Supplementary material of the paper

Plug-in Estimators for Conditional Expectations and Probabilities

A Families of Sets and Functions

Lemma A.1 (Proof of Proposition 2.1). \mathcal{C} is a universal Donsker class if X is \mathbb{R}^d or $[0, 1]^d$.

Proof. We apply Corollary 6.20 of Dudley (2014).

(i) The set *C* has *finite VC dimension* bounded by 2d + 1. **P** Consider arbitrary 2d + 1 points $\mathbf{x}_1, \mathbf{x}_2, \ldots \in \mathbb{X}$. Now, there is at least one element \mathbf{x}_i which attains the maximum in dimension $j, 1 \le j \le d$, i.e. $\mathbf{x}_{ij} = \max_{l \le d} \mathbf{x}_{lj}$. Select for every dimension such an element and, in the same way, select *d* minimizers. Denote the joint set of these points with *B*. Then every element from *C* that contains *B* also contains $\mathbf{x}_1, \ldots, \mathbf{x}_{2d+1}$ and there is no set $A \in C$ which fulfills $A \cap \{x_i : 1 \le i \le 2d + 1\} = B$. **Q**

(ii) The set X is a Borel set. Hence $\chi X \in \mathcal{L}^2(X, P)$ for every probability measure P on the Borel sets and χX is an *envelope function* of \mathcal{C} .

(iii) \mathcal{C} is *image admissible Suslin*. **P** Let $\mathbb{Y} = \mathbb{X} \times [0, \infty]$ equipped with the natural topology, which is the one induced by the Euclidean metric, and the corresponding Borel σ -algebra. \mathbb{Y} is a Polish space since it is a closed subset of the complete space \mathbb{R}^{d+1} .

Consider now the map $T(\mathbf{y}, h) = \chi([\mathbf{y}, \mathbf{y} + h\mathbf{1}])$ if $[\mathbf{y}, \mathbf{y} + h\mathbf{1}] \in C$ and $\chi(\emptyset)$ otherwise. T maps \mathbb{Y} onto \mathcal{C} . We need to verify that $(\mathbf{y}, h, x) \mapsto (T(\mathbf{y}, h))(x)$ is jointly measurable, that is for any Borel subset A of \mathbb{R}

$$B = \{ (\mathbf{y}, h, x) : \mathbf{x}, \mathbf{y} \in X, h \in [0, \infty[, (T(\mathbf{y}, h))(x) \in A] \}$$

must be in the product σ -algebra. $T(\mathbf{y}, h)(x)$ attains either the value 0 or 1 hence there are four events we need to consider. First $A = \emptyset$ which implies $B = \emptyset$ and $\{0, 1\} \subseteq A$ which implies $B = \mathbb{Y}$ are always in the σ -algebra.

So consider now a set A such that $1 \in A$ but not 0, then

$$B = \{(\mathbf{y}, h, \mathbf{x}) : \mathbf{x}, \mathbf{y} \in \mathbb{X}, h \in [0, \infty[, \chi([\mathbf{y}, \mathbf{y} + h\mathbf{1}])(\mathbf{x}) = 1\} \\ = \{(\mathbf{y}, h, \mathbf{x}) : \mathbf{x}, \mathbf{y} \in \mathbb{X}, h \in [0, \infty[, \mathbf{x} \in [\mathbf{y}, \mathbf{y} + h\mathbf{1}]\}.$$

This set is closed in the natural topology of $\mathbb{X} \times [0, \infty[\times \mathbb{X} \text{ since, if } (\mathbf{y}, h, \mathbf{x}) \text{ is not in } B$ then with $\epsilon < d(\mathbf{x}, [\mathbf{y}, \mathbf{y} + h\mathbf{1}])$, where *d* is the Euclidean metric, we have that the open ball

$$\{(u,\eta,\xi): d(\mathbf{y},u), d(h,\eta), d(\mathbf{x},\xi) < \epsilon/3, u, \xi \in \mathbb{X}, \eta \in [0,\infty[\} \subseteq \mathbb{Y} \times \mathbb{X} \setminus B$$

contains $(\mathbf{y}, h, \mathbf{x})$. And, since,

$$(\mathbb{Y} \times \mathbb{X}) \setminus B = \{ (\mathbf{y}, h, \mathbf{x}) : \mathbf{x}, \mathbf{y} \in \mathbb{X}, h \in [0, \infty[, (T(y, h))(x) = 0] \}$$

the latter set is open. Hence, both sets are in the Borel algebra $\mathscr{B}(\mathbb{Y} \times \mathbb{X})$.

