## A Proof of Theorem 3

Given the setup in Theorem 3, we first restate (Fill, 1991, Theorem 2.1) (note that the norm in (Fill, 1991) is twice the total variation distance):

$$
\begin{equation*}
\left\|P^{t}(\sigma, \cdot)-\pi\right\|_{T V}^{2} \leq \frac{(1-\lambda(R(P)))^{t}}{\pi(\sigma)} \tag{10}
\end{equation*}
$$

Let $\lambda:=\lambda(R(P))$ and $T:=\log \left(\frac{4 e^{2}}{\pi_{\min }}\right) T_{r e l}(P)=\frac{1}{1-\sqrt{1-\lambda}} \log \left(\frac{4 e^{2}}{\pi_{\min }}\right)$. Then it is easy to verify that

$$
T \geq \frac{2}{\lambda} \log \left(\frac{2 e}{\sqrt{\pi_{\min }}}\right)
$$

and by (10), we have that

$$
\begin{aligned}
\max _{\sigma \in \Omega}\left\|P^{T}(\sigma, \cdot)-\pi\right\|_{T V} & \leq \frac{(1-\lambda)^{T / 2}}{\sqrt{\pi_{\min }}} \\
& \leq \frac{(1-\lambda)^{\lambda^{-1} \log \left(\frac{2 e}{\sqrt{\pi_{\min }}}\right)}}{\sqrt{\pi_{\min }}} \\
& \leq \frac{e^{-\log \left(\frac{2 e}{\sqrt{\pi_{\min }}}\right)}}{\sqrt{\pi_{\min }}} \\
& =\frac{1}{2 e}
\end{aligned}
$$

In other words,

$$
T_{m i x}(P) \leq T=\log \left(\frac{4 e^{2}}{\pi_{\min }}\right) T_{r e l}(P)
$$

## B Operator Norms and the Spectral Gap

We also view the transition matrix $P$ as an operator that mapping functions to functions. More precisely, let $f$ be a function $f: \Omega \rightarrow \mathbb{R}$ and $P$ acting on $f$ is defined as

$$
P f(x):=\sum_{y \in \Omega} P(x, y) f(y)
$$

This is also called the Markov operator corresponding to $P$. We will not distinguish the matrix $P$ from the operator $P$ as it will be clear from the context. Note that $\operatorname{Pf}(x)$ is the expectation of $f$ with respect to the distribution $P(x, \cdot)$. We can regard a function $f$ as a column vector in $\mathbb{R}^{\Omega}$, in which case $P f$ is simply matrix multiplication. Recall (4) and $P^{*}$ is also called the adjoint operator of $P$. Indeed, $P^{*}$ is the (unique) operator that satisfies $\langle f, P g\rangle_{\pi}=\left\langle P^{*} f, g\right\rangle_{\pi}$. It is easy to verify that if $P$ satisfies the detailed balanced condition (1), then $P$ is self-adjoint, namely $P=P^{*}$.

The Hilbert space $L_{2}(\pi)$ is given by endowing $\mathbb{R}^{\Omega}$ with the inner product

$$
\langle f, g\rangle_{\pi}:=\sum_{x \in \Omega} f(x) g(x) \pi(x)
$$

where $f, g \in \mathbb{R}^{\Omega}$. In particular, the norm in $L_{2}(\pi)$ is given by

$$
\|f\|_{\pi}:=\langle f, f\rangle_{\pi}
$$

The spectral gap (2) can be rewritten in terms of the operator norm of $P$, which is defined by

$$
\|P\|_{\pi}:=\max _{\|f\|_{\pi} \neq 0} \frac{\|P f\|_{\pi}}{\|f\|_{\pi}}
$$

Indeed, the operator norm equals the largest eigenvalue (which is just 1 for a transition matrix $P$ ), but we are interested in the second largest eigenvalue. Define the following operator

$$
\begin{equation*}
S_{\pi}(\sigma, \tau):=\pi(\tau) \tag{11}
\end{equation*}
$$

It is easy to verify that $S_{\pi} f(\sigma)=\langle f, \mathbf{1}\rangle_{\pi}$ for any $\sigma$. Thus, the only eigenvalues of $S_{\pi}$ are 0 and 1 , and the eigenspace of eigenvalue 0 is $\left\{f \in L_{2}(\pi):\langle f, \mathbf{1}\rangle_{\pi}=0\right\}$. This is exactly the union of eigenspaces of $P$ excluding the eigenvalue 1. Hence, the operator norm of $P-S_{\pi}$ equals the second largest eigenvalue of $P$, namely,

$$
\begin{equation*}
\lambda(P)=1-\left\|P-S_{\pi}\right\|_{\pi} \tag{12}
\end{equation*}
$$

