Supplementary material of the paper

Plug-in Estimators for Conditional Expectations and Probabilities

A Families of Sets and Functions

Lemma A. 1 (Proof of Proposition 2.1). C is a universal Donsker class if \mathbb{X} is \mathbb{R}^{d} or $[0,1]^{d}$.

Proof. We apply Corollary 6.20 of Dudley (2014).
(i) The set \mathcal{C} has finite $V C$ dimension bounded by $2 \mathrm{~d}+1$. \mathbf{P} Consider arbitrary $2 \mathrm{~d}+1$ points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \in \mathbb{X}$. Now, there is at least one element \mathbf{x}_{i} which attains the maximum in dimension $j, 1 \leq j \leq d$, i.e. $\mathbf{x}_{i j}=\max _{l \leq d} \mathbf{x}_{l j}$. Select for every dimension such an element and, in the same way, select d minimizers. Denote the joint set of these points with B. Then every element from C that contains B also contains $\mathbf{x}_{1}, \ldots, \mathbf{x}_{2 d+1}$ and there is no set $A \in C$ which fulfills $A \cap\left\{x_{i}: 1 \leq i \leq 2 d+1\right\}=B . \mathbf{Q}$
(ii) The set \mathbb{X} is a Borel set. Hence $\chi \mathbb{X} \in \mathcal{L}^{2}(\mathbb{X}, P)$ for every probability measure P on the Borel sets and $\chi \mathbb{X}$ is an envelope function of \mathcal{C}.
(iii) \mathcal{C} is image admissible Suslin. \mathbf{P} Let $Y=\mathbb{X} \times[0, \infty[$ equipped with the natural topology, which is the one induced by the Euclidean metric, and the corresponding Borel σ-algebra. Y is a Polish space since it is a closed subset of the complete space \mathbb{R}^{d+1}.

Consider now the map $T(\mathbf{y}, h)=\chi([\mathbf{y}, \mathbf{y}+h \mathbf{1}])$ if $[\mathbf{y}, \mathbf{y}+h \mathbf{1}] \in \mathcal{C}$ and $\chi(\emptyset)$ otherwise. T maps \mathcal{Y} onto \mathscr{C}. We need to verify that $(\mathbf{y}, h, x) \mapsto(T(\mathbf{y}, h))(x)$ is jointly measurable, that is for any Borel subset A of \mathbb{R}

$$
B=\{(\mathbf{y}, h, x): \mathbf{x}, \mathbf{y} \in X, h \in[0, \infty[,(T(\mathbf{y}, h))(x) \in A\}
$$

must be in the product σ-algebra. $T(\mathbf{y}, h)(x)$ attains either the value 0 or 1 hence there are four events we need to consider. First $A=\emptyset$ which implies $B=\emptyset$ and $\{0,1\} \subseteq A$ which implies $B=Y$ are always in the σ-algebra.
So consider now a set A such that $1 \in A$ but not 0 , then

$$
\begin{aligned}
B & =\{(\mathbf{y}, h, \mathbf{x}): \mathbf{x}, \mathbf{y} \in \mathbb{X}, h \in[0, \infty[, \chi([\mathbf{y}, \mathbf{y}+h \mathbf{1}])(\mathbf{x})=1\} \\
& =\{(\mathbf{y}, h, \mathbf{x}): \mathbf{x}, \mathbf{y} \in \mathbb{X}, h \in[0, \infty[, \mathbf{x} \in[\mathbf{y}, \mathbf{y}+h \mathbf{1}]\}
\end{aligned}
$$

This set is closed in the natural topology of $\mathbb{X} \times[0, \infty[\times \mathbb{X}$ since, if $(\mathbf{y}, h, \mathbf{x})$ is not in B then with $\epsilon<d(\mathbf{x},[\mathbf{y}, \mathbf{y}+h \mathbf{1}])$, where d is the Euclidean metric, we have that the open ball

$$
\{(u, \eta, \xi): d(\mathbf{y}, u), d(h, \eta), d(\mathbf{x}, \xi)<\epsilon / 3, u, \xi \in \mathbb{X}, \eta \in[0, \infty[\} \subseteq \mathbb{Y} \times \mathbb{X} \backslash B
$$

contains $(\mathbf{y}, h, \mathbf{x})$. And, since,

$$
(\mathbb{Y} \times \mathbb{X}) \backslash B=\{(\mathbf{y}, h, \mathbf{x}): \mathbf{x}, \mathbf{y} \in \mathbb{X}, h \in[0, \infty[,(T(y, h))(x)=0\}
$$

the latter set is open. Hence, both sets are in the Borel algebra $\mathcal{B}(Y \times \mathbb{X})$.
It remains to show that the product algebra equals the Borel algebra, that is,

$$
\mathscr{B}(\mathbb{Y}) \otimes \mathscr{B}(\mathbb{X})=\mathscr{B}(\mathbb{Y} \times \mathbb{X})
$$

This follows from Fremlin (2003)[4A3D(ci)] if $Y \times \mathbb{X}$ is a hereditary Lindelöf space. Though, every second countable space like $\mathbb{Y} \times \mathbb{X}$ is hereditary Lindelöf and the result follows. \mathbf{Q}

Lemma A. 2 (Proof of Lemma 2.3). Let \mathbb{X} be any set and \mathcal{E} be a σ-algebra of subsets of \mathbb{X}. \mathcal{E} is a VC-class if, and only if, \mathcal{E} is a finite family of sets.