It remains to show that the product algebra equals the Borel algebra, that is,

$$\mathcal{B}(\mathbb{Y}) \otimes \mathcal{B}(\mathbb{X}) = \mathcal{B}(\mathbb{Y} \times \mathbb{X}).$$

This follows from Fremlin (2003)[4A3D(ci)] if $\mathbb{Y} \times \mathbb{X}$ is a hereditary Lindelöf space. Though, every second countable space like $\mathbb{Y} \times \mathbb{X}$ is hereditary Lindelöf and the result follows. **Q**

Lemma A.2 (Proof of Lemma 2.3). Let X be any set and G be a σ -algebra of subsets of X. G is a VC-class if, and only if, G is a finite family of sets.

Proof. Any finite collection of sets is a VC-class. For the other direction assume \mathcal{G} is infinite.

(i) There exists a countably infinite sequence of disjoint sets in \mathscr{G} . **P** We prove by induction that for any $n \in \mathbb{N}$ there exist *n* disjoint sets in \mathscr{G} . The induction hypothesis is trivially fulfilled for n = 1. For the induction step let us assume that

 $A_1, \ldots, A_n \in \mathcal{G}$ are not empty and mutually disjoint. There exists an element $B \in \mathcal{G}$ that is not contained in $\sigma(A_1, \ldots, A_n)$ since otherwise $\mathcal{G} = \sigma(A_1, \ldots, A_n)$ and \mathcal{G} would be finite. Take such an element B. If $B \setminus \bigcup_{i \leq n} A_n \in \mathcal{G}$ is not empty then add this to the sequence as A_{n+1} . A_{n+1} is then obviously disjoint from all A_1, \ldots, A_n . If $B \setminus \bigcup_{i \leq n} A_n = \emptyset$ then $B \subsetneq \bigcup_{i \leq n} A_n$. Furthermore, there is some $i \leq n$ such that $A_i \setminus B \neq \emptyset \neq A_i \cap B$, because otherwise B would be a union of a subset of A_1, \ldots, A_n . Now, remove A_i from the sequence and add $A_i \setminus B$ and $A_i \cap B$ to the sequence. This way we gain n + 1 disjoint elements that are all contained in \mathcal{G} . This implies now directly that there is a countably infinite sequence of disjoint sets contained in \mathcal{G} . **Q**

(ii) By (i) we can choose a sequence $\{A_n\}_{n \in \mathbb{N}}$ of disjoint and non-empty subsets of \mathcal{G} . By countable choice we can select a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x_n \in A_n$. Consider any $k \in \mathbb{N}$, points x_1, \ldots, x_k and any subset of these, say $\{x_{n_i} : i \leq l, 0 \leq n_1 < n_2 \ldots < n_l \leq k\}$ for $l \leq k$ and consider the corresponding sequence of sets $\{A_{n_i} : i \leq l\}$ then $\{x_{n_i} : i \leq l\} = \{x_n\}_{n \leq k} \cap \bigcup \{A_{n_i} : i \leq l\}$ and the set $\{x_i\}_{i \leq k}$ is shattered. Since this argument applies to any $k \in \mathbb{N}$ we know that \mathcal{G} is not a VC-class.

Lemma A.3 (Proof of Lemma 5). Let (Ω, \mathcal{A}, P) be a probability space and $C \subset \mathcal{A}$ a disjoint family of sets such that for each $A \in C$ there exists $\{A_n\}_{n \in \mathbb{N}}$ in C with $\Omega \setminus A = \bigcup_{n \in \mathbb{N}} A_n$ and $\emptyset \in C$. For any measure Q for which there exists a constant c > 0 such that for all $A \in C$, $|Q(A) - P(A)| \le cP(A)$, we have that $\sup_{A \in \sigma(C)} |Q(A) - P(A)|/P(A) \le c$.