The expression in (12) can be found in, for example, (Ullrich, 2014, Eq. (2.8)). In particular, using (12), we show that the definition (5) coincides with (3) when $P$ is reversible.
Proposition 7. Let $P$ be the transition matrix of a reversible matrix with the stationary distribution $\pi$. Then

$$
\frac{1}{\lambda(P)}=\frac{1}{1-\sqrt{1-\lambda(R(P))}}
$$

Proof. Since $P$ is reversible, $P$ is self-adjoint, namely, $P^{*}=P$. Hence $\left(P-S_{\pi}\right)^{*}=P^{*}-S_{\pi}$ and

$$
\begin{aligned}
\left(P-S_{\pi}\right)\left(P-S_{\pi}\right)^{*} & =\left(P-S_{\pi}\right)\left(P^{*}-S_{\pi}\right) \\
& =P P^{*}-P S_{\pi}-S_{\pi} P^{*}+S_{\pi} S_{\pi} \\
& =P P^{*}-S_{\pi}
\end{aligned}
$$

where we use the fact that $P S_{\pi}=S_{\pi} P^{*}=S_{\pi} S_{\pi}=S_{\pi}$. It implies that

$$
\begin{align*}
1-\lambda(R(P)) & =\left\|R(P)-S_{\pi}\right\|_{\pi}  \tag{12}\\
& =\left\|P P^{*}-S_{\pi}\right\|_{\pi} \\
& =\left\|\left(P-S_{\pi}\right)\left(P-S_{\pi}\right)^{*}\right\|_{\pi} \\
& =\left\|P-S_{\pi}\right\|_{\pi}^{2} \\
& =(1-\lambda(P))^{2}
\end{align*}
$$

Rearranging the terms yields the claim.

## C Proof of Theorem 1

The transition matrix of updating a particular variable $x$ is the following

$$
T_{x}(\sigma, \tau)= \begin{cases}\frac{\pi\left(\sigma^{x, s}\right)}{\sum_{s \in S}^{\pi\left(\sigma^{x, s}\right)}} & \text { if } \tau=\sigma^{x, s} \text { for some } s \in S  \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

Moreover, let $I$ be the identity matrix that $I(\sigma, \tau)=\mathbb{1}(\sigma, \tau)$.
Lemma 8. Let $\pi$ be a bipartite distribution, and $P_{R U}, P_{A S}, T_{x}$ be defined as above. Then we have that

$$
\begin{aligned}
& \text { 1. } P_{R U}=\frac{I}{2}+\frac{1}{2 n} \sum_{x \in V} T_{x} . \\
& \text { 2. } P_{A S}=\prod_{i=1}^{n_{1}} T_{x_{i}} \prod_{j=1}^{n_{2}} T_{y_{j}} .
\end{aligned}
$$

Proof. Note that $T_{x}$ is the transition matrix of resampling $\sigma(x)$. For $P_{R U}$, the term $\frac{I}{2}$ comes from the fact that the chain is "lazy". With the other $1 / 2$ probability, we resample $\sigma(x)$ for a uniformly chosen $x \in V$. This explains the term $\frac{1}{2 n} \sum_{x \in V} T_{x}$.
For $P_{A S}$, we sequentially resample all variables in $V_{1}$ and then all variables in $V_{2}$, which yields the expression.

Lemma 9. Let $\pi$ be a bipartite distribution and $T_{x}$ be defined as above. Then we have that

1. For any $x \in V, T_{x}$ is a self-adjoint operator and idempotent. Namely, $T_{x}=T_{x}^{*}$ and $T_{x} T_{x}=T_{x}$.
2. For any $x \in V,\left\|T_{x}\right\|_{\pi}=1$.
3. For any $x, x^{\prime} \in V_{i}$ where $i=1$ or $2, T_{x}$ and $T_{x^{\prime}}$ commute. In other words $T_{x^{\prime}} T_{x}=T_{x} T_{x^{\prime}}$ if $x, x^{\prime} \in V_{i}$ for $i=1$ or 2 .

Proof. For Item 1, the fact that $T_{x}$ is self-adjoint follows from the detailed balance condition (1). Idempotence is because updating the same vertex twice is the same as a single update.
Item 2 follows from Item 1. This is because

$$
\left\|T_{x}\right\|_{\pi}=\left\|T_{x} T_{x}\right\|_{\pi}=\left\|T_{x} T_{x}^{*}\right\|_{\pi}=\left\|T_{x}\right\|_{\pi}^{2}
$$

For Item 3 , suppose $i=1$. Since $\pi$ is bipartite, resampling $x$ or $x^{\prime}$ only depends on $\sigma_{2}$. Therefore the ordering of updating $x$ or $x^{\prime}$ does not matter as they are in the same partition.

