yen et al. (2016a,b); Huang et al. (2017)
only provide a rate on both gaps (9) and (10) which
is not sufficient to derive guarantees on either how
close an iterate is to the optimal set or how small is
the suboptimality of the closest feasible point. In this
paper, we also prove the additional property that the
feasibility ‖Mx‖2 converges to 0 as fast as ∆t. But even
with these quantities vanishing, the suboptimality of
the closest feasible point can be significantly larger than
the suboptimality of a point ε-close to the optimum.
Concretely, let x ∈ X and let x̃ be its projection onto
{x ∈ X |Mx = 0}, since f is L-smooth we know that,

|f(x̃)− f(x)− 〈∇f(x), x̃− x〉 | ≤ L

2
‖x− x̃‖2 . (12)

On one hand, if the gradient is large and its angle
with x̃− x is not too small, f(x̃) may be significantly
larger than f(x). On the other hand, if ∇f(x) is not
too large, we can upper bound the suboptimality at x̃.
Concretely, by (12) we get,

f(x̃) ≤ f(x) + ‖∇f(x)‖‖x− x̃‖+
L

2
‖x− x̃‖2 . (13)

Moreover, since x̃ is the projection of x onto the
nullspace of M we have that,

‖Mx‖
σmax(M)

≤ ‖x− x̃‖ ≤ ‖Mx‖
σmin(M)

. (14)

Then, if ‖Mx‖ ≤ ε and f(x) ≤ ε we have that

f(x̃) ≤ (1 + ‖∇f(x)‖
σmin(M) + Lε

2σmin(M)2 )ε . (15)

The bound (15) is not practical when the function
appears to have gradients with large norms (which can
be the case even close to the optimum for constrained
optimization) or when M appears to have small non-
zero eigenvalues. This is why we also consider the case
where f is strongly convex, allowing us to provide a
bound on the distance to the optimum x∗ (unique due
to strong convexity).

4.2 Properties of the augmented La-
grangian dual function

The augmented dual function plays a key role in our
convergence analysis. One of our main technical contri-
bution is the proof of a new property of this function
which can be understood as a growth condition. This
property is due to the smoothness of the objective func-
tion and the compactness of the constraint set. We will
need an additional technical assumption called interior
qualification (a.k.a Slater’s conditions).
Assumption 1. ∃x(k) ∈ Relint(Xk), k ∈ [K] s.t.∑K

k=1Akx
(k) = 0.

Recall that x ∈ Relint(X ) if and only if x is an interior
point relative to the affine hull of X . This assumption is
pretty standard and weak in practice. It is a particular
case of constraint qualifications (Holmes, 1975; Gowda
and Teboulle, 1990). With this assumption, we can
deduce a global property on the dual function that can
be summarized as a quadratic growth condition on a
ball of size LλD2 and a linear growth condition outside
of this ball. The optimization literature named such
properties error bounds (Pang, 1997).
Theorem 1 (Error bound). Let d be the augmented
dual function (8), if f is a L-smooth convex function,
X a compact convex set and if Assump. 1 holds, then
there exist a constant α > 0 such that for all y ∈ Rd,

d∗−d(y) ≥ α2

2
min

{
dist(y,Y∗)2

LλD2
,dist(y,Y∗)

}
, (16)

where D := max(x,x′)∈X 2 ‖x − x′‖ is the diameter of
X and Lλ := L+ λ‖M>M‖.

This theorem, proved in App. C.1, is crucial to our
analysis. In our descent lemma (25), we want to relate
the gap decrease to a quantity proportional to the gap.
A consequence of (16) is a lower bound of interest: (26).
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Issue in previous proofs. In previous work, Yen
et al. (2016a, Theorem 2) have a constant called RY in
the upper bound of ∆t which may be infinite and lead
to the trivial bound ∆t ≤ ∞. Actually, RY is an upper
bound on the distance of the dual iterate yt to the
optimal solution set Y∗ of the augmented dual function.
Since this quantity is not proven to be bounded, an
element is missing in the convergence analysis. In
their convergence proof, Yen et al. (2016b) and Huang
et al. (2017) use Lemma 3.1 from Hong and Luo (2012)
(which also appears as Lemma 3.1 in the published
version (Hong and Luo, 2017)). This lemma states a
result not holding for all y ∈ Rd but instead for (yt)t∈N,
which is the sequence of dual variables computed by
the ADMM algorithm used in (Hong and Luo, 2017).
This sequence cannot be assimilated to the sequence
of dual variables computed by the GDMM algorithm
since the update rule for the primal variables in each
algorithm is different: the primal variable are updated
with FW steps in one algorithm and with a proximal
step in the other. The properties of this proximal step
are intrinsically different from the FW steps computing
the updates on the primal variables of FW-AL. To our
knowledge, there is no easy fix (details in App. B.1) to
get a similar result as the one claimed in (Yen et al.,
2016b, Lem. 4) and (Huang et al., 2017, Lem. 4).

4.3 Specific analysis for FW-AL

Convergence over general convex sets. When
X is a general convex compact set and f is L-smooth,
Algorithms 1 and 2 are able to perform a decrease on
the objective value proportional to the square of the
suboptimality (Jaggi, 2013, Lemma 5), (Lacoste-Julien
and Jaggi, 2015, (31)), we will call this a sublinear
decrease since it leads to a sublinear rate for the sub-
optimality: for any x ∈ X , y ∈ Rd they compute
x+ := FW(x;L(·,y)), such that for all γ ∈ [0, 1],

L(x+,y)−L(x,y) ≤ γ(d(y)− L(x,y))+
γ2LλD

2

2
,(17)

where Lλ is the Lipschitz constant of ∇L and D the
diameter of X . Recall that d(y) := minx′∈X L(x′,y).
Note that setting γ = 0 gives L(x+,y) ≤ L(x,y) and
optimizing the RHS respect to γ yields a decrease pro-
portional to (d(y)−L(x,y))2. The GDMM algorithm
of Yen et al. (2016a,b); Huang et al. (2017) relies on the
assumption of X being polytope, hence we obtain un-
der this general assumption of sublinear decrease a new
result on ALM with FW. This result covers the case of
the simultaneously sparse and low rank matrices (33)
where the trace norm ball is not a polytope.
Theorem 2 (Rate of FW-AL with Alg. 2). Under
Assumption 1, if X is a convex compact set and f
is a L-smooth convex function and M has the form

described in (2), then using any algorithm with sublin-
ear decrease (17) as inner loop in FW-AL (6) and
ηt := min

{
2
λ ,

α2

2δ

}
2
t+2 , we have that there exists a

bounded t0 ≥ 0 such that ∀t ≥ t1 ≥ t0,

∆t ≤
4δ(t0 + 2)

t+ 2
, min
t1≤s−1≤t

‖Mxs‖2 ≤
O(1)

t− t1 + 1
(18)

where D := maxx,x′∈X ‖x− x′‖ is the diameter of X ,
Lλ := L + λ‖M>M‖ the Lipschitz constant of ∇L,
δ := LλD

2 and α is defined in Thm. 1.

In App. D.2, we provide an analysis for different step
size schemes and explicit bounds on t0.

Convergence over Polytopes. On the other hand,
if X is a polytope and f a generalized strongly convex
function, recent advances on FW proposed global linear
convergence rates using FW with away steps (Lacoste-
Julien and Jaggi, 2015; Garber and Meshi, 2016). Note
that in the augmented formulation, λ > 0 and thus
1
2‖M · ‖

2 is a generalized strongly convex function,
making L(·,y) a generalized strongly convex function
for any y ∈ Rd (see App. A.3 for details). We can
then use such linearly convergent algorithms to im-
prove the rate of FW-AL. More precisely, we will use
the fact that Algorithm 1 performs a geometric de-
crease (Lacoste-Julien and Jaggi, 2015, Theorem 1):
for x+ := FW(x;L(·,y)), there exists ρA < 1 such
that for all x ∈ X and y ∈ Rd,

L(x+,y)−L(x,y) ≤ ρA
[

min
x′∈X

L(x′,y)−L(x,y)
]
.(19)

The constant ρA (Lacoste-Julien and Jaggi, 2015) de-
pends on the smoothness, the generalized strong con-
vexity of L(·,y) (does not depend on y, but depends
on M) and the condition number of the set X depend-
ing on its geometry (more details in App. A.3).

Theorem 3 (Rate of FW-AL with inner loop Alg. 1).
Under the same assumptions as in Thm. 2 and if more-
over X is a polytope and f a generalized strongly convex
function, then using Alg 1 as inner loop and a con-
stant step size ηt = λρA

4 , the quantity ∆t decreases by
a uniform amount for finite number of steps t0 as,

∆t+1 −∆t ≤ −
λα2ρA

8
, (20)

until ∆t0 ≤ LλD2. Then for all t ≥ t0 we have that the
gap and the feasibility violation decrease linearly as,

∆t ≤
∆t0

(1 + ρ)t−t0
, ‖Mxt+1‖2 ≤

16

λ · ρA
∆t0

(1 + ρ)t−t0
,

where ρ := min
{
ρA
2 ,

ρAλα
2

8LλD2

}
and Lλ := L+ λ‖M>M‖.



Gauthier Gidel, Fabian Pedregosa, Simon Lacoste-Julien

Strongly convex functions. When the objective
function f is strongly convex, we are able to give a
convergence rate for the distance of the primal iterate
to the optimum. As argued in Sec. 4.1, an iterate close
to the optimal point lead to a “better” approximate
solution than an iterate achieving a small gap value.

Theorem 4. Under the same assumptions as in
Thm. 2, if f is a µ-strongly convex function, then the
set of optimal solutions X ∗ is reduced to {x∗} and for
any t ≥ t1 ≥ 8t0 + 14,

min
t1+1≤s≤t+1

‖xt − x∗‖2 ≤
4

µ

O(1)

t− t1 + 1
. (21)

Moreover, if X is a compact polytope, and if we use
Alg. 1, then the distance of the current point to the
optimal set vanishes as (with ρ as defined in Thm. 3):

‖xt+1 − x∗‖2 ≤
2∆t0(

√
2 + 1)

µ(
√

1 + ρ)t−t0
+

O(1)

(1 + ρ)t−t0
. (22)

This theorem is proved in App. D (Cor. 2 and Cor. 3).
For an intersection of sets, the three theorems above
give stronger results than (Yen et al., 2016b; Huang
et al., 2017) since we prove that the distance to the
optimal point as well as the feasibility vanish linearly.

