A Proof of Theorem 3

Given the setup in Theorem 3, we first restate (Fill, 1991, Theorem 2.1) (note that the norm in (Fill, 1991) is twice the total variation distance):

$$\| P^t(\sigma, \cdot) - \pi \|_{TV}^2 \leq \frac{(1 - \lambda(R(P)))^t}{\pi(\sigma)}. \quad (10)$$

Let \(\lambda := \lambda(R(P)) \) and \(T := \log \left(\frac{4e^2}{\pi_{\min}} \right) T_{rel}(P) = \frac{1}{1 - \sqrt{1 - \lambda}} \log \left(\frac{4e^2}{\pi_{\min}} \right) \). Then it is easy to verify that

\[
T \geq \frac{2}{\lambda} \log \left(\frac{2e}{\sqrt{\pi_{\min}}} \right)
\]

and by (10), we have that

\[
\max_{\sigma \in \Omega} \left\| P^T(\sigma, \cdot) - \pi \right\|_{TV} \leq \frac{(1 - \lambda)^{T/2}}{\sqrt{\pi_{\min}}}
\]

\[
\leq \frac{(1 - \lambda)^{-1} \log \left(\frac{2e}{\sqrt{\pi_{\min}}} \right)}{\sqrt{\pi_{\min}}}
\]

\[
\leq e^{-\log \left(\frac{2e}{\sqrt{\pi_{\min}}} \right)}
\]

\[
= \frac{1}{2e}.
\]

In other words,

\[
T_{mix}(P) \leq T = \log \left(\frac{4e^2}{\pi_{\min}} \right) T_{rel}(P).
\]

B Operator Norms and the Spectral Gap

We also view the transition matrix \(P \) as an operator that mapping functions to functions. More precisely, let \(f \) be a function \(f : \Omega \rightarrow \mathbb{R} \) and \(P \) acting on \(f \) is defined as

\[
Pf(x) := \sum_{y \in \Omega} P(x, y) f(y).
\]

This is also called the Markov operator corresponding to \(P \). We will not distinguish the matrix \(P \) from the operator \(P \) as it will be clear from the context. Note that \(Pf(x) \) is the expectation of \(f \) with respect to the distribution \(P(x, \cdot) \). We can regard a function \(f \) as a column vector in \(\mathbb{R}^\Omega \), in which case \(Pf \) is simply matrix multiplication. Recall (4) and \(P^* \) is also called the adjoint operator of \(P \). Indeed, \(P^* \) is the (unique) operator that satisfies \(\langle f, Pg \rangle_\pi = \langle P^* f, g \rangle_\pi \). It is easy to verify that if \(P \) satisfies the detailed balanced condition (1), then \(P \) is self-adjoint, namely \(P = P^* \).

The Hilbert space \(L_2(\pi) \) is given by endowing \(\mathbb{R}^\Omega \) with the inner product

\[
\langle f, g \rangle_\pi := \sum_{x \in \Omega} f(x) g(x) \pi(x),
\]

where \(f, g \in \mathbb{R}^\Omega \). In particular, the norm in \(L_2(\pi) \) is given by

\[
\| f \|_\pi := (f, f)_\pi.
\]

The spectral gap (2) can be rewritten in terms of the operator norm of \(P \), which is defined by

\[
\| P \|_\pi := \max_{\| f \|_\pi \neq 0} \frac{\| Pf \|_\pi}{\| f \|_\pi}.
\]
Indeed, the operator norm equals the largest eigenvalue (which is just 1 for a transition matrix \(P \)), but we are interested in the second largest eigenvalue. Define the following operator

\[S_\pi(\sigma, \tau) := \pi(\tau). \] (11)

It is easy to verify that \(S_\pi f(\sigma) = \langle f, 1 \rangle_\pi \) for any \(\sigma \). Thus, the only eigenvalues of \(S_\pi \) are 0 and 1, and the eigenspace of eigenvalue 0 is \(\{ f \in L_2(\pi) : \langle f, 1 \rangle_\pi = 0 \} \). This is exactly the union of eigenspaces of \(P \) excluding the eigenvalue 1. Hence, the operator norm of \(P - S_\pi \) equals the second largest eigenvalue of \(P \), namely,

\[\lambda(P) = 1 - \|P - S_\pi\|_\pi. \] (12)

The expression in (12) can be found in, for example, (Ullrich, 2014, Eq. (2.8)). In particular, using (12), we show that the definition (5) coincides with (3) when \(P \) is reversible.