Define

$$
P_{G S 1}:=\frac{I}{2}+\frac{1}{2 n_{1}} \sum_{i=1}^{n_{1}} T_{x_{i}}, \quad \text { and } \quad P_{G S 2}:=\frac{I}{2}+\frac{1}{2 n_{2}} \sum_{j=1}^{n_{2}} T_{y_{j}}
$$

Then, since $n_{1}+n_{2}=n$,

$$
\begin{equation*}
P_{R U}=\frac{1}{n}\left(n_{1} P_{G S 1}+n_{2} P_{G S 2}\right) \tag{14}
\end{equation*}
$$

Similarly, define

$$
P_{A S 1}:=\prod_{i=1}^{n_{1}} T_{x_{i}}, \quad \text { and } \quad P_{A S 2}:=\prod_{j=1}^{n_{2}} T_{y_{j}}
$$

Then

$$
\begin{equation*}
P_{A S}=P_{A S 1} P_{A S 2} \tag{15}
\end{equation*}
$$

With this notation, Lemma 9 also implies the following.
Corollary 10. The following holds:

1. $\left\|P_{A S 1}\right\|_{\pi} \leq 1$ and $\left\|P_{A S 2}\right\|_{\pi} \leq 1$.
2. $P_{A S 1} P_{G S 1}=P_{A S 1}$ and $P_{G S 2} P_{A S 2}=P_{A S 2}$.

Proof. For Item 1, by the submultiplicity of operator norms:

$$
\begin{aligned}
\left\|P_{A S 1}\right\|_{\pi} & =\left\|\prod_{i=1}^{n_{1}} T_{x_{i}}\right\|_{\pi} \leq \prod_{i=1}^{n_{1}}\left\|T_{x_{i}}\right\|_{\pi} \\
& =1
\end{aligned}
$$

The claim $\left\|P_{A S 2}\right\|_{\pi} \leq 1$ follows similarly.

Item 2 follows from Item 1 and 3 of Lemma 9. We verify the first case as follows.

$$
\begin{align*}
P_{A S 1} P_{G S 1} & =\prod_{i=1}^{n_{1}} T_{x_{i}}\left(\frac{I}{2}+\frac{1}{2 n_{1}} \sum_{j=1}^{n_{1}} T_{x_{j}}\right) \\
& =\frac{1}{2} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}}+\frac{1}{2 n_{1}} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}} \sum_{j=1}^{n_{1}} T_{x_{j}} \\
& =\frac{1}{2} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}}+\frac{1}{2 n_{1}} \cdot \sum_{j=1}^{n_{1}} T_{x_{j}} \prod_{i=1}^{n_{1}} T_{x_{i}} \\
& =\frac{1}{2} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}}+\frac{1}{2 n_{1}} \cdot \sum_{j=1}^{n_{1}} T_{x_{1}} T_{x_{2}} \cdots T_{x_{j}} T_{x_{j}} \cdots T_{x_{n_{1}}}  \tag{ByItem3ofLemma9}\\
& =\frac{1}{2} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}}+\frac{1}{2 n_{1}} \cdot \sum_{j=1}^{n_{1}} \prod_{i=1}^{n_{1}} T_{x_{i}} \\
& =\frac{1}{2} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}}+\frac{1}{2} \cdot \prod_{i=1}^{n_{1}} T_{x_{i}} \\
& =P_{A S 1} \cdot
\end{align*}
$$

(By Item 1 of Lemma 9)

The other case is similar.
Item 2 of Corollary 10 captures the following intuition: if we sequentially update all variables in $V_{i}$ for $i=1,2$, then an extra individual update either before or after does not change the distribution. Recall Eq. (5).
Lemma 11. Let $\pi$ be a bipartite distribution and $P_{R U}$ and $P_{A S}$ be defined as above. Then we have that

$$
\left\|R\left(P_{A S}\right)-S_{\pi}\right\|_{\pi} \leq\left\|P_{R U}-S_{\pi}\right\|_{\pi}^{2}
$$

Proof. Recall (11), the definition of $S_{\pi}$, using which it is easy to see that

$$
\begin{equation*}
P_{A S 1} S_{\pi}=S_{\pi} P_{A S 2}=S_{\pi} S_{\pi}=S_{\pi} \tag{16}
\end{equation*}
$$