Proof sketch of Thm 2 and 3. Our goal is to ob-
tain a convergence rate on the sum gaps (9) and (10).
First we show that the dual gap verifies

∆
(d)
t+1 −∆

(d)
t ≤ −ηt 〈Mxt+1,M x̂t+1〉 (23)

where x̂t+1 := arg minx∈X L(x,yt+1). Similarly, we
prove the following inequality for the primal gap

∆
(p)
t+1 −∆

(p)
t ≤ ηt‖Mxt+1‖2

+ L(xt+2,yt+1)− L(xt+1,yt+1)

− ηt 〈Mxt+1,M x̂t+1〉 . (24)

Summing (23) and (24) and using that ‖Mxt+1 −
M x̂t+1‖2 ≤ 2

λ (L(xt+1,yt+1)− L(x̂t+1,yt+1)), we get
the following fundamental descent lemma,

∆t+1 −∆t ≤ L(xt+2,yt+1)− L(xt+1,yt+1)

+
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1))

− ηt‖M x̂t+1‖2 . (25)

We now crucially combine (16) in Thm. 1 and the fact
that ∆

(d)
t ≤ dist(yt,Y∗)‖M x̂t+1‖ to obtain,

α2

2LλD2 min{∆(d)
t+1, LλD

2} ≤ ‖M x̂t+1‖2 , (26)

and then,

∆t+1 −∆t ≤ L(xt+2,yt+1)− L(xt+1,yt+1)

+
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1))

− ηt α2

2LλD2 min{∆(d)
t+1, LλD

2} . (27)

Now the choice of the algorithm to get xt+2 from xt+1

and yt+1 is decisive:

If X is a polytope and if an algorithm with a geometric
decrease (19) is used, setting ηt = λ·ρA

4 we obtain

∆t+1 −∆t ≤ −
ρA
2

(L(xt+1,yt+1)− L(x̂t+1,yt+1))

− λ · ρA
4
‖Mxt+1‖2 .

Since L(xt+2,yt+1) ≤ L(xt+1,yt+1) (L13), we have

∆
(p)
t+1 ≤ L(xt+1,yt+1)− L(x̂t+1,yt+1) , (28)

leading us to a geometric decrease for all t ≥ t0,

∆t+1 ≤
∆t

1 + ρ
where ρ := ρA

2 min
{

1, λα2

8LλD2

}
. (29)

Additionally we can deduce from (25) that,

ηt‖M x̂t+1‖2 ≤ ∆t and ηt‖Mxt+1‖2 ≤ 4∆t . (30)

If X is not a polytope, we can use an algorithm with a
sublinear decrease (17) to get from (27) that ∀t ≥ 0 ,

∆t+1 −∆t ≤ −aηt min{∆t+1, δ}+ (aηt)
2C

2 , (31)

where a, δ and C are three positive constants. Setting
ηt = 2

a(t+2) we can prove that there exists t0 ≥ C
δ s.t.,

∆t+1 ≤
4δ(2 + t0)

(t+ 2)
, ∀t ≥ t0 . (32)

Providing the claimed convergence results.

5 Illustrative Experiments

Recovering a matrix that is simultaneously low rank
and sparse has applications in problems such as co-
variance matrix estimation, graph denoising and link
prediction (Richard et al., 2012). We compared FW-
AL with the proximal splitting method on a covariance
matrix estimation problem. We define the ‖·‖1 norm of
a matrix S as ‖S‖1 :=

∑
i,j |Si,j | and its trace norm as

‖S‖∗ :=
∑rank(S)
i=1 σi, where σi are the singular values

of S in decreasing order. Given a symmetric positive
definite matrix Σ̂ ∈ Rd×d we use the square loss as
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Figure 1: Fig. 1a represent the fraction of the support of Σ recovered as a function of time (d2 = 1.6 · 107 and the matrix
computed is thresholded at 10−2). The baseline is the generalized forward backward algorithm. FW-AL requires a small
enough step size η to recover the support otherwise it diverges (green curve) and does not require a lot of tuning for λ
(blue and orange curve). Fig 1b and 1c compare the matrices recovered for d2 = 106 after one minute of computation.
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Figure 2: Time complexity of the LMO vs. the projection
on the trace norm ball. The blue curve represents the time
spent by the generalized forward backward algorithm to
reach a better point than the one computed by FW-AL.

strongly convex objective for our optimization problem,

min
S�0,‖S‖1≤β1,‖S‖∗≤β2

‖S − Σ̂‖22 . (33)

The linear oracle for X1 := {S � 0, ‖S‖1 ≤ β1} is

LMOX1
(D) := β1

Eij+Eji
2 , (i, j) ∈ arg min

(i,j)∈[d]×[d]

Di,j+Dj,i

where (Eij) is the standard basis of Rd×d. The linear
oracle for X2 := {S � 0, ‖S‖∗ ≤ β2} is

LMOX2
(D) := β2 · U>1 U1 , (34)

where D = [U1, . . . , Ud] diag(σ1, . . . , σd) [U1, . . . , Ud]
>
.

For this problem, the matrix D is always symmet-
ric because the primal and dual iterates are symmet-
ric as well as the gradients of the objective function.
Eq. (34) can be computed efficiently by the Lanczos

algorithm (Paige, 1971; Kuczyński and Woźniakowski,
1992) whereas the forward backward splitting which
is the standard splitting method to solve (33) needs
to compute projections over the trace norm ball via a
complete diagonalization which is O(d3). For large d,
the full diagonalization becomes untractable, while the
Lanczos algorithm is more scalable and requires less
storage (see Fig. 2).

The experimental setting is done following Richard et al.
(2012): we generated a block diagonal covariance ma-
trix Σ to draw n vectors xi ∼ N (0,Σ). We use 5 blocks
of the form vv> where v ∼ U([−1, 1]). In order to en-
force sparsity, we only kept the entries (i, j) such that
|Σi,j | > .9. Finally, we add a gaussian noise N (0, σ)

on each entry xi and observe Σ̂ =
∑n
i=1 xix

T
i . In our

experiment n = d, σ = 0.6. We apply our method, as
well as the the generalized forward backward splitting
used by Richard et al. (2012). This algorithm is the
baseline in our experiments. It has been originally
introduced by Raguet et al. (2013), to optimize (33)
performing projections over the constraint sets. The
results are presented in Fig. 1 and 2. We can say that
our algorithm performs better than the baseline for
high dimensional problems for two reasons: in high
dimensions, only one projection on the trace norm ball
B∗ can take hours (green curve in Fig. 2) whereas solv-
ing a LMO over B∗ takes few seconds. Moreover, the
iterates computed by FW-AL are naturally sparse and
low rank, so we then get a better estimation of the
covariance matrix at the beginning of the optimization
as illustrated in Fig. 1b and 1c.
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A Frank-Wolfe inner Algorithms

A.1 Upper bound on the number of drop-steps

Proposition 1 (Sparsity of the iterates and upper bound on the number of drop-steps). The iterates computed
by FW-AL have the following properties,

1. After t iterations, the iterates xt (resp. yt) are a convex (resp. conic) combination of their initialization and
the oracle’s outputs (resp. times M) for the first t iterations.

2. If the algorithm FW is AFW (Alg. 1), and if we initialize our algorithm at a vertex, after t iterations of the
main loop the cumulative number of drop-steps performed in the inner algorithm 1 is upper bounded by t+ 1.

Proof. The first point comes from (5).

A drop step happens when γt = γmax in the away-step update L. 13 of Alg. 1. In that case, at least one vertex
is removed from the active set. The upper bound on the number of drop step can be proven with the same
technique as in (Lacoste-Julien and Jaggi, 2015, Proof of Thm. 8). Let us call At the number of FW steps (which
potentially adds an atom in St) and Dt the number of drop-steps, i.e., the number of away steps where at least
one atom from St have been removed (and thus γt = γmax for these). Considering FW-AL with AFW after t
iterations we have performed t non drop-steps in the inner loop, since it is the condition to end the inner loop,
then

At ≤ t, and At −Dt + |S0| ≥ |St| ≥ 0 . (35)

Since by assumption |S0| = 1, this leads directly to Dt ≤ At + 1 ≤ t+ 1.

A.2 Other FW Algorithms Available

Any Frank-Wolfe algorithm performing geometric decrease (19) or sublinear decrease (17) can be used an inner
loop algorithm. For instance, the block-coordinate Frank-Wolfe method (Lacoste-Julien et al., 2013) performs a
sublinear decrease in expectation and the fully-corrective Frank-Wolfe method (Lacoste-Julien and Jaggi, 2015)
or Garber and Meshi (2016)’s algorithm perform a geometric decrease.

A.3 Constants for the sublinear and geometric decrease

In order to be self-contained, we will introduce the definitions of the constants introduced in the definition of
sublinear decrease (17) and geometric decrease (19).

Sublinear Decrease. Let us first recall Equation (17) describing the sublinear decrease:

L(x+,y)− L(x,y) ≤ −γ
(
L(x,y)− min

x′∈X
L(x′,y)

)
+ γ2LλD

2

2
.

The sublinear decrease is a consequence of the standard descent lemma (Nesterov, 2004, (1.2.5)). The constant
Lλ is the smoothness of L and D the diameter of X . This property has been proved for the block-coordinate
Frank-Wolfe method3 (Lacoste-Julien et al., 2013), usual Frank-Wolfe (Jaggi, 2013) and Frank-Wolfe with
away-step (Lacoste-Julien and Jaggi, 2015).

If f is L-smooth we have that the function L(·,y) is Lλ := L+ λ‖M>M‖-smooth for any y ∈ Rd, and then,

LλD
2 ≤

(
L+ λ‖M>M‖

)
D2
X . (36)

Recall that, for matrices ‖ · ‖ is the spectral norm.
3For BCFW, the sublinear decrease is valid on the expectation of the suboptimality, then the proofs with this algorithm

as an inner-loop require a bit of extra work.