Proof. We apply the monotone class theorem. $A, B \in C$ then either $A \cap B = \emptyset \in C$ or $A = B \in C$. Define

 $\mathcal{D} := \{A : A = \bigcup \mathcal{E}, \mathcal{E} \subseteq \mathcal{C} \text{ a countable family}, |Q(A) - P(A)| \le cP(A)\}.$

 \mathcal{D} is a Dynkin class: (1) $\emptyset \in \mathcal{D}$; (2) $A \in \mathcal{D}$ then by assumption $\Omega \setminus A = \bigcup_{n \in \mathbb{N}} A_n$ for some elements $A_n \in C$ and because the A_n are disjoint we have

$$|Q(\Omega \setminus A) - P(\Omega \setminus A)| \le \sum_{n \in \mathbb{N}} |Q(A_n) - P(A_n)| \le c \sum_{n \in \mathbb{N}} P(A_n) = c P(\Omega \setminus A)$$

and $\Omega \setminus A \in \mathcal{D}$. (3) If $\{A_n\}_{n \in \mathbb{N}}$ is a disjoint sequence in \mathcal{D} , then

$$\left| \mathcal{Q} \Big(\bigcup_{n \in \mathbb{N}} A_n \Big) - P \Big(\bigcup_{n \in \mathbb{N}} A_n \Big) \right| \le \sum_{n \in \mathbb{N}} |\mathcal{Q}(A_n) - P(A_n)| \le c P \Big(\bigcup_{n \in \mathbb{N}} A_n \Big).$$

Since each A_n is a countable family of elements on C we know that $\bigcup_{n \in \mathbb{N}} A_n$ is also a countable family of elements of C and therefore $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$. The result follows now from the monotone class theorem since $C \subseteq \mathcal{D}$.

Corollary A.1 (Proof of Proposition 2.1). Let $([0, 1]^d, A, P)$ be a probability space such that P has a density p that is lower bounded by b > 0. Let $\{\lambda_n\}_{n\geq 1}$ be a non-decreasing sequence in \mathbb{N}_+ such that $\lim_{n\to\infty} \lambda_n = \infty$ then $\|\nu_n(A)\|_{\sigma(\mathcal{C}_{\lambda_n})} \in O_P^*(\sqrt{\log(n)}2^{d\lambda_n/2})$. Furthermore, for any Borel set A and $\epsilon > 0$ there exists an $n \in \mathbb{N}$ and $B \in \sigma(\mathcal{C}_{\lambda_n})$ such that $P(A \Delta B) \leq \epsilon$.

Proof. The universal approximation property of the family of sets C is well known. We provide here for completeness a simple proof. The set $\sigma(C_n)$ contains many intervals. In particular, to every element \mathbf{x}' in $\{\mathbf{x} : \mathbf{x}_i \in l_n, i \leq n\}$, where $l_n = \{\sum_{i=1}^{\mu_n} d_i/2^i : d_i \in \{0, 1\}\}$, and any element \mathbf{x}'' in $\{\mathbf{x} : \mathbf{x}_i \in r_n, i \leq n\}$, where $r_n = \{1 - \sum_{i=1}^{\mu_n} d_i/2^i : d_i \in \{0, 1\}\}$, corresponds an interval $\mathbf{I} = [\mathbf{x}', \mathbf{x}'') \in \sigma(C_n)$. Both, $\bigcup_{n\geq 1} l_n$ and $\bigcup_{n\geq 1} r_n$ lie dense in [0, 1]. This implies that any half-open interval $[\mathbf{a}, \mathbf{b}), 0 \leq \mathbf{a}_i < \mathbf{b}_i \leq 1$ for all $i \leq d$, can be approximated arbitrary well in Lebesgue measure, i.e. for $\epsilon > 0$ and with μ denoting Lebesgue-measure, there exists an $n \in \mathbb{N}$ and an $\mathbf{I} \in \sigma(C_n)$ such that $[\mathbf{a}, \mathbf{b}) \subseteq \mathbf{I}$ and $\mu(\mathbf{I} \setminus [\mathbf{a}, \mathbf{b})) \leq \epsilon$. Consider now any Borel subset A of $[0, 1]^d$ and $\epsilon > 0$. Let $\{\mathbf{I}_n\}_{n\geq 1}$ be a sequence of half-open intervals in $[0, 1]^d$ such that $A \subseteq \bigcup_{n\geq 1} \mathbf{I}_n$ and $\mu(\mathbf{U}_{n\geq 1} \mathbf{I}_n) \leq \mu(A) + \epsilon/4$. Furthermore, select for each \mathbf{I}_n an half-open interval $\mathbf{I}'_n \in \bigcup_{m\geq 1} \sigma(C_m)$ such that $\mathbf{I}_n \subseteq \mathbf{I}'_n$ and $\mu(\mathbf{I}'_n \setminus \mathbf{I}_n) \leq \epsilon/2^{n+2}$ then $A \subseteq \bigcup_{n\geq 1} \mathbf{I}'_n$ and

