Supplementary material of the paper

Plug-in Estimators for Conditional Expectations and Probabilities

A Families of Sets and Functions

Lemma A.1 (Proof of Proposition 2.1). \(C \) is a universal Donsker class if \(\mathbb{X} \) is \(\mathbb{R}^d \) or \([0, 1]^d\).

Proof. We apply Corollary 6.20 of Dudley (2014).

(i) The set \(C \) has finite VC dimension bounded by \(2d + 1 \). Consider arbitrary \(2d + 1 \) points \(x_1, x_2, \ldots \in \mathbb{X} \). Now, there is at least one element \(x_i \) which attains the maximum in dimension \(j \), \(1 \leq j \leq d \), i.e. \(x_{ij} = \max_{j \leq d} x_{ij} \). Select for every dimension such an element and, in the same way, select \(d \) minimizers. Denote the joint set of these points with \(B \). Then every element from \(C \) that contains \(B \) also contains \(x_1, \ldots, x_{2d+1} \) and there is no set \(A \in C \) which fulfills \(A \cap \{ x_i : 1 \leq i \leq 2d + 1 \} = B \). \(\Box \)

(ii) The set \(\mathbb{X} \) is a Borel set. Hence \(\chi \mathbb{X} \in L^2(\mathbb{X}, P) \) for every probability measure \(P \) on the Borel sets and \(\chi \mathbb{X} \) is an envelope function of \(C \).

(iii) \(C \) is image admissible Suslin. Consider \(\mathbb{Y} = \mathbb{X} \times \{ 0, \infty \} \) equipped with the natural topology, which is the one induced by the Euclidean metric, and the corresponding Borel \(\sigma \)-algebra. \(\mathbb{Y} \) is a Polish space since it is a closed subset of the complete space \(\mathbb{R}^{d+1} \).

Consider now the map \(T(y, h) = \chi([y, y + h1]) \) if \([y, y + h1] \in C \) and \(\chi(0) \) otherwise. \(T \) maps \(\mathbb{Y} \) onto \(C \). We need to verify that \((y, h, x) \mapsto (T(y, h))(x) \) is jointly measurable, that is for any Borel subset \(A \) of \(\mathbb{R}^d \)

\[
B = \{(y, h, x) : x, y \in X, h \in [0, \infty], (T(y, h))(x) \in A \}
\]

must be in the product \(\sigma \)-algebra. \(T(y, h)(x) \) attains either the value 0 or 1 hence there are four events we need to consider. First \(A = \emptyset \) which implies \(B = \emptyset \) and \([0, 1] \subseteq A \) which implies \(B = \mathbb{Y} \) are always in the \(\sigma \)-algebra.

So consider now a set \(A \) such that \(1 \in A \) but not 0, then

\[
B = \{(y, h, x) : x, y \in X, h \in [0, \infty], \chi([y, y + h1])(x) = 1 \}
\]

\[
= \{(y, h, x) : x, y \in X, h \in [0, \infty], x \in [y, y + h1] \}.
\]

This set is closed in the natural topology of \(\mathbb{X} \times [0, \infty] \times [0, \infty] \) since, if \((y, h, x) \) is not in \(B \) then with \(\epsilon < d \langle x, [y, y + h1] \rangle \), where \(d \) is the Euclidean metric, we have that the open ball

\[
\{ (u, \eta, \xi) : d(y, u), d(h, \eta), d(x, \xi) < \epsilon / 3, u, \eta, \xi \in \mathbb{X}, \eta \in [0, \infty] \} \subseteq \mathbb{Y} \times \mathbb{X} \backslash B
\]

contains \((y, h, x) \). And, since,

\[
(\mathbb{Y} \times \mathbb{X}) \backslash B = \{(y, h, x) : x, y \in X, h \in [0, \infty], (T(y, h))(x) = 0 \}
\]

the latter set is open. Hence, both sets are in the Borel algebra \(\mathcal{B}(\mathbb{Y} \times \mathbb{X}) \).