Frank-Wolfe Splitting via Augmented Lagrangian Method

Geometric Decrease. If the function f is a generalized strongly convex function, then L(·,y) is also a
generalized strongly convex function. More generally, let h1 and h2 be two generalized strongly convex functions.
Then according to the definition (4), there exist A1, A2, b1, b2 and two strongly convex functions g1, g2 such that,
h1(x) = g1(A1x) + 〈b1,x〉 and h2(x) = g2(A2x) + 〈b2,x〉. Thus,

h1(x) + h2(x) = g1(A1x) + 〈b1,x〉+ g2(A2x) + 〈b2,x〉 = g(Ax) + 〈b,x〉 , (37)

where Ax = [A1x;A2x], b = [b1; b2] and g([u;v]) = g1(u) + g2(v). The function g is strongly convex by strong
convexity of g1 and g2.

We can say that since L(·,y) is a generalized strongly convex function (with a constant uniform on y) and X a
polytope, we have the geometric descent lemma from Lacoste-Julien and Jaggi (2015, Theorem 1). The constant
ρA is the following

ρA :=
µλ

4Lλ

(
δX
DX

)2

, (38)

where µλ and Lλ are respectively the generalized strong convexity constant (Lacoste-Julien and Jaggi, 2015,
Lemma 9) and the smoothness constant of x 7→ f(x) + λ

2 ‖Mx‖
2, and DX and δX are respectively the diameter

and the pyramidal width of X as defined by Lacoste-Julien and Jaggi (2015). Note that if M is full rank, the
strong convexity constant µ is lower bounded by λσ2

min where σ2
min is the smallest singular value of M . Otherwise,

if M is not full rank, one can still use the lower bound on the generalized strong convexity constant given by
Lacoste-Julien and Jaggi (2015, Lemma 9).

B Previous work

B.1 Discussion on previous proofs

The convergence result stated by Yen et al. (2016a, Theorem 2) is the following (with our notation)

∆
(p)
t + ∆

(d)
t ≤

ω

t
where ω :=

4

1− ρA
max

(
∆

(p)
0 + ∆

(d)
0 , 2R2

Y /λ
)
, (39)

and RY := supt≥0 dist(yt,Y∗). This quantity was introduced in the last lines of the appendix without any
mention to its boundedness. In our opinion, it is as challenging to prove that this quantity is bounded as to prove
that ∆t converges.

In more recent work, Yen et al. (2016b) and Huang et al. (2017) use a different proof technique in order to prove
a linear convergence rate for their algorithm. In order to avoid getting the same problematic quantity RY , they
use Lemma 3.1 from (Hong and Luo, 2012) (which also appears as Lemma 3.1 in the published version (Hong
and Luo, 2017)). This lemma states a result not holding for all y ∈ Rd but instead for (yt)t∈N, which is the
sequence of dual variables computed by the algorithm introduced in (Hong and Luo, 2017). This sequence cannot
be assimilated to the sequence of dual variables computed by the GDMM algorithm since the update rule for the
primal variables in each algorithm is different: the primal variable are updated with FW steps in one algorithm
and with a proximal step in the other. The properties of this proximal step are intrinsically different from the
FW steps computing the updates on the primal variables of FW-AL. One way to adapt this Lemma for FW-AL
(or GDMM) would be to use (Hong and Luo, 2017, Lemma 2.3 c). Unfortunately, this result is local (only true
for all y ∈ Y such that ‖∇d(y)‖ ≤ δ with δ fixed), whereas a global result (true for all δ) seems to be required
with the proof technique used in (Yen et al., 2016b; Huang et al., 2017). It is also mentioned in (Hong and Luo,
2017, proof of Lemma 2.3 c) that “if in addition y also lies in some compact set Y, then the dual error bound
hold true for all y ∈ Y” then showing that RY is bounded would fix the issue, but as we mentioned before, we
think that this is at least as challenging as showing convergence of ∆t. To our knowledge, there is no easy fix to
get a result as the one claimed by Yen et al. (2016b, Lemma 4) or Huang et al. (2017, Lemma 4).
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B.2 Comparison with UniPDGrad

The Universal Primal-Dual Gradient Method (UniPDGrad) by Yurtsever et al. (2015) is a general method to
optimize problem of the form,

min
u∈C
{f̃(u) : Au− b ∈ K} , (40)

where f is a convex function, A is a matrix, b a vector and C and K two closed convex sets. (OPT) is a particular
case of their framework. There exist many ways to reformulate their framework for our application, but most of
them are not practical because they require too expensive oracles. If the problem,

arg min
x∈X

f(x) + 〈y,Mx〉 (41)

is easy to compute (which is not the case in practice most of the time but happens when f is linear) then we can
set C = X , K = {0}, u = x, A = M and f̃ = f . Otherwise, we propose the reformulation that seemed to be the
most relevant, this is the reformulation used in their experiments (Yurtsever et al., 2015, Eq.19 & 41). If we set
K = {0}, C = Rp ×X , u = (x, r), b = 0, f̃(u) = f(r) and A such that Au = (Mx,x− r) we get,

min
r∈Rp,x∈X

{f(r) : x = r, Mx = 0} , (42)

which is a reformulation of (OPT). They derive their algorithm optimizing the (negative) Lagrange dual function
g. The Lagrange function is,

L(x, r,y,λ) := f(r)− 〈λ, r − x〉+ 〈y,Mx〉 (43)

where λ is the dual variable associated with the constrain r = x. Then, the (negative) Lagrange dual function is,

g(λ,y) = − min
x∈X ,r∈Rp

f(r)− 〈λ, r − x〉+ 〈y,Mx〉

= − min
r∈Rp

f(r)− 〈λ, r〉 − min
x∈X

〈
M>y + λ,x

〉
= −f∗(λ)− min

x∈X

〈
M>y + λ,x

〉
. (44)

Their algorithm optimizes this dual function. Computing the subgradients of the function g requires to compute
the Fenchel conjugate of f and a LMO.

Note that FW-AL does not require the efficient computation of the Fenchel conjugate.

UniPDGrad computes different updates than FW-AL and require different assumptions for the theoretical
guaranties. Particularly, Yurtsever et al. (2015) assume the Hölder continuity of the dual function g. Since,
in practice, the LMO is not better than 0-Hölder continuous (i.e. has bounded subgradient), we have to also
assume that f∗ has bounded subgradients to insure the 0-Holder continuity of the dual function. By duality, if
the subgradients of f∗ are bounded then the support of f is bounded. It is a strong assumption if we want to be
able to compute the Fenchel conjugate of f . Nevertheless, it seems that their proof could be extended to a dual
function g written as a sum of Hölder continuous functions with different Hölder continuity parameters. It would
extend UniPDGrad convergence result to f strongly convex (f∗ 1-Hölder continuous).

In terms of rate both algorithms are hard to compare since the assumptions are different but in any case the
analysis of UniPDGrad does not provide a geometric convergence rate when the constraint set X is a polytope
(and f a generalized strongly convex function).

It remains an open question to explore more in details and compare all the possible reformulation of (40) to
optimize (OPT) with UniPDGrad.

C Technical results on the Augmented Lagrangian formulation

Let us recall that the Augmented Lagrangian function is defined as

L(x,y) := f(x) + 1X (x) + 〈y,Mx〉+ λ
2 ‖Mx‖

2 , ∀(x,y) ∈ Rm × Rd , (45)
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where f is an L-smooth function, 1X is the indicator function over the convex compact set X := X1×. . .×XK ⊂ Rm,
M is the matrix defined in (1), and m = d1 + . . .+ dK . The augmented dual function d is

d(y) := min
x∈X
L(x,y) . (46)

Strong duality ensures that X ∗ × Y∗ is the set of saddle points of L where X ∗ is the optimal set of the primal
function p defined as,

p(x) := max
y∈Rd

L(x,y) (47)

and Y∗ is the optimal set of d. In this section we will first prove that the augmented dual function is smooth and
have a property similar to strong convexity around its optimal set. It will be useful for subsequent analyses to
detail the properties of the augmented Lagrangian function L.

C.1 Proof of Theorem 1

In this section we prove Theorem 1. We start with some properties of the dual function d. This function can be
written as the composition of a linear transformation and the Fenchel conjugate of

fλ(x) := f(x) +
λ

2
‖Mx‖2 + 1X (x) , (48)

where 1X is the indicator function of X . More precisely, if we denote by ? : f 7→ f∗ the Fenchel conjugate
operator, then we have,

d(y) := min
x∈Rm

L(x,y) = − max
x∈Rm

〈
−M>y,x

〉
− fλ(x) = −f?λ(−M>y) . (49)

Smoothness of the augmented dual function. The smoothness of the augmented dual function is due
to the duality between strong convexity and strong smoothness (Rockafellar and Wets, 1998). In order to be
self-contained, we provide the proof of this property given by Hong and Luo (2017).

Proposition 2 (Lemma 2.2 (Hong and Luo, 2017)). If f is convex, the dual function d (46) is 1/λ-smooth, i.e.,

∇d(y) = M x̂(y), where x̂(y) ∈ arg min
x∈X

L(x,y) , ∀y ∈ Rd , (50)

and
‖∇d(y)−∇d(y′)‖ ≤ 1

λ
‖y − y′‖ ∀y,y′ ∈ Rd . (51)

Proof. We will start by showing that the quantity M x̂(y) has the same value for all x̂(y) ∈ arg minx∈X L(x,y).
We reason by contradiction and assume there exists x,x′ ∈ arg minx∈X L(x,y) such that Mx 6= Mx′. Then by
convexity of f and strong convexity of ‖ · ‖2 we have that

d(y) =
1

2
L(x,y) +

1

2
L(x′,y) > f(x̄) + 〈y,M x̄〉+

λ

2
‖M x̄‖2 = L(x̄,y) , (52)

where x̄ := x+x′

2 and the inequality is strict because we assumed Mx 6= Mx′. This contradict the assumption
that x,x′ ∈ arg minx∈X L(x,y). To conclude, Danskin (1967)’s Theorem claims that ∂d(y) = {M x̂(y), | x̂(y) ∈
arg minx∈X L(x,y)} which is a singleton in that case. The function d is then differentiable.