$$\mu(\bigcup_{n\geq 1}\mathbf{I}'_n) \leq \mu(\bigcup_{n\geq 1}\mathbf{I}'_n \setminus \bigcup_{n\geq 1}\mathbf{I}_n) + \mu(\bigcup_{n\geq 1}\mathbf{I}_n) \leq \mu(A) + \epsilon/4 + \mu(\bigcup_{n\geq 1}(\mathbf{I}'_n \setminus \mathbf{I}_n)) \leq \mu(A) + \epsilon/2.$$

Choose an *N* such that $\mu(\bigcup_{n\geq N} \mathbf{I}'_n) \leq \epsilon/2$ and define $B = \bigcup_{n< N} \mathbf{I}'_n \in \bigcup_{m\geq 1} \sigma(\mathcal{C}_m)$. Then $\mu(B \setminus A) \leq \mu(\bigcup_{n\geq 1} \mathbf{I}'_n \setminus A) \leq \epsilon/2$ and $\mu(A \setminus B) \leq \mu(\bigcup_{n\geq 1} \mathbf{I}'_n \setminus B) \leq \epsilon/2$. Hence, $\mu(A \Delta B) \leq \epsilon$. Since *P* is absolutely continuous with respect to Lebesgue-measure we can choose for every $\epsilon > 0$ a $\delta > 0$ such that $\mu(A \Delta B) \leq \delta$ implies $P(A \Delta B) \leq \epsilon$ and the second part of the proposition follows.

B Conditioning

f

Proposition B.1 (Proof of Proposition 3.1). If $C \subseteq \mathcal{B}_{S}$ is a finite set with $\inf_{B \in C} P(B) > 0$, \mathcal{F} is a subset of $\mathcal{L}^{1}(P)$ uniformly bounded in supremum norm and \mathcal{F}_{C} is a P-Donsker class then

$$\sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{C}} |E_n(f \mid B) - E(f \mid B)| \in O_P^*(n^{-1/2}).$$

Furthermore, if $\mathcal{C}' \subseteq \mathcal{B}_{S}$, is such that $\mathcal{C}'_{\mathcal{C}}$ is a *P*-Donsker class then

$$\sup_{A\in\mathcal{C}'}\sup_{B\in\mathcal{C}}|P_n(A|B)-P(A|B)|\in O_P^*(n^{-1/2}).$$

Proof. For a finite family of measurable sets C the corresponding set of indicator functions C is always a P-Donsker class since for a single element the standard CLT provides the necessary statement and finite unions of P-Donsker classes are again P-Donsker due to (Dudley, 2014)[Thm 4.34]. Hence,

$$\sup_{e\mathcal{F},B\in\mathcal{C}} \left| \int_{B} f \, dP_n - \int_{B} f \, dP \right| = \sup_{f\in\mathcal{F},B\in\mathcal{C}} \left| \int f \times \chi(B) \, dP_n - \int f \times \chi(B) \, dP \right| = O_P^*(n^{-1/2})$$

and

$$\sup_{B \in \mathcal{C}} |P_n(B) - P(B)| = O_P^*(n^{-1/2}).$$

By definition this implies that for $\epsilon > 0$ there exists an M_1 such that $\Pr^* \{ \sup_{B \in \mathcal{C}} |P(B) - P_n(B)| > M_1 n^{-1/2} \} < \epsilon/2$ for all $n \ge 1$. Let $N := \lceil (2M_1/\inf_{B \in \mathcal{C}} P(B))^2 \rceil$. Because $\inf_{B \in \mathcal{C}} P(B) > 0$, for all $n \ge N$ we have for any $A \in \mathcal{C}$ that

$$\{P_n(A) < \inf_{B \in \mathcal{C}} P(B)/2\} \subseteq \{P_n(A) < P(A)/2\} = \{P(A) - P_n(A) > P(A)/2\}$$

$$\subseteq \{\sup_{B \in \mathcal{C}} |P(B) - P_n(B)| > P(A)/2\} \subseteq \{\sup_{B \in \mathcal{C}} |P(B) - P_n(B)| > \inf_{B' \in \mathcal{C}} P(B')/2\}$$