It remains to show that the product algebra equals the Borel algebra, that is,

\[
\mathcal{B}(\mathbb{Y}) \otimes \mathcal{B}(\mathbb{X}) = \mathcal{B}(\mathbb{Y} \times \mathbb{X}).
\]

This follows from Fremlin (2003)[4A3D(ci)] if \(\mathbb{Y} \times \mathbb{X} \) is a hereditary Lindelöf space. Though, every second countable space like \(\mathbb{Y} \times \mathbb{X} \) is hereditary Lindelöf and the result follows. \(\Box \)

Lemma A.2 (Proof of Lemma 2.3). Let \(\mathbb{X} \) be any set and \(\mathcal{G} \) be a \(\sigma \)-algebra of subsets of \(\mathbb{X} \). \(\mathcal{G} \) is a VC-class if, and only if, \(\mathcal{G} \) is a finite family of sets.

Proof. Any finite collection of sets is a VC-class. For the other direction assume \(\mathcal{G} \) is infinite.

(i) There exists a countably infinite sequence of disjoint sets in \(\mathcal{G} \). We prove by induction that for any \(n \in \mathbb{N} \) there exist \(n \) disjoint sets in \(\mathcal{G} \). The induction hypothesis is trivially fulfilled for \(n = 1 \). For the induction step let us assume that
$A_1, \ldots, A_n \in \mathcal{G}$ are not empty and mutually disjoint. There exists an element $B \in \mathcal{G}$ that is not contained in $\sigma(A_1, \ldots, A_n)$ since otherwise $\mathcal{G} = \sigma(A_1, \ldots, A_n)$ and \mathcal{G} would be finite. Take such an element B. If $B \setminus \bigcup_{i \leq n} A_i \in \mathcal{G}$ is not empty then add this to the sequence as A_{n+1}. A_{n+1} is then obviously disjoint from all A_1, \ldots, A_n. If $B \setminus \bigcup_{i \leq n} A_i = \emptyset$ then $B \subseteq \bigcup_{i \leq n} A_i$. Furthermore, there is some $i \leq n$ such that $A_i \setminus B \neq \emptyset \neq A_i \cap B$, because otherwise B would be a union of a subset of A_1, \ldots, A_n. Now, remove A_i from the sequence and add $A_i \setminus B$ and $A_i \cap B$ to the sequence. This way we gain $n+1$ disjoint elements that are all contained in \mathcal{G}. This implies now directly that there is a countably infinite sequence of disjoint sets contained in \mathcal{G}. Q.E.D.

(ii) By (i) we can choose a sequence $\{A_n\}_{n \in \mathbb{N}}$ of disjoint and non-empty subsets of \mathcal{G}. By countable choice we can select a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x_n \in A_n$. Consider any $k \in \mathbb{N}$, points x_1, \ldots, x_k and any subset of these, say $\{x_{n_i} : i \leq l, 0 \leq n_1 < n_2 < \ldots < n_l \leq k\}$ for $l \leq k$ and consider the corresponding sequence of sets $\{A_{n_i} : i \leq l\}$ then $\{x_{n_i} : i \leq l\} = \{x_{n_i} \cap A_{n_i} : i \leq l\}$ and the set $\{x_i\}_{i \leq k}$ is shattered. Since this argument applies to any $k \in \mathbb{N}$ we know that \mathcal{G} is not a VC-class.

Lemma A.3 (Proof of Lemma 5). Let (Ω, \mathcal{A}, P) be a probability space and $C \subset \mathcal{A}$ a disjoint family of sets such that for each $A \in C$ there exists $\{A_n\}_{n \in \mathbb{N}}$ in C with $\Omega \setminus A = \bigcup_{n \in \mathbb{N}} A_n$ and $\emptyset \in C$. For any measure Q for which there exists a constant $c > 0$ such that for all $A \in C$, $|Q(A) - P(A)| \leq cP(A)$, we have that $\sup_{A \in \sigma(C)} \frac{|Q(A) - P(A)|}{P(A)} \leq c$.

Proof. We apply the monotone class theorem. $A, B \in \mathcal{C}$ then either $A \cap B = \emptyset \in \mathcal{C}$ or $A = B \in \mathcal{C}$. Define

\[\mathcal{D} := \{ A : A = \bigcup_{n \in \mathbb{N}} \mathcal{E}, \mathcal{E} \subseteq C \text{ a countable family, } |Q(A) - P(A)| \leq cP(A) \} . \]