For the second part of the proof, let y,y′ ∈ Rm and let x,x′ ∈ X be two respective minimizers of L(·,y) and
L(·,y′). Then by the first order optimality conditions we have

〈∇f(x) +M>y + λM>Mx,x′ − x〉 ≥ 0, 〈∇f(x′) +M>y′ + λM>Mx′,x− x′〉 ≥ 0 . (53)

Adding these two equation gives,

〈∇f(x)−∇f(x′) +M>(y − y′) + λM>M(x− x′),x′ − x〉 ≥ 0 , (54)
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but since f is convex, 〈∇f(x)−∇f(x′),x− x′〉 ≥ 0, and so

〈y − y′,M(x′ − x)〉 ≥ −λ 〈M(x− x′),M(x′ − x)〉 . (55)

Finally, by the Cauchy-Schwarz inequality, we have

‖y − y′‖ ≥ λ‖Mx−Mx′‖ = λ‖∇d(y)−∇d(y′)‖ . (56)

Error bound on the augmented dual function. After having proved that the dual function is smooth, we
will derive an error bound (Pang, 1997, 1987) on this function. Error bounds are related the Polyak-Łojasiewic
(PL) condition first introduced by Polyak (1963) and the same year in a more general setting by Łojasiewicz (1963).
Recently, convergence under this condition has been studied with a machine learning perspective by Karimi et al.
(2016).

Recall that, in this section, our goal is to prove Thm. 1. We start our proof with lemma using the smoothness of
L.

Lemma 1. Let d be the augmented dual function (49), if f is a L-smooth convex function and X a compact
convex set, then for all y ∈ Rd and y∗ ∈ Y∗,

d∗ − d(y) ≥ 1

2LλD2
min

(
max
x∈X
〈y∗ − y,Mx〉2 , LλD2 max

x∈X
〈y∗ − y,Mx〉

)
(57)

where D := max(x,x′)=∈X 2 is the diameter of X and Lλ := L+ λ‖M>M‖.

Proof. Let us consider x ∈ X ⊂ Rp, n ∈ ∂fλ(x) a subgradient of fλ and the function gx defined as:

gx(u) := fλ(u+ x)− fλ(x)− 〈u,n〉 ,∀u ∈ Rp . (58)

Since f + λ
2 ‖M · ‖

2 is Lλ-smooth, we have that gx(u) ≤ Lλ
2 ‖u‖

2 + 1X (u+ x) =: hx(u), ∀u ∈ Rm. By standard
property of Fenchel dual (see for instance (Shalev-Shwartz and Singer, 2010, Lemma 19)) we know that

gx(u) ≤ hx(u), ∀u ∈ Rm ⇒ g?x(v) ≥ h?x(v) , ∀v ∈ Rm . (59)

Dual computations give us for all v,

g?x(v) = max
u∈Rm

[〈u,v〉 − fλ(u+ x) + 〈u,n〉] + fλ(x)

= max
u∈Rm

[〈u,v + n〉 − fλ(u+ x)] + fλ(x)

= f?λ(v + n) + fλ(x)− 〈x,v + n〉
= f?λ(v + n)− f?λ(n)− 〈x,v〉 , (60)

where in he last line we used that ∀n ∈ ∂fλ(x), 〈x,n〉 = fλ(x) + f?λ(n) (for a proof see for instance, (Shalev-
Shwartz and Singer, 2010, Lemma 17)).

By strong duality we have that X ∗×Y∗ is the set of saddle points, where X ∗ and Y∗ are respectively the optimal
sets of p(·) and d(·), respectively introduced in (47) and (46). In the following we will fix a pair (x∗,y∗) ∈ X ∗×Y∗.
Then by the stationary conditions we have

M>y∗ ∈ −∂fλ(x∗), and Mx∗ = 0 . (61)

Equivalently, there exist n ∈ ∂fλ(x∗) such that

n = −M>y∗ . (62)
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For all y∗ ∈ Y∗ we can set x = x∗ and n ∈ ∂fλ(x∗) such that n = −M>y∗ in (58) to get the following inequality,

d∗ − d(v + y∗) = f?λ(−M>v −M>y∗)− f?λ(−M>y∗)
(62)
= f?λ(−M>v + n)− f?λ(n)

(61)
= f?λ(−M>v + n)− f?λ(n)−

〈
x∗,−M>v

〉
(60)
= g?(−M>v)

(59)
≥ h?x∗(−M>v) , ∀v ∈ Rd , (63)

where for all v ∈ Rd,

h?x∗(−M>v) := max
x∈Rm

[
〈
x,−M>v

〉
− hx∗(x)] (64)

= max
x∈Rm

[
〈
x,−M>v

〉
− Lλ

2
‖x‖2 − 1X (x+ x∗)] (65)

= max
x+x∗∈X

[
〈
x,−M>v

〉
− Lλ

2
‖x‖2] (66)

Let us choose y ∈ Rd and set v = y − y∗, where y∗ = PY∗(y). Then combining (63) and (66) we get for all
x ∈ X , and γ ∈ [0, 1] that γx+ (1− γ)x∗ ∈ X and then,

d∗ − d(y) ≥
[
−γ
〈
M>(y − y∗),x− x∗

〉
− Lλ

2
γ2‖x− x∗‖2

]
(67)

≥ 1

2

[
2γ 〈y − y∗,−Mx〉 − γ2LλD

2
]
, (68)

where D := max(x,x′)∈X 2 ‖x− x′‖ is the diameter of X . Since d∗ ≥ d(y) the last equation can give a non trivial
lower bound when maxx∈X 〈y − y∗,−Mx〉 > 0, we will now prove that is it always the case when y /∈ Y∗.

In this proof, for x ∈ X we note NXc (x) the normal cone to X at x defined as

NXc (x) := {u ∈ Rm | 〈u,x− x′〉 ≥ 0 , ∀x′ ∈ X} (69)

the reader can refers to (Bauschke and Combettes, 2011) for more properties on the normal cone. If y /∈ Y∗, then
the necessary and sufficient stationary conditions lead to (recall that Mx∗ = 0)

∇f(x∗) +M>y /∈ −NXc (x∗) , (70)

that is, there exist x ∈ X such that
〈
∇f(x∗) +M>y,x− x∗

〉
< 0. Using (62) gives

0 >
〈
∇f(x∗) +M>y,x− x∗

〉
(62)
=
〈
−M>y∗ − u+M>y,x− x∗

〉
≥ 〈y − y∗,Mx〉 ,

(71)

where for the last inequality we use the fact that u ∈ NXc (x∗) and Mx∗ = 0. Then we have

max
x∈X
〈y − y∗,−Mx〉 > 0, ∀y /∈ Y∗ . (72)

Optimizing Eq. (68) with respect to γ ∈ [0, 1] we get the following:

• If 0 < maxx∈X 〈y∗ − y,Mx〉 ≤ LλD
2, the optimum of (68) is achieved for γ = maxx∈X 〈y∗−y,Mx〉

LλD2 ≤ 1 and
we have,

d∗ − d(y) ≥ 1

2LλD2
max
x∈X
〈y∗ − y,Mx〉2 , (73)

• Otherwise, if maxx∈X 〈y∗ − y,Mx〉 > LλD
2, the optimum of (68) is achieved for γ = 1, giving

d∗ − d(y) ≥ 1

2
max
x∈X

[
2 〈y∗ − y,Mx〉 − LλD2

]
≥ 1

2
max
x∈X
〈y∗ − y,Mx〉 . (74)
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Combining both cases leads to

d∗ − d(y) ≥ 1

2LλD2
min

(
max
x∈X
〈y∗ − y,Mx〉2 , LλD2 max

x∈X
〈y∗ − y,Mx〉

)
. (75)

Since our goal is to get an error bound on the dual function d we divide and multiply by ‖y − y∗‖ the quantities
maxx∈X 〈y∗ − y,Mx〉 in (75), making appear the desired norm and a constant α defined as

α := inf
y∈Rd\Y∗

y∗=PY∗ (y)

sup
x∈X

〈
y∗ − y
‖y∗ − y‖

,Mx

〉
. (76)

Recall that y∗ := PY∗(y) and consequently ‖y − y∗‖ = dist(y,Y∗). Our goal is now to show that α > 0.

Proof that α is positive. In order to prove that α is positive we need to get results on the structure of Y∗.
First, let us start with a topological lemma,

Lemma 2. Let (Ck)k∈[K] be a collection of nonempty convex sets. We have that

0 ∈ Relint(Ck) , k ∈ [K]⇒ 0 ∈ Relint

(
K
+
k=1

Ck

)
. (77)

Proof. In order to prove this result we will prove two intermediate results. Recall that the cone Cone(C) generated
by a convex set C is defined as

Cone(C) := {λx : x ∈ C} . (78)

For more details on the topological properties of the convex set set for instance (Rockafellar, 1970).

• The first one is a characterization:

0 ∈ Relint(C)⇔ Cone(C) = Span(C) . (79)

⇒: Let x ∈ C,

x ∈ Span(C)⇒ ∃λi ∈ R, xi ∈ C, i ∈ {1, . . . , n} s.t. x =

n∑
i=1

λixi

⇒ ∃λi ∈ R, xi ∈ C, i ∈ {1, . . . , n} s.t. x = λ

n∑
i=1

λixi
λ

, λ > 0

⇒ ∃λ > 0 , x̃i ∈ C , i ∈ {1, . . . , n} s.t. x = λ

n∑
i=1

x̃i

⇒ x ∈ Cone(C) .

where the last line is due to the fact that for λ small enough λixi
λ ∈ C because 0 ∈ Relint(C).

By definition we have that Cone(C) ⊂ Span(C).
Then, we have proved that 0 ∈ Relint(C)⇒ Cone(C) = Span(C)

⇐: If Relint(C) = {0}, then {0} = Relint(C) = Cone(C) = Span(C).
Otherwise, let x ∈ Relint(C) \ {0}, using our hypothesis we have that,

−x ∈ Span(C) = Cone(C)⇔ 0 ∈ Cone(C) + x . (80)

Then there exist x′ ∈ C and λ > 0 such that,

0 = λx′ + x⇔ 0 =
λ

1 + λ
x′ +

1

1 + λ
x . (81)

Since 1 ≥ 1
1+λ > 0 and x ∈ Relint(C), we have by (Rockafellar, 1970, Theorem 6.1) that 0 ∈ Relint(C).
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• The second one is a property on the sum of the convex cones generated by (Ck):

0 ∈ Relint(Ck) , k ∈ {1, . . . ,K} ⇒
K
+
k=1

Cone(Ck) = Cone

(
K
+
k=1

Ck

)
. (82)

Let, then,

x ∈
K
+
k=1

Cone(Ck)⇔ ∃x̃k ∈ Cone(Ck), k ∈ {1, . . . ,K} s.t. x =

k∑
k=1

x̃k

⇔ ∃xk ∈ Ck, λk ∈ R , k ∈ {1, . . . ,K} s.t. x =

k∑
k=1

λkxk

⇔ ∃xk ∈ Ck, λk ∈ R , k ∈ {1, . . . ,K} s.t. x = λ

k∑
k=1

λkxk
λ

, λ > 0

⇔ x ∈ Cone

(
K
+
k=1

Ck

)
.