Proof. Any finite collection of sets is a VC-class. For the other direction assume \mathcal{G} is infinite.
(i) There exists a countably infinite sequence of disjoint sets in \mathcal{G}. \mathbf{P} We prove by induction that for any $n \in \mathbb{N}$ there exist n disjoint sets in \mathscr{G}. The induction hypothesis is trivially fulfilled for $n=1$. For the induction step let us assume that
$A_{1}, \ldots, A_{n} \in \mathscr{G}$ are not empty and mutually disjoint. There exists an element $B \in \mathscr{G}$ that is not contained in $\sigma\left(A_{1}, \ldots, A_{n}\right)$ since otherwise $\mathcal{E}=\sigma\left(A_{1}, \ldots, A_{n}\right)$ and \mathscr{E} would be finite. Take such an element B. If $B \backslash \bigcup_{i \leq n} A_{n} \in \mathscr{E}$ is not empty then add this to the sequence as A_{n+1}. A_{n+1} is then obviously disjoint from all A_{1}, \ldots, A_{n}. If $B \backslash \bigcup_{i \leq n} A_{n}=\emptyset$ then $B \subsetneq \bigcup_{i \leq n} A_{n}$. Furthermore, there is some $i \leq n$ such that $A_{i} \backslash B \neq \emptyset \neq A_{i} \cap B$, because otherwise B would be a union of a subset of A_{1}, \ldots, A_{n}. Now, remove A_{i} from the sequence and add $A_{i} \backslash B$ and $A_{i} \cap B$ to the sequence. This way we gain $n+1$ disjoint elements that are all contained in \mathcal{E}. This implies now directly that there is a countably infinite sequence of disjoint sets contained in \mathcal{E}. \mathbf{Q}
(ii) By (i) we can choose a sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of disjoint and non-empty subsets of $\boldsymbol{\mathcal { G }}$. By countable choice we can select a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $x_{n} \in A_{n}$. Consider any $k \in \mathbb{N}$, points x_{1}, \ldots, x_{k} and any subset of these, say $\left\{x_{n_{i}}: i \leq l, 0 \leq n_{1}<n_{2} \ldots<n_{l} \leq k\right\}$ for $l \leq k$ and consider the corresponding sequence of sets $\left\{A_{n_{i}}: i \leq l\right\}$ then $\left\{x_{n_{i}}: i \leq l\right\}=\left\{x_{n}\right\}_{n \leq k} \cap \bigcup\left\{A_{n_{i}}: i \leq l\right\}$ and the set $\left\{x_{i}\right\}_{i \leq k}$ is shattered. Since this argument applies to any $k \in \mathbb{N}$ we know that \mathscr{E} is not a VC-class.

Lemma A. 3 (Proof of Lemma 5). Let (Ω, \mathcal{A}, P) be a probability space and $\mathcal{C} \subset \mathcal{A}$ a disjoint family of sets such that for each $A \in \mathcal{C}$ there exists $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ in C with $\Omega \backslash A=\bigcup_{n \in \mathbb{N}} A_{n}$ and $\emptyset \in \mathcal{C}$. For any measure Q for which there exists a constant $c>0$ such that for all $A \in \mathcal{C},|Q(A)-P(A)| \leq c P(A)$, we have that $\sup _{A \in \sigma(C)}|Q(A)-P(A)| / P(A) \leq c$.

Proof. We apply the monotone class theorem. $A, B \in \mathcal{C}$ then either $A \cap B=\emptyset \in \mathcal{C}$ or $A=B \in \mathcal{C}$. Define

$$
\mathscr{D}:=\{A: A=\bigcup \mathcal{E}, \mathcal{E} \subseteq \mathcal{C} \text { a countable family, }|Q(A)-P(A)| \leq c P(A)\}
$$

\mathscr{D} is a Dynkin class: (1) $\emptyset \in \mathscr{D}$; (2) $A \in \mathscr{D}$ then by assumption $\Omega \backslash A=\bigcup_{n \in \mathbb{N}} A_{n}$ for some elements $A_{n} \in C$ and because the A_{n} are disjoint we have

$$
|Q(\Omega \backslash A)-P(\Omega \backslash A)| \leq \sum_{n \in \mathbb{N}}\left|Q\left(A_{n}\right)-P\left(A_{n}\right)\right| \leq c \sum_{n \in \mathbb{N}} P\left(A_{n}\right)=c P(\Omega \backslash A)
$$

and $\Omega \backslash A \in \mathscr{D}$. (3) If $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a disjoint sequence in \mathscr{D}, then

$$
\left|Q\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)-P\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)\right| \leq \sum_{n \in \mathbb{N}}\left|Q\left(A_{n}\right)-P\left(A_{n}\right)\right| \leq c P\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) .
$$

Since each A_{n} is a countable family of elements on C we know that $\bigcup_{n \in \mathbb{N}} A_{n}$ is also a countable family of elements of C and therefore $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathscr{D}$. The result follows now from the monotone class theorem since $\mathcal{C} \subseteq \mathscr{D}$.