$$\subseteq \{\sup_{B \in \mathcal{C}} |P(B) - P_n(B)| > M_1 n^{-1/2}\}.$$

Similarly, there exists an M_2 such that $\Pr^* \{ \sup_{f \in \mathcal{F}, B \in \mathcal{C}} | \int_B f dP_n - \int_B f dP | > M_2 n^{-1/2} \} < \epsilon/2$. The events

$$\Omega_n := \left\{ \sup_{B \in \mathcal{C}} |P(B) - P_n(B)| \le M_1 n^{-1/2} \right\} \cap \left\{ \sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \int_B f \, dP_n - \int_B f \, dP \right| \le M_2 n^{-1/2} \right\}$$

have outer probability $Pr^*(\Omega_n) \ge 1 - \epsilon$ and for all $n \ge N$ and $B \in C$, $\Omega_n \subseteq \{P_n(B) \ge \inf_{B' \in C} P(B')/2\}$. In the event $\Omega_n, n \ge N$, we know that $P_n(B) > 0$ and

$$E_{n}(f \mid B) - E(f \mid B)$$

$$= \left(\int_{B} f \, dP_{n} \right) \Big/ P_{n}(B) - \left(\int_{B} f \, dP \right) \Big/ P(B)$$

$$= \left(P(B) \int_{B} f \, dP_{n} - P_{n}(B) \int_{B} f \, dP \right) \Big/ (P_{n}(B)P(B))$$

$$= \left(P(B) \left(\int_{B} f \, dP_{n} - \int_{B} f \, dP \right) + (P(B) - P_{n}(B)) \int_{B} f \, dP \right) \Big/ (P_{n}(B)P(B)).$$
(8)

Therefore, for $n \ge N$ in the event Ω_n ,

$$n^{1/2} \sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \left(\int_{B} f \, dP_n \right) \middle/ P_n(B) - \left(\int_{B} f \, dP \right) \middle/ P(B) \right| \le 2 \left(M_2 + bM_1 \right) / c^2,$$

where $b := \sup_{x \in S, f \in \mathcal{F}} |f(x)|$ and $c := \inf_{B \in \mathcal{C}} P(B) > 0$.

For any n < N and B with $P_n(B) = 0$ the estimate $E_n(f | B) = 0$ by definition and

$$\sup_{f \in \mathcal{F}} |E_n(f \mid B) - E(f \mid B)| = \sup_{f \in \mathcal{F}} \left| \left(\int_B f \, dP \right) \middle/ P(B) \right| \le b < \infty.$$

For any n < N with $P_n(B) > 0$ we have that

$$n^{1/2} \sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \left(\int_{B} f \, dP_n \right) \middle/ P_n(B) - \left(\int_{B} f \, dP \right) \middle/ P(B) \right| \le 2n^{1/2} b < \infty$$

and with the constant $M := \max\{2(M_2 + bM_1)/c^2, 2N^{1/2}b\}$ we have

$$\Pr^* \{ \sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{C}} |E_n(f \mid B) - E(f \mid B)| > Mn^{-1/2} \} \le \epsilon.$$

This is sufficient to prove the first claim. The second claim follows from the first by substituting \mathcal{C}' for \mathcal{F} .

Proposition B.2 (Proof of Proposition 3.2). If $C \subseteq \mathcal{B}_{\mathbb{S}}$, \mathcal{C} and \mathcal{F}_C are *P*-Donsker classes, \mathcal{F} is a subset of $\mathcal{L}^1(P)$ uniformly bounded in supremum norm and *P* has a density which is lower bounded by a constant b > 0 then with $C_n := \{C : C \in C, \mu(C) \ge n^{-\alpha}\}$ and $\alpha \in [0, 1/2)$

$$\sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{C}_n} |E_n(f \mid B) - E(f \mid B)| \in O_P^*(n^{\alpha - 1/2}).$$

Furthermore, if $\mathcal{C}' \subseteq \mathcal{B}_{S}$ is such that $\mathcal{C}'_{\mathcal{C}}$ is a *P*-Donsker class then

$$\sup_{A \in \mathcal{C}'} \sup_{B \in \mathcal{C}_n} |P_n(A|B) - P(A|B)| \in O_P^*(n^{\alpha - 1/2}).$$