\mathcal{D} is a Dynkin class: (1) $\emptyset \in \mathcal{D}$; (2) $A \in \mathcal{D}$ then by assumption $\Omega \setminus A = \bigcup_{n \in \mathbb{N}} A_n$ for some elements $A_n \in \mathcal{C}$ and because the A_n are disjoint we have

\[|Q(\Omega \setminus A) - P(\Omega \setminus A)| \leq \sum_{n \in \mathbb{N}} |Q(A_n) - P(A_n)| \leq c \sum_{n \in \mathbb{N}} P(A_n) = cP(\Omega \setminus A) \]

and $\Omega \setminus A \in \mathcal{D}$. (3) If $\{A_n\}_{n \in \mathbb{N}}$ is a disjoint sequence in \mathcal{D}, then

\[|Q\left(\bigcup_{n \in \mathbb{N}} A_n \right) - P\left(\bigcup_{n \in \mathbb{N}} A_n \right)| \leq \sum_{n \in \mathbb{N}} |Q(A_n) - P(A_n)| \leq cP\left(\bigcup_{n \in \mathbb{N}} A_n \right) . \]

Since each A_n is a countable family of elements of C we know that $\bigcup_{n \in \mathbb{N}} A_n$ is also a countable family of elements of C and therefore $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$. The result follows now from the monotone class theorem since $\mathcal{C} \subseteq \mathcal{D}$.

Corollary A.1 (Proof of Proposition 2.1). Let $([0, 1]^d, \mathcal{A}, P)$ be a probability space such that P has a density p that is lower bounded by $b > 0$. Let $\{\lambda_n\}_{n \geq 1}$ be a non-decreasing sequence in \mathbb{N}_+ such that $\lambda_n \to \infty$ and $|\lambda_n|_{\sigma(C)} \in \mathcal{O}_P^{n^2}(\sqrt{\log(n)}2^n\lambda_n^2/2)$. Furthermore, for any Borel set A and $\epsilon > 0$ there exists an $n \in \mathbb{N}$ and $B \in \sigma(C_{\lambda})$ such that $P(A \Delta B) \leq \epsilon$.

Proof. The universal approximation property of the family of sets C is well known. We provide here for completeness a simple proof. The set $\sigma(C_n)$ contains many intervals. In particular, to every element x' in $\{ x : x_i \in 0, i \leq n \}$, where $l_n = (\sum_{i=1}^{\mu_n} d_i/2^i : d_i \in \{0, 1\})$, and any element x'' in $\{ x : x_i \in r_n, i \leq n \}$, where $r_n = \{ 1 - \sum_{i=1}^{\mu_n} d_i/2^i : d_i \in \{0, 1\} \}$, corresponds an interval $I = [x', x''] \in \sigma(C_n)$. Both, $\bigcup_{n \geq 1} l_n$ and $\bigcup_{n \geq 1} r_n$ lie dense in $[0, 1]$. This implies that any half-open interval $[a, b)$, $0 \leq a < b \leq 1$ for all $i \leq d$, can be approximated arbitrary well in Lebesgue measure, i.e. for $\epsilon > 0$ and with μ denoting Lebesgue-measure, there exists an $n \in \mathbb{N}$ and an $I \in \sigma(C_n)$ such that $[a, b) \subseteq I$ and $\mu(I \setminus [a, b)) \leq \epsilon$. Consider now any Borel subset A of $[0, 1]^d$ and $\epsilon > 0$. Let $\{I_n\}_{n \geq 1}$ be a sequence of half-open intervals in $[0, 1]^d$ such that $A \subseteq \bigcup_{n \geq 1} I_n$ and $\mu(\bigcup_{n \geq 1} I_n) \leq \mu(A) + \epsilon/4$. Furthermore, select for each I_n an half-open interval $I_n' \in \bigcup_{m \geq 1} \sigma(C_m)$ such that $I_n \subseteq I_n'$ and $\mu(I_n' \setminus I_n) \leq \epsilon/2^{n+2}$ then $A \subseteq \bigcup_{n \geq 1} I_n'$ and

\[\mu\left(\bigcup_{n \geq 1} I_n' \setminus I_n \right) \leq \mu\left(\bigcup_{n \geq 1} I_n' \setminus \bigcup_{n \geq 1} I_n \right) + \mu\left(\bigcup_{n \geq 1} I_n \right) \leq \mu(A) + \epsilon/4 + \mu\left(\bigcup_{n \geq 1} (I_n' \setminus I_n) \right) \leq \mu(A) + \epsilon/2 . \]