Corollary A. 1 (Proof of Proposition 2.1). Let $\left([0,1]^{d}, \mathcal{A}, P\right)$ be a probability space such that P has a density p that is lower bounded by $b>0$. Let $\left\{\lambda_{n}\right\}_{n \geq 1}$ be a non-decreasing sequence in \mathbb{N}_{+}such that $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ then $\left\|v_{n}(A)\right\|_{\sigma\left(C_{\lambda_{n}}\right)} \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{d \lambda_{n} / 2}\right)$. Furthermore, for any Borel set A and $\epsilon>0$ there exists an $n \in \mathbb{N}$ and $B \in \sigma\left(C_{\lambda_{n}}\right)$ such that $P(A \Delta B) \leq \epsilon$.

Proof. The universal approximation property of the family of sets C is well known. We provide here for completeness a simple proof. The set $\sigma\left(C_{n}\right)$ contains many intervals. In particular, to every element \mathbf{x}^{\prime} in $\left\{\mathbf{x}: \mathbf{x}_{i} \in l_{n}, i \leq n\right\}$, where $l_{n}=\left\{\sum_{i=1}^{\mu_{n}} d_{i} / 2^{i}: d_{i} \in\{0,1\}\right\}$, and any element $\mathbf{x}^{\prime \prime}$ in $\left\{\mathbf{x}: \mathbf{x}_{i} \in r_{n}, i \leq n\right\}$, where $r_{n}=\left\{1-\sum_{i=1}^{\mu_{n}} d_{i} / 2^{i}: d_{i} \in\{0,1\}\right\}$, corresponds an interval $\mathbf{I}=\left[\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime}\right) \in \sigma\left(C_{n}\right)$. Both, $\bigcup_{n \geq 1} l_{n}$ and $\bigcup_{n \geq 1} r_{n}$ lie dense in [0, 1]. This implies that any halfopen interval $[\mathbf{a}, \mathbf{b}), 0 \leq \mathbf{a}_{i}<\mathbf{b}_{i} \leq 1$ for all $i \leq d$, can be approximated arbitrary well in Lebesgue measure, i.e. for $\epsilon>0$ and with μ denoting Lebesgue-measure, there exists an $n \in \mathbb{N}$ and an $\mathbf{I} \in \sigma\left(C_{n}\right)$ such that $[\mathbf{a}, \mathbf{b}) \subseteq \mathbf{I}$ and $\left.\mu(\mathbf{I} \backslash \mathbf{a}, \mathbf{b})\right) \leq \epsilon$. Consider now any Borel subset A of $[0,1]^{d}$ and $\epsilon>0$. Let $\left\{\mathbf{I}_{n}\right\}_{n \geq 1}$ be a sequence of half-open intervals in $[0,1]^{d}$ such that $A \subseteq \bigcup_{n \geq 1} \mathbf{I}_{n}$ and $\mu\left(\bigcup_{n \geq 1} \mathbf{I}_{n}\right) \leq \mu(A)+\epsilon / 4$. Furthermore, select for each \mathbf{I}_{n} an half-open interval $\mathbf{I}_{n}^{\prime} \in \bigcup_{m \geq 1} \sigma\left(C_{m}\right)$ such that $\mathbf{I}_{n} \subseteq \mathbf{I}_{n}^{\prime}$ and $\mu\left(\mathbf{I}_{n}^{\prime} \backslash \mathbf{I}_{n}\right) \leq \epsilon / 2^{n+2}$ then $A \subseteq \bigcup_{n \geq 1} \mathbf{I}_{n}^{\prime}$ and

$$
\mu\left(\bigcup_{n \geq 1} \mathbf{I}_{n}^{\prime}\right) \leq \mu\left(\bigcup_{n \geq 1} \mathbf{I}_{n}^{\prime} \backslash \bigcup_{n \geq 1} \mathbf{I}_{n}\right)+\mu\left(\bigcup_{n \geq 1} \mathbf{I}_{n}\right) \leq \mu(A)+\epsilon / 4+\mu\left(\bigcup_{n \geq 1}\left(\mathbf{I}_{n}^{\prime} \backslash \mathbf{I}_{n}\right)\right) \leq \mu(A)+\epsilon / 2 .
$$