Proof. As in the proof of Proposition 3.1, $\sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \int_B f \, dP_n - \int_B f \, dP \right| \in O_P^*(n^{-1/2})$ and $\sup_{B \in \mathcal{C}} |P_n(B) - P(B)| \in O_P^*(n^{-1/2})$. Hence, for a given $\epsilon > 0$ there exists a M_1 such that $\Pr^* \{ \sup_{B \in \mathcal{C}_n} |P(B) - P_n(B)| > M_1 n^{-1/2} \} < \epsilon/2$. In particular, since by assumption $\inf_{B' \in \mathcal{C}_n} P(B')/2 \ge b \inf_{B' \in \mathcal{C}_n} \mu(B')/2 \ge (b/2)n^{-\alpha}$ we have for $N := \lceil (2M_1/b)^{1/(1/2-\alpha)} \rceil$ and all $n \ge N, B \in \mathcal{C}_n$ that

$$\{P_n(B) < \inf_{B' \in \mathcal{C}_n} P(B')/2\} \subseteq \{\sup_{B \in \mathcal{C}_n} |P(B) - P_n(B)| > \inf_{B' \in \mathcal{C}_n} P(B')/2\}$$

$$\subseteq \{\sup_{B \in \mathcal{C}_n} |P(B) - P_n(B)| > (b/2)n^{-\alpha}\} \subseteq \{\sup_{B \in \mathcal{C}_n} |P(B) - P_n(B)| > M_1 n^{-1/2}\}$$

$$\subseteq \{\sup_{B \in \mathcal{C}} |P(B) - P_n(B)| > M_1 n^{-1/2}\}.$$

and, since the last event has an outer probability strictly less than $\epsilon/2$, there exists an M_2 such that for all $n \ge N$ the events

$$\Omega_n := \left\{ \sup_{B \in \mathcal{C}} |P(B) - P_n(B)| \le M_1 n^{-1/2} \right\} \cap \left\{ \sup_{f \in \mathcal{F}, B \in \mathcal{C}} \left| \int_B f \, dP_n - \int_B f \, dP \right| \le M_2 n^{-1/2} \right\}$$

have outer probability $\Pr^*(\Omega_n) \ge 1 - \epsilon$ and $\{P_n(B) \ge \inf_{B' \in C_n} P(B')/2\} \supseteq \Omega_n$ for all $n \ge N$.

Using the bound (8)

$$\left| \left(\int_{B} f \, dP_{n} \right) \middle/ P_{n}(B) - \left(\int_{B} f \, dP \right) \middle/ P(B) \right|$$

$$\leq \left| \left(\int_{B} f \, dP_{n} - \int_{B} f \, dP \right) \middle/ P_{n}(B) \right| + \left| (P(B) - P_{n}(B)) \int_{B} f \, dP \middle/ (P_{n}(B)P(B)) \right|$$

Let $c = \sup_{x \in S} \sup_{f \in \mathcal{F}} |f(x)| < \infty$ then $\left| \int_{B} f \, dP \right| \le cP(B)$ and, since $P_n(B) \ge (b/2)n^{-\alpha}$ on Ω_n , for $n \ge N$

$$\sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{C}_n} |E_n(f \mid B) - E(f \mid B)| \le (2M_2/b)n^{\alpha - 1/2} + (2cM_1/b)n^{\alpha - 1/2}$$

As in the the proof of Proposition 3.1 the errors for n < N can be bounded since $\inf_{n < N} \inf_{B \in C_n} P(B) \ge bN^{-\alpha}$ and the first result follows. Substituting \mathcal{C}' for \mathcal{F} yields the second claim.

Lemma B.1. If \mathscr{G} is a σ -algebra consisting of finitely many elements then there exists a unique partition $\mathscr{P}_{\mathscr{G}}$ such that each element of \mathscr{G} can be represented as a finite union of elements of $\mathscr{P}_{\mathscr{G}}$.

Proof. (i) Uniqueness. Assume there are two partitions $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{P}'_{\mathcal{G}}$. There must be an element $B \in \mathcal{P}'_{\mathcal{G}}$ that is not in $\mathcal{P}'_{\mathcal{G}}$ (or vice versa) since otherwise $\mathcal{P}'_{\mathcal{G}} = \mathcal{P}_{\mathcal{G}}$. This *B* is equal to $A_1 \cup \ldots \cup A_n$ for some $n \in \mathbb{N}$ and disjoint, non-empty, elements $A_1, \ldots, A_n \in \mathcal{P}_{\mathcal{G}}$. Now $A_1 \subsetneq B$ but A_1 cannot be a finite union of elements of $\mathcal{P}'_{\mathcal{G}}$ since $\mathcal{P}'_{\mathcal{G}}$ is a partition.