Choose an N such that $\mu(\bigcup_{n \geq N} I_n') \leq \epsilon/2$ and define $B = \bigcup_{n < N} I_n' \in \bigcup_{m \geq 1} \sigma(C_m)$. Then $\mu(B \setminus A) \leq \mu(\bigcup_{n \geq N} I_n') \leq \epsilon/2$ and $\mu(A \setminus B) \leq \mu(\bigcup_{n \geq N} I_n') \leq \epsilon/2$. Hence, $\mu(A \Delta B) \leq \epsilon$. Since P is absolutely continuous with respect to Lebesgue-measure we can choose for every $\epsilon > 0$ a $\delta > 0$ such that $\mu(A \Delta B) \leq \delta$ implies $P(A \Delta B) \leq \epsilon$. And the second part of the proposition follows.
B Conditioning

Proposition B.1 (Proof of Proposition 3.1). If $C \subseteq B_\mathcal{S}$ is a finite set with $\inf_{B \in C} P(B) > 0$, \mathcal{F} is a subset of $L^1(P)$ uniformly bounded in supremum norm and \mathcal{F}_C is a P-Donsker class then

$$\sup_{f \in \mathcal{F}} \sup_{B \in C} |E_n(f \mid B) - E(f \mid B)| \in O_P^*(n^{-1/2}).$$

Furthermore, if $C' \subseteq B_\mathcal{S}$, is such that \mathcal{C}'_C is a P-Donsker class then

$$\sup_{A \in C'} \sup_{B \in C} |P_n(A \mid B) - P(A \mid B)| \in O_P^*(n^{-1/2}).$$

Proof. For a finite family of measurable sets C the corresponding set of indicator functions \mathcal{C} is always a P-Donsker class since for a single element the standard CLT provides the necessary statement and finite unions of P-Donsker classes are again P-Donsker due to (Dudley, 2014)[Thm 4.34]. Hence,

$$\sup_{f \in \mathcal{F}, B \in C} \left| \int_B f \, dP_n - \int_B f \, dP \right| = \sup_{f \in \mathcal{F}, B \in C} \left| \int f \times \chi(B) \, dP_n - \int f \times \chi(B) \, dP \right| = O_P^*(n^{-1/2})$$

and

$$\sup_{B \in C} |P_n(B) - P(B)| = O_P^*(n^{-1/2}).$$

By definition this implies that for $\epsilon > 0$ there exists an M_1 such that $\Pr^*\{\sup_{B \in C} |P(B) - P_n(B)| > M_1 n^{-1/2}\} < \epsilon/2$ for all $n \geq 1$. Let $N := \lceil (2M_1 / \inf_{B \in C} P(B))^2 \rceil$. Because $\inf_{B \in C} P(B) > 0$, for all $n \geq N$ we have for any $A \in C$ that

$$\{P_n(A) < \inf_{B \in C} P(B)/2\} \subseteq \{P_n(A) < P(A)/2\} = \{P_n(A) = P(A) > P(A)/2\}$$

$$\subseteq \{\sup_{B \in C} |P(B) - P_n(B)| > P(A)/2\} \subseteq \{\sup_{B \in C} |P(B) - P_n(B)| > \inf_{B \in C} P(B')/2\}$$

$$\subseteq \{\sup_{B \in C} |P(B) - P_n(B)| > M_1 n^{-1/2}\}.$$

Similarly, there exists an M_2 such that $\Pr^*\{\sup_{f \in \mathcal{F}, B \in C} \left| \int_B f \, dP_n - \int_B f \, dP \right| > M_2 n^{-1/2}\} < \epsilon/2$. The events

$$\Omega_n := \left\{ \sup_{B \in C} |P(B) - P_n(B)| \leq M_1 n^{-1/2} \right\} \cap \left\{ \sup_{f \in \mathcal{F}, B \in C} \left| \int_B f \, dP_n - \int_B f \, dP \right| \leq M_2 n^{-1/2} \right\}$$

have outer probability $\Pr^*(\Omega_n) \geq 1 - \epsilon$ and for all $n \geq N$ and $B \in C$, $\Omega_n \subseteq \{P_n(B) \geq \inf_{B' \in C} P(B')/2\}$. In the event $\Omega_n, n \geq N$, we know that $P_n(B) > 0$ and

$$E_n(f \mid B) - E(f \mid B) = \left(\int_B f \, dP_n \right) / P_n(B) - \left(\int_B f \, dP \right) / P(B)$$

$$= \left(P(B) \int_B f \, dP_n - P_n(B) \int_B f \, dP \right) / (P_n(B) P(B))$$

$$= \left(P(B) \left(\int_B f \, dP_n - \int_B f \, dP \right) + (P(B) - P_n(B)) \int_B f \, dP \right) / (P_n(B) P(B)).$$