Choose an N such that $\mu\left(\bigcup_{n \geq N} \mathbf{I}_{n}^{\prime}\right) \leq \epsilon / 2$ and define $B=\bigcup_{n<N} \mathbf{I}_{n}^{\prime} \in \bigcup_{m \geq 1} \sigma\left(C_{m}\right)$. Then $\mu(B \backslash A) \leq$ $\mu\left(\bigcup_{n \geq 1} \mathbf{I}_{n}^{\prime} \backslash A\right) \leq \epsilon / 2$ and $\mu(A \backslash B) \leq \mu\left(\bigcup_{n \geq 1} \mathbf{I}_{n}^{\prime} \backslash B\right) \leq \epsilon / 2$. Hence, $\mu(A \Delta B) \leq \epsilon$. Since P is absolutely continuous with respect to Lebesgue-measure we can choose for every $\epsilon>0$ a $\delta>0$ such that $\mu(A \Delta B) \leq \delta$ implies $P(A \Delta B) \leq \epsilon$ and the second part of the proposition follows.

B Conditioning

Proposition B. 1 (Proof of Proposition 3.1). If $\mathcal{C} \subseteq \mathscr{B}_{\Phi}$ is a finite set with $\inf _{B \in C} P(B)>0, \mathcal{F}$ is a subset of $\mathcal{L}^{1}(P)$ uniformly bounded in supremum norm and \mathscr{F}_{C} is a P-Donsker class then

$$
\sup _{f \in \mathcal{F}} \sup _{B \in \mathcal{C}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \in O_{P}^{*}\left(n^{-1 / 2}\right)
$$

Furthermore, if $\mathcal{C}^{\prime} \subseteq \mathcal{B}_{\mathbb{S}}$, is such that $\mathcal{C}_{\mathcal{C}}^{\prime}$ is a P-Donsker class then

$$
\sup _{A \in \mathcal{C}^{\prime}} \sup _{B \in C}\left|P_{n}(A \mid B)-P(A \mid B)\right| \in O_{P}^{*}\left(n^{-1 / 2}\right)
$$

Proof. For a finite family of measurable sets C the corresponding set of indicator functions \mathscr{C} is always a P-Donsker class since for a single element the standard CLT provides the necessary statement and finite unions of P-Donsker classes are again P-Donsker due to (Dudley, 2014)[Thm 4.34]. Hence,

$$
\sup _{f \in \mathcal{F}, B \in \mathcal{C}}\left|\int_{B} f d P_{n}-\int_{B} f d P\right|=\sup _{f \in \mathcal{F}, B \in \mathcal{C}}\left|\int f \times \chi(B) d P_{n}-\int f \times \chi(B) d P\right|=O_{P}^{*}\left(n^{-1 / 2}\right)
$$

and

$$
\sup _{B \in C}\left|P_{n}(B)-P(B)\right|=O_{P}^{*}\left(n^{-1 / 2}\right)
$$

By definition this implies that for $\epsilon>0$ there exists an M_{1} such that $\operatorname{Pr}^{*}\left\{\sup _{B \in C}\left|P(B)-P_{n}(B)\right|>M_{1} n^{-1 / 2}\right\}<\epsilon / 2$ for all $n \geq 1$. Let $N:=\left\lceil\left(2 M_{1} / \inf _{B \in C} P(B)\right)^{2}\right\rceil$. Because $\inf _{B \in C} P(B)>0$, for all $n \geq N$ we have for any $A \in C$ that

$$
\begin{aligned}
& \left\{P_{n}(A)<\inf _{B \in C} P(B) / 2\right\} \subseteq\left\{P_{n}(A)<P(A) / 2\right\}=\left\{P(A)-P_{n}(A)>P(A) / 2\right\} \\
& \subseteq\left\{\sup _{B \in C}\left|P(B)-P_{n}(B)\right|>P(A) / 2\right\} \subseteq\left\{\sup _{B \in C}\left|P(B)-P_{n}(B)\right|>\inf _{B^{\prime} \in C} P\left(B^{\prime}\right) / 2\right\} \\
& \subseteq\left\{\sup _{B \in C}\left|P(B)-P_{n}(B)\right|>M_{1} n^{-1 / 2}\right\} .
\end{aligned}
$$