For the last equivalence we used that 0 ∈ Relint(Ck) , k ∈ {1, . . . ,K}.

Now we can prove our lemma using (79) and (82):

0 ∈ Relint(Ck) , k ∈ [K]
(79)⇒ Cone(Ck) = Span(Ck) , k ∈ [K]

0 ∈ Relint(Ck) , k ∈ [K]
(82)⇒ Cone

(
K
+
k=1

Ck

)
=

K
+
k=1

Cone(Ck) =
K
+
k=1

Span(Ck) = Span

(
K
+
k=1

Ck

)
(79)⇒ 0 ∈ Relint

(
K
+
k=1

Ck

)

Let us recall the supplementary assumption needed to prove Theorem 1.

Assumption’ 1. ∃ x̄(k) ∈ Relint(Xk), k ∈ {1, . . . ,K}, s.t.,
∑K
k=0Akx̄

(k) = 0.

This assumption is required in the proof of the following lemma,

Lemma 3. Under Assumption 1, the optimal set Y∗ of the augmented dual function d(·) (49) can be written as

Y∗ = K + V , (83)

where V := ∩Kk=1

(
Ak(Span(Xk − x̄(k)))

)⊥ and K ⊂ V ⊥ is a compact set.

We define Span(Xk − x̄(k)) as the linear span of the feasible direction from x̄(k). Since x̄(k) is a relative interior
point of the convex Xk we have Span(Xk − x̄(k)) = {λ(x(k) − x̄(k)) : x(k) ∈ Xk, λ > 0}.

Proof. For any x∗ ∈ X ∗, a necessary and sufficient condition for any y∗ to be in Y∗ is

∇f(x∗) +M>y∗ ∈ −Nc(x∗) , (84)

meaning that
−A>k y∗ ∈ NXkc (x∗) +∇x(k)f(x∗) , k ∈ {1, . . . ,K} . (85)

Then noting gk := ∇x(k)f(x∗) + λMx we have the following equivalences,

y∗ ∈ Y∗ ⇔ −A>k y∗ ∈ NXkc (x∗) + gk , k ∈ {1, . . . ,K}
⇔ A>k y

∗ + gk ∈ −NXkc (x∗) , k ∈ {1, . . . ,K}

⇔
〈
−A>k y∗ − gk,x(k) − (x∗)(k)

〉
≤ 0 ; ∀x(k) ∈ Xk , k ∈ {1, . . . ,K}

⇔
〈
−y∗, Ak(x(k) − (x∗)(k))

〉
≤
〈
gk,x

(k) − (x∗)(k)
〉

; ∀x(k) ∈ Xk , k ∈ {1, . . . ,K}
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Then we can notice that if we write y∗ = y∗1 + y∗2 with y∗1 ∈ V := ∩Kk=1

(
Ak(Span(Xk − x̄(k))

)⊥ and y∗2 ∈ V ⊥ we
get,

y∗ ∈ Y∗ ⇔
〈
−y∗2 , Ak(x(k) − (x∗)(k))

〉
≤
〈
gk,x

(k) − (x∗)(k)
〉

; ∀x(k) ∈ Xk , k ∈ [K] . (86)

Note that there is no conditions on y∗1 .

Let us get a necessary condition on y∗2 . Eq. (86) implies,

y∗ ∈ Y∗ ⇒

〈
−y∗2 ,

K∑
k=1

Ak(x(k) − (x∗)(k))

〉
≤

K∑
k=1

〈
gk,x

(k) − (x∗)(k)
〉

; ∀x(k) ∈ Xk , k ∈ [K]

⇒

〈
−y∗2 ,

K∑
k=1

Ak(x(k) − (x∗)(k))

〉
≤

K∑
k=1

‖gk‖‖x(k) − (x∗)(k)‖ ; ∀x(k) ∈ Xk , k ∈ [K]

⇒

〈
−y∗2 ,

K∑
k=1

Ak(x(k) − x̄(k))

〉
≤

K∑
k=1

‖gk‖diam(Xk) ; ∀x(k) ∈ Xk , k ∈ [K] ,

(x∗ and x̄ are feasible, i.e.,
K∑
k=1

Akx̄
(k) =

K∑
k=1

Ak(x∗)(k) = 0)

where x̄(k) ∈ Relint(Xk), k ∈ [K] and M x̄ = 0 (Assump. 1). Moreover, since V := ∩Kk=1

(
Ak(Span(Xk − x̄(k)))

)⊥
we have that V ⊥ =

K
+
k=1

Ak(Span(Xk − x̄(k))). Then by Lemma 2,

x̄ ∈ Relint(X )⇒ 0 ∈ Relint(Ak(Xk − x̄(k))) k ∈ {1, . . . ,K}
(77)⇒ 0 ∈ Relint

(
K
+
k=1

Ak(Xk − x̄(k))

)
,

and consequently, there exists δ > 0 such that for all y∗2 ∈
K
+
k=1

Ak(Span(Xk − x̄(k))), we can set x(k) ∈ Xk such

that
∑K
k=1Ak(x(k) − x̄(k)) = −δy∗2/‖y∗2‖. Finally, we get that,

y∗ ∈ Y∗ ⇒ δ 〈y∗2 ,y∗2/‖y∗2‖〉 ≤
K∑
k=1

‖gk‖diam(Xk)⇒ ‖y∗2‖2 ≤
K∑
k=1

‖gk‖diam(Xk)

δ
. (87)

Thus K ⊂ V ⊥ is bounded and consequently compact (because Y∗ is closed).

Proposition 3. If Assumption 1 holds, then the set of normal directions to Y∗,

D :=
{
d : d ∈ NY

∗

c (y∗) for y∗ ∈ Y∗ , ‖d‖ = 1
}
, (88)

is closed and consequently compact.

Proof. Let us first show that,

D = {y − PY∗(y) : y ∈ Rd ; ‖y − PY∗(y)‖ = 1} . (89)

Let y ∈ Rd \Y∗, by definition of the normal cone and the projection onto a convex set, we have that y−PY∗(y) ∈
NY

∗

c (PY∗(y)). Conversely, for any y∗ ∈ Y∗ and d ∈ NY∗c (y∗) such that ‖d‖ = 1, we have that y∗ = PY∗(y
∗ + d)

and y∗ + d /∈ Y∗.

With the same notation as Lemma 3, we can write y ∈ Rd a unique way as y = y1 + y2 where y1 ∈ V and

y2 ∈ V ⊥. Then since Y∗ = V
⊥
+K we get that PY∗(y) = y1 + κ where κ ∈ K. Then y − PY∗(y) = y2 − κ where

PK(y2) = κ. Conversely, for any couple (y2, κ) ∈ V ⊥ ×K such that PK(y2) = κ, we have that y2 − κ ∈ NKc (κ).

If we call φ : y 7→ y − PK(y), then D = φ(A) where A = {y2 ∈ V ⊥ ; dist(y2,K) = 1} is a compact (because K is
compact). Then since φ is continuous, D is a compact.
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Now we can apply this result to bound the α constant introduced in Eq. (76). We notice that using (89), we can
write that definition as

α = inf
y∈Rd\Y∗

y∗=PY∗ (y)
d=y∗−y, ‖d‖=1

sup
x∈X
〈d,Mx〉 . (90)

The function d 7→ supx∈X 〈d,Mx〉 is convex (as a supremum of convex function) and then is continuous on the
interior of its domain which is Rd because X is bounded. Since D is compact, the infimum is achieved. Then,
there exist y ∈ (Rd \ Y∗)× Y∗ such that, y∗ = PY∗(y), ‖y∗ − y‖ = 1 and,

α = max
x∈X
〈y∗ − y,Mx〉 . (91)

By Equation (72), since y is non optimal, we conclude that α > 0.

Proof of Thm. 1 and a Corollary.

Theorem’ 1. Let d be the augmented dual function (49), if f is a L-smooth convex function and X a compact
convex set and if Assumption 1 holds, then for all y ∈ Rd there exist a constant α > 0 such that,

d∗ − d(y) ≥ 1

2LλD2
min

{
α2 dist(y,Y∗)2, αLλD

2 dist(y,Y∗)
}
, (92)

where D := maxx,x′∈X ‖x− x′‖ is the diameter of X .

Proof. Recall that we proved

d∗ − d(y) ≥ 1

2LλD2
min

(
max
x∈X
〈y∗ − y,Mx〉2 , LλD2 max

x∈X
〈y∗ − y,Mx〉

)
, (93)

and that α defined in (76) was positive (??). Then for all y /∈ Y∗,

d∗ − d(y) ≥ 1

2LλD2
min

(
α2 dist(y,Y∗)2, LλD

2α dist(y,Y∗)
)
. (94)

The same result is trivially true for y ∈ Y∗ (since in that case we have d(y) = d∗).

This Theorem leads to an immediate corollary on the norm of the gradient of d.