Therefore, for $n \geq N$ in the event Ω_n,

$$n^{1/2} \sup_{f \in \mathcal{F}, B \in C} \left| \left(\int_B f \, dP_n \right) / P_n(B) - \left(\int_B f \, dP \right) / P(B) \right| \leq 2 \left(M_2 + b M_1 \right) / c^2,$$

where $b := \sup_{x \in \mathcal{S}, f \in \mathcal{F}} |f(x)|$ and $c := \inf_{B \in C} P(B) > 0$.

For any $n < N$ and B with $P_n(B) = 0$ the estimate $E_n(f \mid B) = 0$ by definition and

$$\sup_{f \in \mathcal{F}} |E_n(f \mid B) - E(f \mid B)| = \sup_{f \in \mathcal{F}} \left| \left(\int_B f \, dP \right) / P(B) \right| \leq b < \infty.$$
For any $n < N$ with $P_n(B) > 0$ we have that

$$n^{1/2} \sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \left(\int_B f \, dP_n \right) / P_n(B) - \left(\int_B f \, dP \right) / P(B) \right| \leq 2n^{1/2}b < \infty$$

and with the constant $M := \max\{2(M_2 + bM_1)/c^2, 2N^{1/2}b\}$ we have

$$\Pr^* \{ \sup_{f \in \mathcal{F}, B \in \mathcal{C}} |E_n(f \mid B) - E(f \mid B)| > Mn^{-1/2} \} \leq \epsilon.$$

This is sufficient to prove the first claim. The second claim follows from the first by substituting \mathcal{C}' for \mathcal{F}.

Proposition B.2 (Proof of Proposition 3.2). If $\mathcal{C} \subseteq \mathcal{B}_\delta$, \mathcal{C} and \mathcal{F}_C are P-Donsker classes, \mathcal{F} is a subset of $\mathcal{L}^1(P)$ uniformly class bounded in supremum norm and P has a density which is lower bounded by a constant $b > 0$ then with $\mathcal{C}_n := \{ C : C \in \mathcal{C}, \mu(C) \geq n^{-\alpha}\}$ and $\alpha \in [0, 1/2)$

$$\sup_{f \in \mathcal{F}, B \in \mathcal{C}_n} |E_n(f \mid B) - E(f \mid B)| \in O_p(n^{\alpha-1/2}).$$

Furthermore, if $\mathcal{C}' \subseteq \mathcal{B}_\delta$ is such that \mathcal{C}' is a P-Donsker class then

$$\sup_{A \in \mathcal{C}', B \in \mathcal{C}_n} |P_n(A \mid B) - P(A \mid B)| \in O_p(n^{\alpha-1/2}).$$

Proof. As in the proof of Proposition 3.1, $\sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \int_B f \, dP_n - \int_B f \, dP \right| \in O_p(n^{-1/2})$ and $\sup_{B \in \mathcal{C}} |P_n(B) - P(B)| \in O_p(n^{-1/2})$. Hence, for a given $\epsilon > 0$ there exists a M_1 such that

$$\Pr^* \{ \sup_{B \in \mathcal{C}_n} |P_n(B) - P(B)| > M_1n^{-1/2} \} \leq \frac{\epsilon}{2}.$$}

In particular, by assumption $\inf_{B \in \mathcal{C}_n} P(B')/2 \geq b \inf_{B \in \mathcal{C}_n} \mu(B')/2 \geq (b/2)n^{-\alpha}$ we have for $N := \left((2M_1/b)^{1/(1/2-\alpha)} \right)$ and all $n \geq N$ such that

$$\{ P_n(B) < \inf_{B' \in \mathcal{C}_n} P(B')/2 \} \subseteq \{ \sup_{B \in \mathcal{C}_n} |P_n(B) - P_n(B)| > b \inf_{B \in \mathcal{C}_n} P(B')/2 \} \subseteq \{ \sup_{B \in \mathcal{C}_n} |P_n(B) - P_n(B)| > (b/2)n^{-\alpha} \}$$

and, since the last event has an outer probability strictly less than $\epsilon/2$, there exists an M_2 such that for all $n \geq N$ the events

$$\Omega_n := \left\{ \sup_{B \in \mathcal{C}} |P_n(B) - P_n(B)| \leq M_1n^{-1/2} \right\} \cap \left\{ \sup_{f \in \mathcal{F}, B \in \mathcal{C}_n} \left| \int_B f \, dP_n - \int_B f \, dP \right| \leq M_2n^{-1/2} \right\}$$

have outer probability $\Pr^*(\Omega_n) \geq 1 - \epsilon$ and $\{ P_n(B) \geq \inf_{B' \in \mathcal{C}_n} P(B')/2 \} \supseteq \Omega_n$ for all $n \geq N$.