Similarly, there exists an M_{2} such that $\operatorname{Pr}^{*}\left\{\sup _{f \in \mathcal{F}, B \in C}\left|\int_{B} f d P_{n}-\int_{B} f d P\right|>M_{2} n^{-1 / 2}\right\}<\epsilon / 2$. The events

$$
\Omega_{n}:=\left\{\sup _{B \in C}\left|P(B)-P_{n}(B)\right| \leq M_{1} n^{-1 / 2}\right\} \cap\left\{\sup _{f \in \mathcal{F}, B \in C}\left|\int_{B} f d P_{n}-\int_{B} f d P\right| \leq M_{2} n^{-1 / 2}\right\}
$$

have outer probability $\operatorname{Pr}^{*}\left(\Omega_{n}\right) \geq 1-\epsilon$ and for all $n \geq N$ and $B \in \mathcal{C}, \Omega_{n} \subseteq\left\{P_{n}(B) \geq \inf _{B^{\prime} \in \mathcal{C}} P\left(B^{\prime}\right) / 2\right\}$. In the event $\Omega_{n}, n \geq N$, we know that $P_{n}(B)>0$ and

$$
\begin{align*}
& E_{n}(f \mid B)-E(f \mid B) \tag{8}\\
& =\left(\int_{B} f d P_{n}\right) / P_{n}(B)-\left(\int_{B} f d P\right) / P(B) \\
& =\left(P(B) \int_{B} f d P_{n}-P_{n}(B) \int_{B} f d P\right) /\left(P_{n}(B) P(B)\right) \\
& =\left(P(B)\left(\int_{B} f d P_{n}-\int_{B} f d P\right)+\left(P(B)-P_{n}(B)\right) \int_{B} f d P\right) /\left(P_{n}(B) P(B)\right) .
\end{align*}
$$

Therefore, for $n \geq N$ in the event Ω_{n},

$$
n^{1 / 2} \sup _{f \in \mathcal{F}, B \in C}\left|\left(\int_{B} f d P_{n}\right) / P_{n}(B)-\left(\int_{B} f d P\right) / P(B)\right| \leq 2\left(M_{2}+b M_{1}\right) / c^{2}
$$

where $b:=\sup _{x \in \mathbb{\Im}, f \in \mathcal{F}}|f(x)|$ and $c:=\inf _{B \in C} P(B)>0$.
For any $n<N$ and B with $P_{n}(B)=0$ the estimate $E_{n}(f \mid B)=0$ by definition and

$$
\sup _{f \in \mathscr{F}}\left|E_{n}(f \mid B)-E(f \mid B)\right|=\sup _{f \in \mathscr{F}}\left|\left(\int_{B} f d P\right) / P(B)\right| \leq b<\infty
$$

For any $n<N$ with $P_{n}(B)>0$ we have that

$$
n^{1 / 2} \sup _{f \in \mathscr{F}, B \in C}\left|\left(\int_{B} f d P_{n}\right) / P_{n}(B)-\left(\int_{B} f d P\right) / P(B)\right| \leq 2 n^{1 / 2} b<\infty
$$

and with the constant $M:=\max \left\{2\left(M_{2}+b M_{1}\right) / c^{2}, 2 N^{1 / 2} b\right\}$ we have

$$
\operatorname{Pr}^{*}\left\{\sup _{f \in \mathcal{F}} \sup _{B \in \mathcal{C}}\left|E_{n}(f \mid B)-E(f \mid B)\right|>M n^{-1 / 2}\right\} \leq \epsilon .
$$

This is sufficient to prove the first claim. The second claim follows from the first by substituting \mathcal{C}^{\prime} for \mathcal{F}.
Proposition B. 2 (Proof of Proposition 3.2). If $\mathcal{C} \subseteq \mathcal{B}_{\mathbb{S}}, \mathcal{C}^{\mathcal{C}}$ and \mathcal{F}_{C} are P-Donsker classes, $\mathcal{F}^{\text {is }}$ a subset of $\mathcal{L}^{1}(P)$ uniformly bounded in supremum norm and P has a density which is lower bounded by a constant $b>0$ then with $C_{n}:=\left\{C: C \in C, \mu(C) \geq n^{-\alpha}\right\}$ and $\alpha \in[0,1 / 2)$

$$
\sup _{f \in \mathcal{F}} \sup _{B \in C_{n}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \in O_{P}^{*}\left(n^{\alpha-1 / 2}\right)
$$

Furthermore, if $\mathcal{C}^{\prime} \subseteq \mathscr{B}_{\Phi}$ is such that \bigodot_{C}^{\prime} is a P-Donsker class then

$$
\sup _{A \in C^{\prime}} \sup _{B \in C_{n}}\left|P_{n}(A \mid B)-P(A \mid B)\right| \in O_{P}^{*}\left(n^{\alpha-1 / 2}\right)
$$