Thus,

$$
\begin{align*}
P_{A S 1}\left(P_{R U}-S_{\pi}\right) P_{A S 2} & =P_{A S 1}\left(\frac{n_{1}}{n} P_{G S 1}+\frac{n_{2}}{n} P_{G S 2}-S_{\pi}\right) P_{A S 2}  \tag{14}\\
& =\frac{n_{1}}{n} P_{A S 1} P_{G S 1} P_{A S 2}+\frac{n_{2}}{n} P_{A S 1} P_{G S 2} P_{A S 2}-P_{A S 1} S_{\pi} P_{A S 2} \\
& =\frac{n_{1}}{n} P_{A S 1} P_{A S 2}+\frac{n_{2}}{n} P_{A S 1} P_{A S 2}-S_{\pi} \\
& =P_{A S 1} P_{A S 2}-S_{\pi} \\
& =P_{A S}-S_{\pi} \tag{17}
\end{align*}
$$

where in the last step we use (15). Moreover, we have that

$$
\begin{align*}
P_{A S}^{*} & =\left(\prod_{i=1}^{n_{1}} T_{x_{i}} \prod_{j=1}^{n_{2}} T_{y_{j}}\right)^{*} \\
& =\prod_{j=1}^{n_{2}} T_{y_{n_{2}+1-j}}^{*} \prod_{i=1}^{n_{1}} T_{x_{n_{1}+1-i}}^{*} \\
& =\prod_{j=1}^{n_{2}} T_{y_{n_{2}+1-j}} \prod_{i=1}^{n_{1}} T_{x_{n_{1}+1-i}}  \tag{ByItem1ofLemma9}\\
& =\prod_{j=1}^{n_{2}} T_{y_{j}} \prod_{i=1}^{n_{1}} T_{x_{i}} \\
& =P_{A S 2} P_{A S 1}
\end{align*}
$$

Hence, similarly to (17), we have that

$$
\begin{align*}
P_{A S 2}\left(P_{R U}-S_{\pi}\right) P_{A S 1} & =P_{A S 2} P_{A S 1}-S_{\pi} \\
& =P_{A S}^{*}-S_{\pi} \tag{18}
\end{align*}
$$

Using (16), we further verify that

$$
\begin{align*}
\left(P_{A S}-S_{\pi}\right)\left(P_{A S}^{*}-S_{\pi}\right) & =P_{A S} P_{A S}^{*}-P_{A S} S_{\pi}-S_{\pi} P_{A S}^{*}+S_{\pi} S_{\pi} \\
& =P_{A S} P_{A S}^{*}-S_{\pi} \tag{19}
\end{align*}
$$

Combining (17), (18), and (19), we see that

$$
\begin{aligned}
\left\|R\left(P_{A S}\right)-S_{\pi}\right\|_{\pi} & =\left\|P_{A S} P_{A S}^{*}-S_{\pi}\right\|_{\pi} \\
& =\left\|\left(P_{A S}-S_{\pi}\right)\left(P_{A S}^{*}-S_{\pi}\right)\right\|_{\pi} \\
& =\left\|P_{A S 1}\left(P_{R U}-S_{\pi}\right) P_{A S 2} P_{A S 2}\left(P_{R U}-S_{\pi}\right) P_{A S 1}\right\|_{\pi} \\
& \leq\left\|P_{A S 1}\right\|_{\pi}\left\|P_{R U}-S_{\pi}\right\|_{\pi}\left\|P_{A S 2}\right\|_{\pi}\left\|P_{A S 2}\right\|_{\pi}\left\|P_{R U}-S_{\pi}\right\|_{\pi}\left\|P_{A S 1}\right\|_{\pi} \\
& \leq\left\|P_{R U}-S_{\pi}\right\|_{\pi}^{2}
\end{aligned}
$$

where the first inequality is due to the submultiplicity of operator norms, and we use Item 1 of Corollary 10 in the last line.

Remark. The last inequality in the proof of Lemma 11 crucially uses the fact that the distribution is bipartite. If there are, say, $k$ partitions, then the corresponding operators $P_{A S 1}, \ldots, P_{A S k}$ do not commute and the proof does not generalize.

Proof of Theorem 1. For the first part, notice that the alternating-scan sampler is aperiodic. Any possible state $\sigma$ of the chain must be in the state space $\Omega$. Therefore $\pi(\sigma)>0$ and the probability of staying at $\sigma$ is strictly positive. Moreover, any single variable update can be simulated in the scan sampler, with small but strictly positive probability. Hence if the random-update sampler is irreducible, then so is the scan sampler.

To show that $T_{r e l}\left(P_{A S}\right) \leq T_{r e l}\left(P_{R U}\right)$, we have the following

$$
\begin{align*}
T_{r e l}\left(P_{A S}\right) & =\frac{1}{1-\sqrt{1-\lambda\left(R\left(P_{A S}\right)\right)}}  \tag{5}\\
& =\frac{1}{1-\sqrt{\left\|R\left(P_{A S}\right)-S_{\pi}\right\|_{\pi}}}  \tag{12}\\
& \leq \frac{1}{1-\left\|P_{R U}-S_{\pi}\right\|_{\pi}}  \tag{ByLemma11}\\
& =\frac{1}{\lambda\left(P_{R U}\right)}  \tag{12}\\
& =T_{r e l}\left(P_{R U}\right) \tag{3}
\end{align*}
$$

This completes the proof.