Using the bound (8)

$$\left| \left(\int_B f \, dP_n \right) / P_n(B) - \left(\int_B f \, dP \right) / P(B) \right| \leq \left(\int_B f \, dP_n - \int_B f \, dP \right) / P_n(B) + \left(P(B) - P_n(B) \right) \int_B f \, dP / (P_n(B)P(B)).$$

Let $c = \sup_{x \in \mathcal{X}} \sup_{f \in \mathcal{F}} |f(x)| < \infty$ then

$$\Pr^* |f(x)| < \infty \text{ and, since } P_n(B) \geq (b/2)n^{-\alpha} \text{ on } \Omega_n, \text{ for } n \geq N$$

$$\sup_{f \in \mathcal{F}, B \in \mathcal{C}_n} |E_n(f \mid B) - E(f \mid B)| \leq (2M_2/b)n^{\alpha-1/2} + (2cM_1/b)n^{\alpha-1/2}.$$

As in the the proof of Proposition 3.1 the errors for $n < N$ can be bounded since $\inf_{n < N} \inf_{B \in \mathcal{C}_n} P(B) \geq bN^{-\alpha}$ and the first result follows. Substituting \mathcal{C}' for \mathcal{F} yields the second claim.

Lemma B.1. If \mathcal{G} is a σ-algebra consisting of finitely many elements then there exists a unique partition \mathcal{P}_G such that each element of \mathcal{B} can be represented as a finite union of elements of \mathcal{P}_G.

Steffen Grünewälder
Proposition B.3 (Proof of Proposition 3.3). If \(\mathcal{G} \subseteq \mathcal{B}_S \) is a \(\sigma \)-algebra consisting of finitely many sets, \(\mathcal{F} \) is a subset of \(\mathcal{L}^1(P) \) uniformly bounded in supremum norm, \(\mathcal{G}_\mathcal{F} \) is a \(P \)-Donsker class then

\[
\sup_{f \in \mathcal{F}} \| E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G}) \|_{\mathcal{L}^1(P)} \in O_P^\star(n^{-1/2}).
\]

Furthermore, if \(C \subseteq \mathcal{B}_S \) is such that \(\mathcal{C}_\mathcal{G} \) is a \(P \)-Donsker class then

\[
\sup_{A \in \mathcal{C}} \| P_n(A \mid \mathcal{G}) - P(A \mid \mathcal{G}) \|_{\mathcal{L}^1(P)} \in O_P^\star(n^{-1/2}).
\]

Proof. If \(P(B) = 0 \) for some \(B \in \mathcal{G} \) then \(\int_B E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G}) \) \(dP = 0 \). Let \(\mathcal{G}' = \{ B : B \in \mathcal{G}, P(B) > 0 \} \) then from Proposition 3.1 it follows that

\[
\sup_{f \in \mathcal{F}, B \in \mathcal{G}'} \left| \int_B E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G}) \right| \in O_P^\star(n^{-1/2}).
\]

For \(\epsilon > 0 \), choose \(M, N \) such that \(E_n = \sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{G}'} \left| \int_B E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G}) \right| \leq M n^{-1/2} \) has probability \(P(E_n) \geq 1 - \epsilon \) for all \(n \geq N \). For \(B \in \mathcal{G}' \), let \(B_1, \ldots, B_m \in \mathcal{G}_\mathcal{F} \subseteq \mathcal{G} \) such that \(B = B_1 \cup \ldots \cup B_m \), then \(P \)-a.s. \(E(f \mid \mathcal{G}) = \sum_{i \leq m} E(f \mid B_i) \chi_{B_i} \) and

\[
\left| \int_B (E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G})) \right| \leq \sum_{i \leq m} \left| \int_{B \cap B_i} (E_n(f \mid B_i) - E(f \mid B_i)) \right| dP
\]

\[
\leq \sum_{i \leq m} \left| E_n(f \mid B_i) - E(f \mid B_i) \right| P(B \cap B_i) \leq M n^{-1/2} \sum_{i \leq m} P(B \cap B_i)
\]

\[
= M n^{-1/2} P(B) \leq M n^{-1/2}.
\]