Corollary 1. Under the same assumption as Theorem 1, for all y ∈ Rd there exist a constant α such that,

‖∇d(y)‖ ≥ 1

2LλD2
min{α2 dist(y,Y∗), αLλD2} and ‖∇d(y)‖ ≥ α√

2LλD2
min

{√
d∗ − d(y),

√
LλD

2

2

}
. (95)

Proof. We just need to notice that by concavity of d for all y∗ ∈ Y∗, the suboptimality is upper bounded by the
linearization of the function:

d∗ − d(y) ≤ 〈y∗ − y,∇d(y)〉 ≤ dist(y,Y∗)‖∇d(y)‖ . (96)

Then combining it with Theorem 1 we get,
1

2LλD2
min

{
α2 dist(y,Y∗), αLλD2

}
≤ ‖∇d(y)‖ . (97)

This equation is equivalent to
1

2LλD2
α2 dist(y,Y∗) ≤ ‖∇d(y)‖ or

α

2
≤ ‖∇d(y)‖ . (98)

Combining the first inequality of (98) with (96) we get,

d∗ − d(y) ≤ 2LλD
2

α2
‖∇d(y)‖2 or

α

2
≤ ‖∇d(y)‖ , (99)

which is equivalent to
‖∇d(y)‖ ≥ α√

2LλD2
min{

√
d∗ − d(y),

√
LλD2/2} . (100)
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C.2 Properties of the function L

We will first prove that for any y ∈ Rd, the function L(·,y) has a property similar to strong convexity respect to
the variable Mx: if L(x,y) is close to its minimum with respect to x, then Mx is close to the image by M of
the minimizer of L(·,y). More precisely,

Proposition 4. for all x ∈ X and y ∈ Rd, if f is convex,

‖Mx−M x̂(y)‖2 ≤ 2

λ
(L(x,y)− L(x̂(y),y)) where x̂(y) ∈ arg min

x∈X
L(x,y) , (101)

and L(x,y) := f(x) + 1X (x) + 〈y,Mx〉+ λ
2 ‖Mx‖

2

Proof. By convexity of f we have that,

f(x)− f(x̂(y)) ≥ 〈∇f(x̂(y)),x− x̂(y)〉 , (102)

then by simple algebra (noting x̂ = x̂(y)),

L(x,y)− L(x̂,y) ≥
〈
∇f(x̂) +M>y + λM>M x̂,x− x̂

〉
+
λ

2
‖Mx−M x̂‖2 (103)

= 〈∇xL(x̂,y),x− x̂〉+
λ

2
‖Mx−M x̂‖2 (104)

≥ λ

2
‖Mx−M x̂‖2 . (105)

The last inequality come from the first order optimality condition on L(·,y).

Now let us introduce the key property allowing us to insure that xt actually converge to x∗. This proposition
states that the primal gap ∆

(p)
t upper-bounds the squared distance to the optimum.

Proposition 5. If f is a µ-strongly convex function then, X ∗ = {x∗} and we have for all t ≥ 0,

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t −∆

(d)
t + max

(
2∆

(d)
t ,

√
2LλD2∆

(d)
t

)
. (106)

and also
µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t +

2LλD
2

α2
‖Mxt+1‖‖M x̂t‖ , ∀t ∈ N ; dist(yt,Y∗) ≤

LλD
2

α
. (107)

Proof. We start from the identity

f(xt+1)− f∗ = ∆
(p)
t −∆

(d)
t − 〈yt,Mxt+1〉 −

λ

2
‖Mxt+1‖2 . (108)

From first order optimality conditions, we get for any y∗ ∈ Y∗ and any x ∈ X ,〈
x− x∗,∇f(x∗) +M>y∗ + λM>Mx∗

〉
≥ 0 and Mx∗ = 0 , (109)

then for x = xt+1,
〈y∗,Mxt+1〉 ≥ − 〈xt+1 − x∗,∇f(x∗)〉 . (110)

If f is µ-strongly convex, then

−〈xt+1 − x∗,∇f(x∗)〉 ≥ −f(xt+1) + f∗ +
µ

2
‖xt+1 − x∗‖2 , (111)

then combining (108), (110) and (111), we get for any y∗ = PY∗(y):

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t −∆

(d)
t + 〈y∗ − yt,Mxt+1〉 (112)

≤ ∆
(p)
t −∆

(d)
t + dist(yt,Y∗)‖Mxt+1‖ . (113)
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Using the fact that in (95),

either dist(yt,Y∗) ≥
LλD

2

α
or dist(yt,Y∗) ≤

2LλD
2

α2
‖∇d(yt)‖ =

2LλD
2

α2
‖M x̂t‖ , (114)

leading to

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t −∆

(d)
t +

2LλD
2

α2
‖Mxt+1‖‖M x̂t‖ , ∀t ∈ N ; dist(yt,Y∗) ≤

LλD
2

α
. (115)

Similarly, combining (113) and (75) gives us,

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t −∆

(d)
t + max

(
2∆

(d)
t ,

√
2LλD2∆

(d)
t

)
. (116)

This property will be used to prove Theorem 4, deducing convergence rates on ‖xt+1−x∗‖2 from the convergence
rates on ∆t proved in Theorem 2 and Theorem 3.

D Proof of Theorem 2, Theorem 3 and Theorem 4

This section is decomposed into 3 subsections. First, we prove some intermediate results on the sequence computed
by our algorithm to get the fundamental equation (125) that we will use to prove the convergence of (∆t)t∈N.
Then in subsection D.2 (respectively Subsection D.3) we prove Thm. 2 (resp. Thm. 3). Let us recall that the
Augmented Lagrangian function is defined as

L(x,y) := f(x) + 1X (x) + 〈y,Mx〉+ λ
2 ‖Mx‖

2 , ∀(x,y) ∈ Rm × Rd , (117)

where f is a smooth function, 1X is the indicator function of a convex compact set X ⊂ Rm. The augmented
dual function d is d(y) := maxx∈X L(x,y) . The FW-AL algorithm computes{

xt+1 = FW(xt;L(·,yt)) ,
yt+1 = yt + ηtMxt+1 ,

(118)

where FW(xt;L(·,yt)) is roughly a FW step from xt. (More details in App. A).

D.1 Lemma deduced from the dual variable update rule

The two following lemmas do not require any assumption on the sets or the functions, they only rely on the dual
update on y (118). They provide upper bounds on the decrease of the primal and the dual gaps. They are true
for all functions f and constraint set X . Recall that we respectively defined the primal and the dual gap as,

∆
(d)
t := d∗ − d(yt) and ∆

(p)
t := L(xt+1;yt)− d(yt) . (119)

The first lemma upper bounds the decrease of the dual suboptimality; note that Hong and Luo (2017) are probably
not the firsts to provide such lemma. We are citing them because we provide the proof proposed in their paper.

Lemma 4 (Lemma 3.2 (Hong and Luo, 2017)). For any t ≥ 1, there holds

∆
(d)
t+1 −∆

(d)
t ≤ −ηt 〈Mxt+1,M x̂t+1〉 . (120)

Proof.
∆

(d)
t+1 −∆

(d)
t = d(yt)− d(yt+1)

= L(x̂t,yt)− L(x̂t+1,yt+1)

(?)

≤ L(x̂t+1,yt)− L(x̂t+1,yt+1) (121)
= 〈yt − yt+1,M x̂t+1〉
= −ηt 〈Mxt+1,M x̂t+1〉 , (122)

where (?) is because x̂t is the minimizer of L(·,yt).
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Next we proceed to bound the decrease of the primal gap ∆
(p)
t+1.

Lemma 5 (weaker version of Lemma 3.3 (Hong and Luo, 2017)). Then for any t ≥ 1, we have

∆
(p)
t+1 −∆

(p)
t ≤ ηt‖Mxt+1‖2 + (L(xt+2,yt+1)− L(xt+1,yt+1))− ηt 〈Mxt+1,M x̂t+1〉 . (123)

Proof. We start using the definition of ∆
(p)
t+1,

∆
(p)
t+1 −∆

(p)
t = L(xt+2,yt+1)− L(x̂t+1,yt+1)− (L(xt+1,yt)− L(x̂t,yt))

= L(xt+2,yt+1)− L(xt+1,yt) + (L(x̂t,yt)− L(x̂t+1,yt+1))

(121)
≤ L(xt+2,yt+1)− L(xt+1,yt+1) + L(xt+1,yt+1)− L(xt+1,yt)− ηt 〈Mxt+1,M x̂t+1〉

(?)
= (L(xt+2,yt+1)− L(xt+1,yt+1)) + ηt‖Mxt+1‖2 − ηt 〈Mxt+1,M x̂t+1〉 ,

where the last inequality (?) is by definition of L and because yt+1 − yt = ηtMxt+1.

We can now combine Lemma 4 and Lemma 5 with our technical result Cor. 1 on the dual suboptimality to get
our fundamental descent lemma only valid under Assumption 1.

Lemma 6 (Fundamental descent Lemma). Under Assumption 1 we have that for all t ≥ 0,

∆t+1−∆t ≤
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1)) +L(xt+2,yt+1)−L(xt+1,yt+1)−ηt
α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } ,

Proof. Combining Lemma 4 and Lemma 5 gives us,

∆t+1 −∆t = [∆
(p)
t+1 −∆

(p)
t ] + [∆

(d)
t+1 −∆

(d)
t ]

≤ ηt‖Mxt+1‖2 + L(xt+2,yt+1)− L(xt+1,yt+1)− 2ηt 〈Mxt+1,M x̂t+1〉
= ηt‖Mxt+1 −M x̂t+1‖2 − ηt‖M x̂t+1‖2 + L(xt+2,yt+1)− L(xt+1,yt+1) . (124)

Finally, from the “strong convexity” of L(·,yt+1) respect to Mx Prop. 4 we obtain,

∆t+1 −∆t ≤
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1)) + L(xt+2,yt+1)− L(xt+1,yt+1)− ηt‖M x̂t+1‖2 , (125)

where ∆t+1 := ∆
(p)
t+1 + ∆

(d)
t+1. Then we can use our fundamental technical result (Corollary (1)) relating the dual

suboptimality and the norm of its gradient,

‖M x̂t+1‖2
Prop.2

= ‖∇d(yt+1)‖2 ≥ α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } , (126)

to get the desired lemma.

The two following sections respectively deal with the proof of Theorem 2 and Theorem 3 they both start from
our fundamental descent lemma (Lemma 6).

D.2 Proof of Theorem 2

Let us first recall the setting and propose a detailed version of the first part of Thm. 2. The second part of
Thm. 2 is proposed in Corollary 2.

Theorem’ 2. If X is a compact convex set and f is L-smooth, using any algorithm with sublinear decrease (17)
as inner loop in FW-AL (6) and ηt := min

{
2
λ ,

α2

2δ

}
2
t+2 then there exists a bounded t0 ≥ 0 such that,

∆t ≤ min

{
4δ(t0 + 2)

t+ 2
, δ

}
∀t ≥ t0 and t0 ≤

(
C
δ + 2

)
exp

(
∆0 − δ + 2C

2δ

)
. (127)
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where C := 8δmax
(

1
4 ,

4δ2

λ2α4

)
. and δ := LλD

2.