Proof. As in the the proof of Proposition 3.1, $\sup _{f \in \mathcal{F}, B \in \mathcal{C}}\left|\int_{B} f d P_{n}-\int_{B} f d P\right| \in O_{P}^{*}\left(n^{-1 / 2}\right)$ and $\sup _{B \in \mathcal{C}}\left|P_{n}(B)-P(B)\right| \in O_{P}^{*}\left(n^{-1 / 2}\right)$. Hence, for a given $\epsilon>0$ there exists a M_{1} such that $\operatorname{Pr}^{*}\left\{\sup _{B \in \mathcal{C}}\left|P(B)-P_{n}(B)\right|>M_{1} n^{-1 / 2}\right\}<\epsilon / 2$. In particular, since by assumption $\inf _{B^{\prime} \in C_{n}} P\left(B^{\prime}\right) / 2 \geq$ $b \inf _{B^{\prime} \in C_{n}} \mu\left(B^{\prime}\right) / 2 \geq(b / 2) n^{-\alpha}$ we have for $N:=\left\lceil\left(2 M_{1} / b\right)^{1 /(1 / 2-\alpha)}\right\rceil$ and all $n \geq N, B \in C_{n}$ that

$$
\begin{aligned}
& \left\{P_{n}(B)<\inf _{B^{\prime} \in C_{n}} P\left(B^{\prime}\right) / 2\right\} \subseteq\left\{\sup _{B \in \mathcal{C}_{n}}\left|P(B)-P_{n}(B)\right|>\inf _{B^{\prime} \in C_{n}} P\left(B^{\prime}\right) / 2\right\} \\
& \subseteq\left\{\sup _{B \in C_{n}}\left|P(B)-P_{n}(B)\right|>(b / 2) n^{-\alpha}\right\} \subseteq\left\{\sup _{B \in C_{n}}\left|P(B)-P_{n}(B)\right|>M_{1} n^{-1 / 2}\right\} \\
& \subseteq\left\{\sup _{B \in C}\left|P(B)-P_{n}(B)\right|>M_{1} n^{-1 / 2}\right\} .
\end{aligned}
$$

and, since the last event has an outer probability strictly less than $\epsilon / 2$, there exists an M_{2} such that for all $n \geq N$ the events

$$
\Omega_{n}:=\left\{\sup _{B \in \mathcal{C}}\left|P(B)-P_{n}(B)\right| \leq M_{1} n^{-1 / 2}\right\} \cap\left\{\sup _{f \in \mathcal{F}, B \in \mathcal{C}}\left|\int_{B} f d P_{n}-\int_{B} f d P\right| \leq M_{2} n^{-1 / 2}\right\}
$$

have outer probability $\operatorname{Pr}^{*}\left(\Omega_{n}\right) \geq 1-\epsilon$ and $\left\{P_{n}(B) \geq \inf _{B^{\prime} \in C_{n}} P\left(B^{\prime}\right) / 2\right\} \supseteq \Omega_{n}$ for all $n \geq N$.
Using the bound (8)

$$
\begin{aligned}
& \left|\left(\int_{B} f d P_{n}\right) / P_{n}(B)-\left(\int_{B} f d P\right) / P(B)\right| \\
& \leq\left|\left(\int_{B} f d P_{n}-\int_{B} f d P\right) / P_{n}(B)\right|+\left|\left(P(B)-P_{n}(B)\right) \int_{B} f d P /\left(P_{n}(B) P(B)\right)\right| .
\end{aligned}
$$

Let $c=\sup _{x \in \mathbb{\Phi}} \sup _{f \in \mathcal{F}}|f(x)|<\infty$ then $\left|\int_{B} f d P\right| \leq c P(B)$ and, since $P_{n}(B) \geq(b / 2) n^{-\alpha}$ on Ω_{n}, for $n \geq N$

$$
\sup _{f \in \mathscr{F}} \sup _{B \in \mathcal{C}_{n}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \leq\left(2 M_{2} / b\right) n^{\alpha-1 / 2}+\left(2 c M_{1} / b\right) n^{\alpha-1 / 2}
$$

As in the the proof of Proposition 3.1 the errors for $n<N$ can be bounded since $\inf _{n<N} \inf _{B \in C_{n}} P(B) \geq b N^{-\alpha}$ and the first result follows. Substituting ζ^{\prime} for \mathcal{F} yields the second claim.

Lemma B.1. If \mathcal{G} is a σ-algebra consisting of finitely many elements then there exists a unique partition $\mathcal{P}_{\mathscr{E}}$ such that each element of \mathscr{G} can be represented as a finite union of elements of $\mathcal{P}_{\mathscr{E}}$.

Proof. (i) Uniqueness. Assume there are two partitions $\mathcal{P}_{\mathscr{E}}$ and $\mathscr{P}_{\mathscr{E}}^{\prime}$. There must be an element $B \in \mathscr{P}_{\mathscr{E}}^{\prime}$ that is not in $\mathcal{P}_{\mathscr{G}}^{\prime}$ (or vice versa) since otherwise $\mathcal{P}_{\mathscr{g}}^{\prime}=\mathcal{P}_{\mathscr{E}}$. This B is equal to $A_{1} \cup \ldots \cup A_{n}$ for some $n \in \mathbb{N}$ and disjoint, non-empty, elements $A_{1}, \ldots, A_{n} \in \mathcal{P}_{\mathscr{E}}$. Now $A_{1} \subsetneq B$ but A_{1} cannot be a finite union of elements of $\mathscr{P}_{\mathscr{G}}^{\prime}$ since $\mathscr{P}_{\mathscr{G}}^{\prime}$ is a partition.
(ii) Enumerate \mathcal{E} as A_{1}, \ldots, A_{n} where n is the cardinality of \mathcal{E}. We construct a partition iterartively. I.e. we construct for each $i \leq n$ a family of sets $\mathscr{B}_{i}=\left\{B_{1 i}, \ldots, B_{m_{i}, i}\right\}$ that is disjoint and such that $A_{1}, \ldots A_{i}$ can be represented as unions of the $B_{j, i}$ elements. For $i=1$ let $B_{11}=A_{1}$. Now assume we have such a family of sets for i and we want to get a family of disjoint sets for A_{1}, \ldots, A_{i+1}. Consider the following family of set