Proposition 7. Let \(P \) be the transition matrix of a reversible matrix with the stationary distribution \(\pi \). Then

\[\frac{1}{\lambda(P)} = \frac{1}{1 - \sqrt{1 - \lambda(R(P))}}. \]

Proof. Since \(P \) is reversible, \(P \) is self-adjoint, namely, \(P^* = P \). Hence \((P - S_\pi)^* = P^* - S_\pi \) and

\[(P - S_\pi) (P - S_\pi)^* = (P - S_\pi) (P^* - S_\pi) = PP^* - PS_\pi - S_\pi P^* + S_\pi S_\pi = PP^* - S_\pi, \]

where we use the fact that \(PS_\pi = S_\pi P^* = S_\pi S_\pi = S_\pi \). It implies that

\[1 - \lambda(R(P)) = \|R(P) - S_\pi\|_\pi \]

\[= \|PP^* - S_\pi\|_\pi \]

\[= \|(P - S_\pi) (P - S_\pi)^*\|_\pi \]

\[= \|P - S_\pi\|_\pi^2 \]

\[= (1 - \lambda(P))^2. \]

Rearranging the terms yields the claim. \(\square \)

C Proof of Theorem 1

The transition matrix of updating a particular variable \(x \) is the following

\[T_x(\sigma, \tau) = \begin{cases} \frac{\pi_\sigma(\sigma^{\tau,s})}{\sum_{s \in S} \pi_\sigma(\sigma^{\tau,s})} & \text{if } \tau = \sigma^{\tau,s} \text{ for some } s \in S; \\ 0 & \text{otherwise.} \end{cases} \] (13)

Moreover, let \(I \) be the identity matrix that \(I(\sigma, \tau) = \mathbb{1}(\sigma, \tau) \).

Lemma 8. Let \(\pi \) be a bipartite distribution, and \(P_{RU}, P_{AS}, T_x \) be defined as above. Then we have that

1. \(P_{RU} = \frac{1}{2} + \frac{1}{2n} \sum_{x \in V} T_x. \)
2. \(P_{AS} = \prod_{i=1}^{n_1} T_{x_i} \prod_{j=1}^{n_2} T_{y_j}. \)

Proof. Note that \(T_x \) is the transition matrix of resampling \(\sigma(x) \). For \(P_{RU} \), the term \(\frac{1}{2} \) comes from the fact that the chain is “lazy”. With the other 1/2 probability, we resample \(\sigma(x) \) for a uniformly chosen \(x \in V \). This explains the term \(\frac{1}{2n} \sum_{x \in V} T_x \).

For \(P_{AS} \), we sequentially resample all variables in \(V_1 \) and then all variables in \(V_2 \), which yields the expression. \(\square \)
Lemma 9. Let π be a bipartite distribution and T_x be defined as above. Then we have that

1. For any $x \in V$, T_x is a self-adjoint operator and idempotent. Namely, $T_x = T_x^*$ and $T_x T_x = T_x$.

2. For any $x \in V$, $\|T_x\|_\pi = 1$.

3. For any $x, x' \in V_i$ where $i = 1$ or 2, T_x and $T_{x'}$ commute. In other words $T_x T_{x'} = T_{x'} T_x$ if $x, x' \in V_i$ for $i = 1$ or 2.

Proof. For Item 1, the fact that T_x is self-adjoint follows from the detailed balance condition (1). Idempotence is because updating the same vertex twice is the same as a single update.