Furthermore,

\[
\| E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G}) \|_{\mathcal{L}^1(P)} \leq 2 \sup_{B \in \mathcal{G}'} \left| \int_B E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G}) \right| \leq 2M n^{-1/2}.
\]

This implies the result. The second result follows again from the first. \(\square \)

Proposition B.4 (Proof of Proposition 3.4). Let \((0, 1]^d, \mathcal{B}, P \) be a probability space such that \(P \) has a density \(p \) that is lower bounded by \(\epsilon > 0 \) and let \(\{ \lambda_n \}_{n \geq 1} \) be a non-decreasing sequence in \(\mathbb{N}_+ \) such that

\[
\lambda_n \in o\left(\frac{1}{3d \log(2) \log\left(\frac{n}{\sqrt{\log(n)}} \right)} \right).
\]

If \(\mathcal{F} \) is a subset of \(\mathcal{L}^1(P) \) uniformly bounded in supremum norm which fulfills Equation 4, then

\[
\sup_{f \in \mathcal{F}} \| E_n(f \mid \mathcal{G}_{\lambda_n}) - E(f \mid \mathcal{G}_{\lambda_n}) \|_{\infty} \in O_P^\star(\sqrt{\log(n)} 2^{(3/2) d \lambda_n n^{-1/2}}).
\]
Furthermore, if \(C \subseteq \mathcal{B}_S \), is such that \(C \) fulfills Equation 4 then

\[
\sup_{A \in C} \| P_n(A \mid \mathcal{G}_{\lambda_n}) - P(A \mid \mathcal{G}_{\lambda_n}) \|_\infty \in O_p(\sqrt{\log(n)}2^{(3/2)d\lambda_n}n^{-1/2}).
\]

Proof. By assumption and from Corollary 2.1 we know that

\[
\sup_{f \in F} \sup_{B \in \mathcal{B}_{\lambda_n}} \left| \int_B f \, dP_n - \int_B f \, dP \right| \in O_p(\sqrt{\log(n)}2^{d\lambda_n/2}n^{-1/2}),
\]

\[
\sup_{B \in \mathcal{B}_{\lambda_n}} \left| P_n(B) - P(B) \right| \in O_p(\sqrt{\log(n)}2^{d\lambda_n/2}n^{-1/2}).
\]

Furthermore, \(\inf_{B \in \mathcal{B}_{\lambda_n}} P(B) \geq b2^{-d\lambda_n} \). By combining the technique in the proof of Proposition 3.2 with the assumption on the rate of \(\lambda_n \) we have for any \(B \in \mathcal{B}_{\lambda_n} \) that

\[
\left\{ P_n(B) < \inf_{B' \in \mathcal{B}_{\lambda_n}} P(B')/2 \right\} \subseteq \left\{ \sup_{B \in \mathcal{B}_{\lambda_n}} \left| P(B) - P_n(B) \right| > M \sqrt{\log(n)}2^{d\lambda_n/2}n^{-1/2} \right\}
\]

for some constant \(N, M \) and all \(n \geq N \). The same line of reasoning as in Proposition 3.2 then shows

\[
\sup_{f \in F} \sup_{B \in \mathcal{B}_{\lambda_n}} \left| E_n(f \mid B) - E(f \mid B) \right| \in O_p(\sqrt{\log(n)}2^{(3/2)d\lambda_n}n^{-1/2}).
\]

Substituting in the definition of \(E_n(f \mid \mathcal{G}_{\lambda_n}) \) and \(E(f \mid \mathcal{G}_{\lambda_n}) \) gives us the first result,

\[
\sup_{f \in F} \| E_n(f \mid \mathcal{G}_{\lambda_n}) - E(f \mid \mathcal{G}_{\lambda_n}) \|_\infty \leq \sup_{f \in F} \sup_{B \in \mathcal{B}_{\lambda_n}} \left| E_n(f \mid B) - E(f \mid B) \right| \in O_p(\sqrt{\log(n)}2^{(3/2)d\lambda_n}n^{-1/2}).
\]

The second claim is directly implied by this result.