$$
\mathscr{B}_{i+1}=\left\{A_{i+1} \backslash \bigcup \mathcal{B}_{i}\right\} \cup\left\{B \backslash A_{i+1}: B \in \mathscr{B}_{i}\right\} \cup\left\{A_{i+1} \cap B: B \in \mathscr{B}_{i}\right\}
$$

Clearly ever $B \in \mathscr{B}_{i}$ can still be represented as a union of elements since $B=\left(B \backslash A_{i+1}\right) \cup\left(B \cap A_{i+1}\right)$. Similarly, $A_{i+1}=\left(A_{i+1} \backslash \bigcup \mathscr{B}_{i}\right) \cup\left(A_{i+1} \cap \bigcup \mathscr{B}_{i}\right)$ can be represented. The family of sets is also disjoint: any element of the form $B \backslash A_{i+1}$ is certainly disjoint from any $B^{\prime} \cap A_{i+1}$ and $A_{i+1} \backslash B^{\prime \prime} \supset A_{i+1} \backslash \bigcup \mathcal{B}_{i}$. Also, since the elements in \mathscr{B}_{i} are disjoint any two $B \backslash A_{i+1}$ and $B^{\prime} \backslash A_{i+1}$ will be disjoint. Finally, any $A_{i+1} \cap B$ is disjoint of $A_{i+1} \backslash \bigcup \mathcal{B}_{i}$ and $\left(A_{i+1} \cap B\right) \cap\left(A_{i+1} \cap B^{\prime}\right)=\emptyset$. This concludes the induction.

Proposition B. 3 (Proof of Proposition 3.3). If $\mathscr{G} \subseteq \mathscr{B}_{\S}$ is a σ-algebra consisting of finitely many sets, \mathcal{F} is a subset of $\mathcal{L}^{1}(P)$ uniformly bounded in supremum norm, $\mathcal{F}_{\mathscr{E}}$ is a P-Donsker class then

$$
\sup _{f \in \mathcal{F}}\left\|E_{n}(f \mid \mathscr{G})-E(f \mid \mathscr{G})\right\|_{\mathcal{L}^{1}(P)} \in O_{P}^{*}\left(n^{-1 / 2}\right)
$$

Furthermore, if $\mathcal{C} \subseteq \mathscr{B}_{\Phi}$, is such that $\bigodot_{\mathcal{E}}$ is a P-Donsker class then

$$
\sup _{A \in C}\left\|P_{n}(A \mid \mathscr{E})-P(A \mid \mathscr{E})\right\|_{\mathcal{L}^{1}(P)} \in O_{P}^{*}\left(n^{-1 / 2}\right)
$$

Proof. If $P(B)=0$ for some $B \in \mathcal{E}$ then $\int_{B}\left(E_{n}(f \mid \mathcal{E})-E(f \mid \mathcal{E})\right) d P=0$. Let $\mathcal{G}^{\prime}=\{B: B \in \mathcal{E}, P(B)>0\}$ then from Proposition 3.1 it follows that

$$
\sup _{f \in \mathscr{F}} \sup _{B \in \mathcal{G}^{\prime}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \in O_{P}^{*}\left(n^{-1 / 2}\right)
$$

For $\epsilon>0$, choose M, N such that $F_{n}=\left\{\sup _{f \in \mathcal{F}} \sup _{B \in \mathscr{G}^{\prime}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \leq M n^{-1 / 2}\right\}$ has probability $P\left(F_{n}\right) \geq$ $1-\epsilon$ for all $n \geq N$. For $B \in \mathcal{G}^{\prime}$, let $B_{1}, \ldots, B_{m} \in \mathcal{P}_{\mathscr{G}} \subseteq \mathscr{G}$ such that $B=B_{1} \cup \ldots \cup B_{m}$, then P-a.s. $E(f \mid \mathscr{E})=$ $\sum_{i \leq m} E\left(f \mid B_{i}\right) \times \chi B_{i}$ and

$$
\begin{aligned}
& \left|\int_{B}\left(E_{n}(f \mid \mathcal{E})-E(f \mid \mathcal{E})\right) d P\right| \leq \sum_{i \leq m}\left|\int_{B \cap B_{i}}\left(E_{n}\left(f \mid B_{i}\right)-E\left(f \mid B_{i}\right)\right) d P\right| \\
& \leq \sum_{i \leq m}\left|E_{n}\left(f \mid B_{i}\right)-E\left(f \mid B_{i}\right)\right| P\left(B \cap B_{i}\right) \leq M n^{-1 / 2} \sum_{i \leq m} P\left(B \cap B_{i}\right) \\
& =M n^{-1 / 2} P(B) \leq M n^{-1 / 2} .
\end{aligned}
$$