If we set ηt = min
{

2
λ ,

α2

2δ

}
C
δ for at least t0 iterations and then ηt := min

{
2
λ ,

α2

2δ

}
2
t+2 we get

∆t ≤ min

{
4δ(t0 + 2)

t+ 2
, δ

}
∀t ≥ t0 where t0 = max

{
1 +

2(∆0 − δ)C
δ2

,
C

δ

}
. (128)

Proof. This proof will start from Lemma 6 and use the fact that if X is a general convex compact set, a usual
Frank-Wolfe step with line search (Alg. 2) produces a sublinear decrease (17). It leads to the following equation
holding for any γ ∈ [0, 1],

∆t+1 −∆t ≤
(

2ηt
λ
− γ
)

(L(xt+1,yt+1)− L(x̂t+1,yt+1)) + γ2LλD
2

2
− ηt

α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } . (129)

Then for γ = 4ηt
λ we get,

∆t+1 −∆t ≤ −
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1)) +

(
4ηt
λ

)2
LλD

2

2
− ηt

α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } . (130)

Since we are doing line-search, we know that L(xt+1,yt+1) ≥ L(xt+2,yt+1) implying that

∆t+1 −∆t ≤ −
2ηt
λ

∆
(p)
t+1 +

(
4ηt
λ

)2
LλD

2

2
− ηt

α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } , (131)

In order to make appear ∆t+1 in the RHS, we will introduce

a = min
{ 2

λ
,

α2

2LλD2

}
, (132)

this constant depends on λ which is a hyperparameter. It seems that λ helps to scale the decrease of the primal
with to the one of the dual.

∆t+1 −∆t ≤ −aηt min{∆t+1,
LλD

2

2 }+

(
4ηt
λ

)2
LλD

2

2
. (133)

Then we have either that,

∆t+1 −∆t ≤ −aLλD2ηt/2 +

(
4ηt
λ

)2
LλD

2

2
, (134)

giving a uniform (in time) decrease with a small enough constant step size ηt or we have,

∆t+1 −∆t ≤ −aηt∆t+1 +

(
4ηt
λ

)2
LλD

2

2
, (135)

giving a usual Frank-Wolfe recurrence scheme leading to a sublinear decrease with a decreasing step size ηt ∼ 1/t.
It seems hard to get an adaptive step size since we cannot efficiently compute ∆t. In order to tackle this problem
we will consider an upper bound looser than (133) leading to a separation of the two regimes. Let us introduce

η̄t := aηt , δ := LλD
2

2 and C := 8δmax
(1

4
,

4δ2

λ2α4

)
. (136)

Replacing ηt with η̄t, we have that (133) implies

∆t+1 −∆t ≤ −η̄t min{∆t+1, δ}+ η̄2
t

C

2
. (137)

Lemma 7. If there exists t0 > C
δ − 2 such that ∆t0 ≤ δ and if we set η̄t = 2

2+t then,

∆t ≤ min

{
4δ(t0 + 2)

t+ 2
, δ

}
∀t ≥ t0 . (138)
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Proof. For t = t0 the result comes from the fact that we assumed that ∆t0 ≤ δ. By induction, let us assume that
for a t ≥ t0, ∆t ≤ min

{
4δ(t0+2)
t+2 , δ

}
then if ∆t+1 was greater than δ, we would have obtained,

δ ≤ ∆t+1 ≤ ∆t −
2

2 + t
δ +

(
2

2 + t

)2
C

2
≤ δ − 2

2 + t
δ +

(
2

2 + t

)2
C

2
, (139)

implying that,

δ ≤ C

2 + t
and then t ≤ C

δ
− 2 (140)

which contradicts the assumption t > C
δ − 2. Leading to ∆t ≤ δ , ∀t ≥ t0.

Moreover, we have for all t ≥ t0,

∆t+1 ≤ ∆t −
2

2 + t
∆t+1 +

(
2

2 + t

)2
C

2
(141)

t+ 4

t+ 2
∆t+1 ≤ ∆t +

(
2

2 + t

)2
C

2
(142)

∆t+1 ≤
t+ 2

t+ 4
∆t +

2C

(2 + t)(t+ 4)
(143)

(?)

≤ t+ 2

t+ 4

4δ(t0 + 2)

t+ 2
+

2C

(t+ 2)(t+ 4)
(144)

≤ 4δ(t0 + 2)

t+ 3

[
t+ 3

t+ 4

(
1 +

1

2(t+ 2)

)]
, (145)

where (?) is due to the induction hypothesis and the last inequality is due to the fact that δ(t0 + 2) ≥ C. Then,
we just need to show that [

t+ 3

t+ 4

(
1 +

1

2(t+ 2)

)]
≤ 1 , ∀t ≥ 1 . (146)

That is true because [
t+ 3

t+ 4

(
1 +

1

2(t+ 2)

)]
≤ 1 (147)

⇔ (t+ 3)(t+ 5
2 ) ≤ (2 + t)(t+ 4) (148)

⇔ − 1

2
t+

15

2
≤ 8 (149)

⇔ t ≥ 1 . (150)

Now we have to show that in a finite number of iterations t0 we can reach a point such that ∆t0 ≤ δ.

Let us assume that ∆0 ≥ δ, then we cannot initialize the recurrence (138). Instead we will show the following:

Lemma 8. Let (∆t)t∈N a sequence such that ∆t+1 −∆t ≤ −η̄t min{∆t+1, δ}+ η̄2
t
C
2 , ∀t ∈ N. We have that,

• If η̄t = δ
C , then there exists t0 ∈ N such that,

∆t0 ≤ δ , ∆t ≤ δ : ∀ t ≥ t0 , and t0 ≤ 1 +
2(∆0 − δ)C

δ2
. (151)

• If η̄t = 2
2+t , then there exists t0 ≥ C

δ − 2 such that,

∆t0 ≤ δ and t0 ≤
(
C
δ

)
exp

(
∆bCδ −1c − δ + 2C

2δ

)
. (152)
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Proof. By contradiction, let us assume that ∆t ≥ δ , ∀t. Then (137) gives,

∆t+1 −∆t ≤ −η̄tδ + η̄2
t

C

2
. (153)

Then we would have for η̄t = δ
C that

∆t+1 ≤ ∆t −
δ2

2C
(154)

Consequently we would have ∆t < 0 at some point contradicting the fact that ∆t is non negative.

For η̄t = 2
2+t we would have that,

∞ = δ

∞∑
t=0

η̄t ≤ ∆0 +
C

2

∞∑
t=0

η̄2
t <∞ . (155)

giving a contradiction.

Thus, let us consider the smallest time t0 such that ∆t0 ≤ δ.

• If we set η̄t = δ
C , we get for all t < t0

∆t+1 −∆t ≤ −
δ2

2C
(156)

and then summing for 0 ≤ t ≤ t0 − 2

δ −∆0 ≤ ∆t0−1 −∆0 ≤ −
(t0 − 1)δ2

2C
, (157)

implying that

t0 ≤ 1 +
2(∆0 − δ)C

δ2
(158)

then, let us show by recurrence that ∀t ≥ t0, ∆t ≤ δ. The result for t = t0 is true by definition of t0. Let us
assume that it is true for a t ≥ t0, then if ∆t+1 ≥ δ, (137) gives us

∆t+1 ≤ ∆t −
δ2

C
+
δ2

2C
≤ ∆t −

δ2

2C
< δ , (159)

leading to a contradiction. Thus, we have that ∆t+1 ≤ δ.

• If η̄t = 2
2+t , we want a t0 ≥ C

δ − 2 so if ∆bCδ −1c ≤ δ we are done, otherwise

δ

t0−2∑
t=0

2

2 + t
≤ ∆0 − δ +

C

2

∞∑
t=0

4

(2 + t)2
≤ ∆0 − δ + 2C

(π2

6
− 1
)
≤ ∆bCδ −1c − δ + 2C . (160)

Since
∑t0
t=bCδ −1c

1
t ≥ ln(t0)− ln(Cδ ) we get that

t0 ≤
(
C
δ

)
exp

(
∆bCδ −1c − δ + 2C

2δ

)
. (161)

Combining Lemma 7 and Lemma 8 with (137) we finally get Theorem 2.

To sum up, we can either set η̄t = δ
C for a fixed number of iterations or we can use a decreasing step size leading

to a very bad upper bound on t0. Nevertheless this bound for the decreasing step size is very conservative and
even if the best theoretical rates are given by a constant step size η̄t for a number of iterations proportional to C

δ
and then a sublinear step size η̄t = 2

2+t , in practice, we can directly start with a decreasing step size.
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Corollary 2. Under the same assumption as Thm. 2. Let the t0 ∈ N stated in Thm. 2, then for all T ≥ t1 ≥ t0,

min
t1≤t≤T

‖M x̂t+1‖2 ≤
2Θ

T − t1 + 1
and min

t1≤t≤T
‖Mxt+1‖2 ≤

8Θ

T − t1 + 1
. (162)

where Θ := 8δ(t0+2)
a + 16aδ

λ2 . Moreover, if f is µ-strongly convex we have for all t1 ≥ 8t0 + 15,

min
t1≤t≤T

‖x− x∗‖2 ≤ 4K

µ

[
λ

2
+

28δ2

α4λ

]
Θ

T − t1 + 1
. (163)

Proof. This proof follows the same idea as the proof of (Lacoste-Julien et al., 2013, Thm C.3). Since we are
working with different quantities and that the rates are slightly different from the ones provided in (Lacoste-Julien
et al., 2013) we will provide a complete proof of this result. We start from the fundamental descent lemma (125).
We use the fact that a usual Frank-Wolfe step produces a sublinear decrease (A.3) that we specify for γ = 4ηt

λ to
get a similar equation as (131),

∆t+1 −∆t ≤ −
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1)) +

(
4ηt
λ

)2
δ

2
− ηt‖M x̂t+1‖2 , (164)

noting δ := LλD
2. Then introducing ht+1 := (L(xt+1,yt+1)− L(x̂t+1,yt+1)), (note that because of the line

search ∆
(p)
t+1 ≥ ht+1 ≥ 0) it leads to(

2

λ
ht+1 + ‖M x̂t+1‖2

)
≤ ∆t −∆t+1

ηt
+ ηt

(
4

λ

)2
δ

2
. (165)

which is similar equation as (Lacoste-Julien et al., 2013, Eq.(22)). Let t1 ≥ t0 and {wt}Tt1 be a sequence of positive
weights. Let ρt := wt/

∑T
t=t1

wt be the associated normalized weights. The convex combination of (165) give us,