Item 2 follows from Item 1. This is because

$$\|T_x\|_\pi = \|T_x T_x\|_\pi = \|T_x^2\|_\pi = \|T_x\|_\pi^2.$$

For Item 3, suppose $i = 1$. Since π is bipartite, resampling x or x' only depends on σ_2. Therefore the ordering of updating x or x' does not matter as they are in the same partition.

Define

$$P_{GS1} := \frac{I}{2} + \frac{1}{2n_1} \sum_{i=1}^{n_1} T_{x_i}, \quad \text{and} \quad P_{GS2} := \frac{I}{2} + \frac{1}{2n_2} \sum_{j=1}^{n_2} T_{y_j}.$$

Then, since $n_1 + n_2 = n$,

$$P_{RU} = \frac{1}{n} (n_1 P_{GS1} + n_2 P_{GS2}). \quad (14)$$

Similarly, define

$$P_{AS1} := \prod_{i=1}^{n_1} T_{x_i}, \quad \text{and} \quad P_{AS2} := \prod_{j=1}^{n_2} T_{y_j}.$$

Then

$$P_{AS} = P_{AS1} P_{AS2}. \quad (15)$$

With this notation, Lemma 9 also implies the following.

Corollary 10. The following holds:

1. $\|P_{AS1}\|_\pi \leq 1$ and $\|P_{AS2}\|_\pi \leq 1$.

2. $P_{AS1} P_{GS1} = P_{AS1}$ and $P_{GS2} P_{AS2} = P_{AS2}$.

Proof. For Item 1, by the submultiplicity of operator norms:

$$\|P_{AS1}\|_\pi = \left\| \prod_{i=1}^{n_1} T_{x_i} \right\|_\pi \leq \prod_{i=1}^{n_1} \|T_{x_i}\|_\pi = 1. \quad \text{(By Item 2 of Lemma 9)}$$

The claim $\|P_{AS2}\|_\pi \leq 1$ follows similarly.
Item 2 follows from Item 1 and 3 of Lemma 9. We verify the first case as follows.

\[P_{\text{AS}1}P_{\text{GS}1} = \prod_{i=1}^{n_1} T_x^i \left(\frac{I}{2} + \frac{1}{2n_1} \sum_{j=1}^{n_1} T_x^j \right) \]

\[= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_x^i + \frac{1}{2n_1} \cdot \prod_{i=1}^{n_1} T_x^i \sum_{j=1}^{n_1} T_x^j \]

\[= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_x^i + \frac{1}{2n_1} \cdot \sum_{j=1}^{n_1} T_x^j \prod_{i=1}^{n_1} T_x^i \]

\[= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_x^i + \frac{1}{2n_1} \cdot \sum_{j=1}^{n_1} \prod_{i=1}^{n_1} T_x^i \]

\[= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_x^i + 2 \cdot \prod_{i=1}^{n_1} T_x^i \]

\[= P_{\text{AS}1}. \]

The other case is similar.

Item 2 of Corollary 10 captures the following intuition: if we sequentially update all variables in \(V_i \) for \(i = 1, 2 \), then an extra individual update either before or after does not change the distribution. Recall Eq. (5).

Lemma 11. Let \(\pi \) be a bipartite distribution and \(P_{\text{RU}} \) and \(P_{\text{AS}} \) be defined as above. Then we have that

\[\| R(P_{\pi}) - S_\pi \|_\pi \leq \| P_{\text{RU}} - S_\pi \|_\pi^2. \]

Proof. Recall (11), the definition of \(S_\pi \), using which it is easy to see that

\[P_{\text{AS}1}S_\pi = S_\pi P_{\text{AS}2} = S_\pi S_\pi = S_\pi. \] (16)