(ii) Enumerate \mathscr{G} as A_1, \ldots, A_n where *n* is the cardinality of \mathscr{G} . We construct a partition iterartively. I.e. we construct for each $i \leq n$ a family of sets $\mathscr{B}_i = \{B_{1i}, \ldots, B_{m_i,i}\}$ that is disjoint and such that A_1, \ldots, A_i can be represented as unions of the $B_{j,i}$ elements. For i = 1 let $B_{11} = A_1$. Now assume we have such a family of sets for *i* and we want to get a family of disjoint sets for A_1, \ldots, A_{i+1} . Consider the following family of set

$$\mathcal{B}_{i+1} = \{A_{i+1} \setminus \bigcup \mathcal{B}_i\} \cup \{B \setminus A_{i+1} : B \in \mathcal{B}_i\} \cup \{A_{i+1} \cap B : B \in \mathcal{B}_i\}.$$

Clearly ever $B \in \mathcal{B}_i$ can still be represented as a union of elements since $B = (B \setminus A_{i+1}) \cup (B \cap A_{i+1})$. Similarly, $A_{i+1} = (A_{i+1} \setminus \bigcup \mathcal{B}_i) \cup (A_{i+1} \cap \bigcup \mathcal{B}_i)$ can be represented. The family of sets is also disjoint: any element of the form $B \setminus A_{i+1}$ is certainly disjoint from any $B' \cap A_{i+1}$ and $A_{i+1} \setminus B'' \supset A_{i+1} \setminus \bigcup \mathcal{B}_i$. Also, since the elements in \mathcal{B}_i are disjoint any two $B \setminus A_{i+1}$ and $B' \setminus A_{i+1}$ will be disjoint. Finally, any $A_{i+1} \cap B$ is disjoint of $A_{i+1} \setminus \bigcup \mathcal{B}_i$ and $(A_{i+1} \cap B) \cap (A_{i+1} \cap B') = \emptyset$. This concludes the induction. \Box

Proposition B.3 (Proof of Proposition 3.3). If $\mathscr{G} \subseteq \mathscr{B}_{\mathbb{S}}$ is a σ -algebra consisting of finitely many sets, \mathscr{F} is a subset of $\mathscr{L}^1(P)$ uniformly bounded in supremum norm, $\mathscr{F}_{\mathscr{G}}$ is a P-Donsker class then

$$\sup_{f \in \mathcal{F}} \|E_n(f \mid \mathcal{G}) - E(f \mid \mathcal{G})\|_{\mathcal{L}^1(P)} \in O_P^*(n^{-1/2}).$$

Furthermore, if $C \subseteq \mathcal{B}_{S}$, is such that $C_{\mathcal{G}}$ is a *P*-Donsker class then

$$\sup_{A \in \mathcal{C}} \|P_n(A \mid \mathscr{G}) - P(A \mid \mathscr{G})\|_{\mathcal{L}^1(P)} \in O_P^*(n^{-1/2}).$$

Proof. If P(B) = 0 for some $B \in \mathcal{G}$ then $\int_{B} (E_n (f | \mathcal{G}) - E (f | \mathcal{G})) dP = 0$. Let $\mathcal{G}' = \{B : B \in \mathcal{G}, P(B) > 0\}$ then from Proposition 3.1 it follows that

$$\sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{G}'} |E_n(f | B) - E(f | B)| \in O_P^*(n^{-1/2}).$$

For $\epsilon > 0$, choose M, N such that $F_n = \{\sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{G}'} |E_n(f | B) - E(f | B)| \le Mn^{-1/2}\}$ has probability $P(F_n) \ge 1 - \epsilon$ for all $n \ge N$. For $B \in \mathcal{G}'$, let $B_1, \ldots, B_m \in \mathcal{P}_{\mathcal{G}} \subseteq \mathcal{G}$ such that $B = B_1 \cup \ldots \cup B_m$, then P-a.s. $E(f | \mathcal{G}) = \sum_{i \le m} E(f | B_i) \times \chi B_i$ and

$$\begin{split} \left| \int_{B} (E_n(f|\mathscr{G}) - E(f|\mathscr{G})) \, dP \right| &\leq \sum_{i \leq m} \left| \int_{B \cap B_i} (E_n(f|B_i) - E(f|B_i)) \, dP \right| \\ &\leq \sum_{i \leq m} |E_n(f|B_i) - E(f|B_i)| P(B \cap B_i) \leq Mn^{-1/2} \sum_{i \leq m} P(B \cap B_i) \\ &= Mn^{-1/2} P(B) \leq Mn^{-1/2}. \end{split}$$