T∑
t=t1

ρt

(
2

λ
ht+1 + ‖M x̂t+1‖2

)
≤

T∑
t=t1

ρt
∆t −∆t+1

ηt
+

T∑
t=t1

ρtηt

(
4

λ

)2
δ

2

=
ρt1
ηt1

∆t1 −
ρT
ηT

∆T+1 +

T−1∑
t=t1

∆t

(
ρt+1

ηt+1
− ρt
ηt

)
+

T∑
t=t1

ρtηt

(
4

λ

)2
δ

2

≤ ρt1
ηt1

∆t1 +

T−1∑
t=t1

∆t

(
ρt+1

ηt+1
− ρt
ηt

)
+

T∑
t=t1

ρtηt

(
4

λ

)2
δ

2
. (166)

We can now use a weighted average such as wt = t− t1. This kind of average leads to

ρt+1

ηt+1
− ρt
ηt

=
(t− t1 + 1)(t+ 3)− (t− t1)(t+ 2)

a(T − t1)(T − t1 + 1)
=

2t− t1 + 3

a(T − t1)(T − t1 + 1)
. (167)

where ηt := min
{

2
λ ,

α2

4δ

}
2
t+2 = a 2

t+2 . Then we can plug that ∆t ≤ min
{

4δ(t0+2)
t+2 , δ

}
, ∀t ≥ t1 ≥ t0 to get,

T∑
t=t1

ρt

(
2

λ
ht+1 + ‖M x̂t+1‖2

)
≤ δρt1

ηt1
+

T−1∑
t=t1

4δ(t0 + 2)

t+ 2

(
ρt+1

ηt+1
− ρt
ηt

)
+

T∑
t=t1

ρtηt

(
4

λ

)2
δ

2
(168)

≤ 2

(T − t1)(T − t1 + 1)

[
T−1∑
t=t1

4δ(t0+2)(2t−t1+3)
a(t+2) +

T∑
t=t1

2a(t−t1)
2+t

(
4
λ

)2 δ
2

]
(169)

≤ 2

T − t1 + 1

[
8δ(t0 + 2)

a
+

16aδ

λ2

]
(170)

Then,

min
t1≤t≤T

[
2

λ
ht+1 + ‖M x̂t+1‖2

]
≤ 2

T − t1 + 1

[
8δ(t0 + 2)

a
+

16aδ

λ2

]
. (171)
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To upper bound ‖Mxt+1‖2 the idea is to combine the previous equation with ‖Mxt+1 − M x̂t‖2 ≤
2
λ (L(xt+1,yt)− L(x̂t,yt)) =: 2

λ∆
(p)
t ≤ 2

λht (Prop. 4 plus the fact that we perform line search) giving,

‖Mxt+1‖2 ≤
8

λ
ht + 4‖M x̂t‖2 (172)

min
t1+1≤t≤T+1

‖Mxt+1‖2 ≤ 4 min
t1+1≤t≤T+1

(
‖M x̂t‖2 +

2

λ
ht

)
≤ 8

T − t1 + 1

[
8δ(t0 + 2)

a
+

16aδ

λ2

]
(173)

If f is µ-strongly convex we can use Prop. 5 to get,

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t +

2δ

α2
‖Mxt+1‖‖M x̂t+1‖ , ∀t ∈ N ; dist(yt,Y∗) ≤

δ

α
. (174)

In order to show that at some point we have dist(yt,Y∗) ≤ δ
α we will use Thm. 1 and (138) to get,

4δ(t0 + 2)

t+ 2
≥ ∆p

t ≥
1

2δ
min

{
α2 dist(yt,Y∗)2, αδ dist(yt,Y∗)

}
, ∀t ≥ t0 , (175)

Then for all t ≥ t0 such that dist(yt,Y∗) > δ
α we have that,

8δ(t0 + 2)

t+ 2
≥ α dist(yt,Y∗) (176)

implying that for t ≥ 8(t0 + 2)− 2 = 8t0 + 14 we have that α dist(yt,Y∗) ≤ δ and then,

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t +

2δ

α2
‖Mxt+1‖‖M x̂t‖ (177)

(172)
≤ ht +

2δ

α2
4
√

2‖M x̂t‖
√

2

λ
ht + ‖M x̂t‖2 (178)

≤ λ

2
‖M x̂t‖2 + ht +

28δ2

α4λ

(
2

λ
ht + ‖M x̂t‖2

)
(179)

≤
(
λ

2
+

28δ2

α4λ

)(
2

λ
ht + ‖M x̂t‖2

)
. (180)

It then implies that for t1 ≥ 8t0 + 14,

min
t1+1≤t≤T+1

‖xt+1 − x∗‖2 ≤
2

µ

(
λ

2
+

28δ2

α4λ

)
min

t1+1≤t≤T+1

(
2

λ
ht + ‖M x̂t‖2

)
(181)

≤ 2

µ

(
λ

2
+

28δ2

α4λ

)
2

T − t1 + 1

[
8δ(t0 + 2)

a
+

16aδ

λ2

]
. (182)

D.3 Proof of Theorem 3

This proof starts with the fundamental descent lemma (Lemma 6). It uses the fact that if X is a polytope and if
we use an algorithm with a geometric decrease (19) such as Alg. 1 then with a small enough constant step size ηt
we can upper bound the decrease of ∆t+1 −∆t.

Lemma 9. Under assumptions of theorem 3, we have

∆t+1 −∆t ≤ −
ρA
2

∆
(p)
t+1 −

λα2ρA
8LλD2

min{∆(d)
t+1,

LλD
2

2 } ∀t ≥ 1 . (183)
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Proof. To prove Lemma 9, we start from Lemma 6 to obtain

∆t+1 −∆t ≤ L(xt+2,yt+1)− L(xt+1,yt+1) +
2ηt
λ

(L(xt+1,yt+1)− L(x̂t+1,yt+1))− ηt
α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } ,

(19)
≤
(

2ηt
λ
− ρA

)
(L(xt+1,yt+1)− L(x̂t+1,yt+1))− ηt

α2

2LλD2
min{∆(d)

t+1,
LλD

2

2 } . (184)

Now we can choose ηt = λ·ρA
4 giving us Lemma 9.

From this lemma we can deduce a constant decrease for a finite number of step and eventually a geometric
decrease.

Lemma 10. Under the assumptions of Theorem 3, for all λ > 0, if we set ηt = λρA
4 for finite number of steps t0,

then the quantity ∆t decreases by a uniform amount as,

∆t+1 −∆t ≤ −
λα2ρA

16
where t0(∆0) ≤ 1 +

16∆0 − 8LλD
2

λα2
. (185)

Otherwise, ∆t decrease geometrically as,

∆t+1 ≤
1

1 + ρ
∆t where ρ :=

ρA
2

min

{
1,

λα2

4LλD2

}
. (186)

Proof. We start from Lemma 9, if 2∆
(d)
t+1 ≥ LλD2,

∆t+1 −∆t ≤ −
λα2ρA

16
, (187)

and otherwise,

∆t+1 −∆t ≤ −
ρA
2

∆
(p)
t+1 −

λα2ρA
8LλD2

∆
(d)
t+1 ≤ −ρ∆t+1 . (188)

Our goal is then just to show the upper bound on t0. First let us notice that (∆t) is decreasing then this
non negative sequence cannot decrease by a uniform amount an infinite number of time, then we can sum for
t = 1, . . . , t0 − 1 such that (187) holds to get,

LλD
2

2 −∆0 ≤ ∆
(d)
t0−1 −∆0 ≤

t0−2∑
t=0

∆t+1 −∆t ≤ −(t0 − 1)
λα2ρA

16
(189)

One can deduce several convergence properties from this lemma which are compiled in Theorem 3.

Corollary 3 (Extended Theorem 3). Under the assumptions of Theorem 3, there exist t0 ≤ 1 + 16∆0−8LλD
2

λα2

such that for all t ≥ t0 we have the following properties,

1. The gap decreases linearly,

∆t ≤
LλD

2

2(1 + ρ)t−t0
. (190)

2. The sequences of feasibility violations at points xt+1 and x̂t+1 decrease linearly,

‖M x̂t+1‖2 ≤
2

λ · ρA
LλD

2

(1 + ρ)t−t0
and ‖Mxt+1‖2 ≤

8

λ · ρA
LλD

2

(1 + ρ)t−t0
, (191)

where ρ := ρA
2 min

{
1, λα2

8LλD2

}
.
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Finally, if f is µf -strongly convex, the distance of the current point to the optimal set vanishes as,

‖xt+1 − x∗‖2 ≤
LλD

2(
√

2 + 1)

2µf (
√

1 + ρ)t−t0
+

O(1)

(1 + ρ)t−t0
. (192)

Proof. To prove the first statement let us start from Lemma 9, for all t ≥ t0,

[∆
(p)
t+1 + ∆

(d)
t+1]− [∆

(p)
t + ∆

(d)
t ] ≤ −ρA

2
(L(xt+1,yt+1)− L(x̂t+1,yt+1))− λ · ρA

4
‖M x̂t+1‖2 , (193)

leading us directly to

λ · ρA
4
‖M x̂t+1‖2 ≤ ∆t and

ρA
2

(L(xt+1,yt+1)− L(x̂t+1,yt+1)) ≤ ∆t . (194)

To upper bound ‖Mxt+1‖2 the idea is to combine the two previous equations with ‖Mxt+1 −M x̂t+1‖2 ≤
2
λ (L(xt+1,yt+1)− L(x̂t+1,yt+1)) (Prop. 4) giving,

‖Mxt+1‖2 ≤ 2‖M x̂t+1‖2 + 2‖Mxt+1 −M x̂t+1‖2 ≤
16

λρA
∆t . (195)

The last statement directly follows from the fact (∆t+1) decreases linearly (Lemma 10) and the fact that one can
upper bound ‖xt+1 − x∗‖2 with the primal and dual suboptimalities (Proposition 5),

µ

2
‖xt+1 − x∗‖2 ≤ ∆

(p)
t −∆

(d)
t + max

(
2∆

(d)
t ,

√
2LλD2∆

(d)
t

)
. (196)

Then, it easily follows that

µ

2
‖xt+1 − x∗‖2 ≤

(
√

2 + 1)LλD
2

(
√

1 + ρ)t−t0
+

O(1)

(1 + ρ)t−t0
. (197)
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