Thus,

\[P_{\text{AS}1}(P_{\text{RU}} - S_\pi)P_{\text{AS}2} = P_{\text{AS}1} \left(\frac{n_1}{n} P_{\text{GS}1} + \frac{n_2}{n} P_{\text{GS}2} - S_\pi \right) P_{\text{AS}2} \]

\[= \frac{n_1}{n} P_{\text{AS}1}P_{\text{GS}1}P_{\text{AS}2} + \frac{n_2}{n} P_{\text{AS}1}P_{\text{GS}2}P_{\text{AS}2} - P_{\text{AS}1}S_\pi P_{\text{AS}2} \]

\[= \frac{n_1}{n} P_{\text{AS}1}P_{\text{AS}2} + \frac{n_2}{n} P_{\text{AS}1}P_{\text{AS}2} - S_\pi \]

\[= P_{\text{AS}1}P_{\text{AS}2} - S_\pi \]

\[= P_{\text{AS}} - S_\pi, \] (17)

where in the last step we use (15). Moreover, we have that

\[P_{\text{AS}}^* = \left(\prod_{i=1}^{n_2} T_x^i \prod_{j=1}^{n_1} T_y^j \right)^* \]

\[= \prod_{j=1}^{n_2} T_x^{*n_2-j} \prod_{i=1}^{n_1} T_x^{*n_1-i} \]

\[= \prod_{j=1}^{n_2} T_x^{y_j} \prod_{i=1}^{n_1} T_x^{x^i} \]

\[= P_{\text{AS}2}P_{\text{AS}1}. \] (By Item 1 of Lemma 9)
Hence, similarly to (17), we have that
\[
P_{AS2}(P_{RU} - S_\pi)P_{AS1} = P_{AS2}P_{AS1} - S_\pi
= P_{AS}^* - S_\pi.
\] (18)

Using (16), we further verify that
\[
(P_{AS} - S_\pi)(P_{AS}^* - S_\pi) = P_{AS}P_{AS}^* - P_{AS}S_\pi - S_\pi P_{AS}^* + S_\pi S_\pi
= P_{AS}^*P_{AS} - S_\pi
\] (19)

Combining (17), (18), and (19), we see that
\[
\|R(P_{AS}) - S_\pi\|_\pi = \|P_{AS}P_{AS}^* - S_\pi\|_\pi
= \|(P_{AS} - S_\pi) (P_{AS}^* - S_\pi)\|_\pi
= \|P_{AS1}(P_{RU} - S_\pi) P_{AS2}P_{AS2}(P_{RU} - S_\pi) P_{AS1}\|_\pi
\leq \|P_{AS1}\|_\pi \|P_{RU} - S_\pi\|_\pi \|P_{AS2}\|_\pi \|P_{RU} - S_\pi\|_\pi \|P_{AS1}\|_\pi
\leq \|P_{RU} - S_\pi\|^2_\pi,
\]
where the first inequality is due to the submultiplicity of operator norms, and we use Item 1 of Corollary 10 in the last line.

Remark. The last inequality in the proof of Lemma 11 crucially uses the fact that the distribution is bipartite. If there are, say, \(k\) partitions, then the corresponding operators \(P_{AS1}, \ldots, P_{ASk}\) do not commute and the proof does not generalize.

Proof of Theorem 1. For the first part, notice that the alternating-scan sampler is aperiodic. Any possible state \(\sigma\) of the chain must be in the state space \(\Omega\). Therefore \(\pi(\sigma) > 0\) and the probability of staying at \(\sigma\) is strictly positive. Moreover, any single variable update can be simulated in the scan sampler, with small but strictly positive probability. Hence if the random-update sampler is irreducible, then so is the scan sampler.

To show that \(T_{rel}(P_{AS}) \leq T_{rel}(P_{RU})\), we have the following
\[
T_{rel}(P_{AS}) = \frac{1}{1 - \sqrt{1 - \lambda(R(P_{AS}))}}
= \frac{1}{1 - \|R(P_{AS}) - S_\pi\|_\pi}
\leq \frac{1}{1 - \|P_{RU} - S_\pi\|_\pi}
= \frac{1}{\lambda(P_{RU})}
= T_{rel}(P_{RU}).
\]
(3)

This completes the proof.