Furthermore,

$$\|E_n(f|\mathscr{G}) - E(f|\mathscr{G})\|_{\mathscr{L}^1(P)} \le 2\sup_{B\in\mathscr{G}} \left|\int_B E_n(f|\mathscr{G}) - E(f|\mathscr{G})\,dP\right| \le 2Mn^{-1/2}.$$

This implies the result. The second result follows again from the first.

Proposition B.4 (Proof of Proposition 3.4). Let $([0, 1]^d, \mathcal{B}, P)$ be a probability space such that P has a density p that is lower bounded by b > 0 and let $\{\lambda_n\}_{n>1}$ be a non-decreasing sequence in \mathbb{N}_+ such that

$$\lambda_n \in o\left(\frac{1}{3d\log(2)}\log\left(\frac{n}{\sqrt{\log(n)}}\right)\right).$$

If \mathcal{F} is a subset of $\mathcal{L}^1(P)$ uniformly bounded in supremum norm which fulfills Equation 4, then

$$\sup_{f \in \mathcal{F}} \|E_n \left(f \mid \mathcal{G}_{\lambda_n} \right) - E \left(f \mid \mathcal{G}_{\lambda_n} \right) \|_{\infty} \in O_P^*(\sqrt{\log(n)} 2^{(3/2)d\lambda_n} n^{-1/2})$$

Furthermore, if $C \subseteq \mathcal{B}_{S}$, is such that C fulfills Equation 4 then

$$\sup_{A \in \mathcal{C}} \|P_n(A \mid \mathscr{G}_{\lambda_n}) - P(A \mid \mathscr{G}_{\lambda_n})\|_{\infty} \in O_P^*(\sqrt{\log(n)}2^{(3/2)d\lambda_n}n^{-1/2}).$$

Proof. By assumption and from Corollary 2.1 we know that

$$\sup_{f \in \mathscr{F}} \sup_{B \in \mathscr{G}_{\lambda_n}} \left| \int_B f \, dP_n - \int_B f dP \right| \in O_P^*(\sqrt{\log(n)} 2^{d\lambda_n/2} n^{-1/2}),$$
$$\sup_{B \in \mathscr{G}_{\lambda_n}} |P_n(B) - P(B)| \in O_P^*(\sqrt{\log(n)} 2^{d\lambda_n/2} n^{-1/2}).$$

Furthermore, $\inf_{B \in \mathscr{G}_{\lambda_n}} P(B) \ge b2^{-d\lambda_n}$. By combining the technique in the proof of Proposition 3.2 with the assumption on the rate of λ_n we have for any $B \in \mathscr{G}_{\lambda_n}$ that

$$\left\{P_n(B) < \inf_{B' \in \mathscr{G}_{\lambda_n}} P(B')/2\right\} \subseteq \left\{\sup_{B \in \mathscr{G}_{\lambda_n}} |P(B) - P_n(B)| > M\sqrt{\log(n)}2^{d\lambda_n/2}n^{-1/2}\right\}$$

for some constant N, M and all $n \ge N$. The same line of reasoning as in Proposition 3.2 then shows

$$\sup_{f\in\mathscr{F}}\sup_{B\in\mathscr{G}_{\lambda_n}}|E_n(f|B)-E(f|B)|\in O_P^*(\sqrt{\log(n)}2^{(3/2)d\lambda_n}n^{-1/2}).$$

Substituting in the definition of $E_n(f|\mathcal{G}_{\lambda_n})$ and $E(f|\mathcal{G}_{\lambda_n})$ gives us the first result,

$$\sup_{f \in \mathcal{F}} \|E_n(f|\mathcal{G}_{\lambda_n}) - E(f|\mathcal{G}_{\lambda_n})\|_{\infty} \leq \sup_{f \in \mathcal{F}} \sup_{B \in \mathcal{G}_{\lambda_n}} |E_n(f|B) - E(f|B)| \in O_P^*(\sqrt{\log(n)}2^{(3/2)d\lambda_n}n^{-1/2}).$$

The second claim is directly implied by this result.