Furthermore,

$$
\left\|E_{n}(f \mid \mathscr{G})-E(f \mid \mathscr{E})\right\|_{\mathcal{L}^{1}(P)} \leq 2 \sup _{B \in \mathscr{E}}\left|\int_{B} E_{n}(f \mid \mathscr{G})-E(f \mid \mathcal{G}) d P\right| \leq 2 M n^{-1 / 2}
$$

This implies the result. The second result follows again from the first.
Proposition B. 4 (Proof of Proposition 3.4). Let $\left([0,1]^{d}, \mathcal{B}, P\right)$ be a probability space such that P has a density p that is lower bounded by $b>0$ and let $\left\{\lambda_{n}\right\}_{n \geq 1}$ be a non-decreasing sequence in \mathbb{N}_{+}such that

$$
\lambda_{n} \in o\left(\frac{1}{3 d \log (2)} \log \left(\frac{n}{\sqrt{\log (n)}}\right)\right)
$$

If \mathcal{F} is a subset of $\mathcal{L}^{1}(P)$ uniformly bounded in supremum norm which fulfills Equation 4, then

$$
\sup _{f \in \mathcal{F}}\left\|E_{n}\left(f \mid \mathscr{E}_{\lambda_{n}}\right)-E\left(f \mid \mathscr{E}_{\lambda_{n}}\right)\right\|_{\infty} \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{(3 / 2) d \lambda_{n}} n^{-1 / 2}\right)
$$

Furthermore, if $\mathcal{C} \subseteq \mathcal{B}_{\mathbb{S}}$, is such that C^{C} fulfills Equation 4 then

$$
\sup _{A \in C}\left\|P_{n}\left(A \mid \mathcal{E}_{\lambda_{n}}\right)-P\left(A \mid \mathscr{E}_{\lambda_{n}}\right)\right\|_{\infty} \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{(3 / 2) d \lambda_{n}} n^{-1 / 2}\right)
$$

Proof. By assumption and from Corollary 2.1 we know that

$$
\begin{gathered}
\sup _{f \in \mathcal{F}} \sup _{B \in \mathscr{G}_{\lambda_{n}}}\left|\int_{B} f d P_{n}-\int_{B} f d P\right| \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{d \lambda_{n} / 2} n^{-1 / 2}\right), \\
\sup _{B \in \mathscr{C}_{\lambda_{n}}}\left|P_{n}(B)-P(B)\right| \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{d \lambda_{n} / 2} n^{-1 / 2}\right)
\end{gathered}
$$

Furthermore, $\inf _{B \in \mathcal{E}_{\lambda_{n}}} P(B) \geq b 2^{-d \lambda_{n}}$. By combining the technique in the proof of Proposition 3.2 with the assumption on the rate of λ_{n} we have for any $B \in \mathscr{E}_{\lambda_{n}}$ that

$$
\left\{P_{n}(B)<\inf _{B^{\prime} \in \mathscr{G}_{\lambda_{n}}} P\left(B^{\prime}\right) / 2\right\} \subseteq\left\{\sup _{B \in \mathscr{G}_{\lambda_{n}}}\left|P(B)-P_{n}(B)\right|>M \sqrt{\log (n)} 2^{d \lambda_{n} / 2} n^{-1 / 2}\right\}
$$

for some constant N, M and all $n \geq N$. The same line of reasoning as in Proposition 3.2 then shows

$$
\sup _{f \in \mathcal{F}} \sup _{B \in \mathcal{E}_{\lambda_{n}}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{(3 / 2) d \lambda_{n}} n^{-1 / 2}\right)
$$

Substituting in the definition of $E_{n}\left(f \mid \mathscr{E}_{\lambda_{n}}\right)$ and $E\left(f \mid \mathscr{E}_{\lambda_{n}}\right)$ gives us the first result,

$$
\sup _{f \in \mathcal{F}}\left\|E_{n}\left(f \mid \mathscr{E}_{\lambda_{n}}\right)-E\left(f \mid \mathcal{E}_{\lambda_{n}}\right)\right\|_{\infty} \leq \sup _{f \in \mathscr{F}} \sup _{B \in \mathcal{E}_{\lambda_{n}}}\left|E_{n}(f \mid B)-E(f \mid B)\right| \in O_{P}^{*}\left(\sqrt{\log (n)} 2^{(3 / 2) d \lambda_{n}} n^{-1 / 2}\right)
$$

The second claim is directly implied by this result.

