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A EM Algorithm

For fixed K, we can estimate the model parameter Π
using the maximum likelihood estimation:

max
Π

log p(D|Π,K). (12)

The optimization problem (12) is solved by the EM
algorithm. The lower bound of (12) is derived as

N∑
n=1

K∑
k=1

Eq(U)[u
(n)
k ] log p(y(n)|k, φ)p(s(n)|k, η)p(k|α)

+H(q(U)), (13)

where q(U) is the distribution of U , and H(q(U)) is an
entropy of q(U). The EM algorithm is then formulated
as an alternating maximization with respect to q (E-
step) and the parameter Π (M-step).

E-Step In E-Step, we fix the parameter Π and max-
imize the lower bound (13) with respect to the distri-
bution q(U), which yields

q(u
(n)
k = 1) ∝ p(y(n)|k, φ)p(s(n)|k, η)p(k|α). (14)

M-Step In M-Step, we fix the value of q(u
(n)
k ) =

β
(n)
k , and maximize the lower bound (13) with respect

to the parameter Π. We then have, for η and α,

ηk` =

∑N
n=1 β

(n)
k s

(n)
`∑N

n=1 β
(n)
k

, αk =
1

N

N∑
n=1

β
(n)
k .

The parameter φ is also updated as

µk =

∑N
n=1 β

(n)
k z(n)∑N

n=1 β
(n)
k

, λk =

∑N
n=1 β

(n)
k∑N

n=1 β
(n)
k (z(n) − µk)2

,

γkc =

∑N
n=1 β

(n)
k z

(n)
c∑N

n=1 β
(n)
k

.

B FAB Lower Bound

Here, we derive the lower bound of the marginal log-
likelihood.

Theorem 1 The marginal log-likelihood log p(D|K) is
lower bounded by (7) except the O(1) term.

The proof of this theorem follows the next three lem-
mas.

Lemma 1 Let U = {u(n)}Nn=1 and the
complete data likelihood be p(D, U |Π,K) =∏
n p(y

(n), s(n),u(n)|Π,K). The marginal log-
likelihood log p(D|K) is lower bounded by

Eq(U)

[
log p(D, U |Π̂,K)− 1

2
log detFΠ̂

]
+H(q(U))

− dimΠ̂

2
logN +O(1), (15)

where q(U) is the distribution of U , Π̂ =
argmaxΠ log p(D, U |Π,K), FΠ̂ is the Hessian of

− log p(D, U |Π,K)/N at Π = Π̂, and O(1) is the term
independent of N .

(proof) Let p(D, U |K) =
∫
p(D, U |Π,K)p(Π)dΠ

and q∗(U) = p(U |D,K). From the definition of
log p(D|K), the next equation holds:

log p(D|K) =Eq(U) [log p(D, U |K)] +H(q(U))

+ KL[q(U)||q∗(U)], (16)

where KL[q(U)||q∗(U)] is a KL-divergence defined as

KL[q(U)||q∗(U)] = Eq(U)

[
log

q(U)

q∗(U)

]
. (17)

We note that the equation (16) can be easily verified
from the next relationship

KL[q(U)||q∗(U)]

= Eq(U)[log q(U)]− Eq(U)[log q∗(U)︸ ︷︷ ︸
=p(U |D,K)=

p(D,U|K)
p(D|K)

]

= −H(q(U))− Eq(U)[log p(D, U |K)] + log p(D|K).
(18)

Because the KL-divergence is non-negative, we have
the lower bound of the marginal log-likelihood as

log p(D|K) ≥ Eq(U) [log p(D, U |K)] +H(q(U)). (19)

We now apply Laplace’s method to log p(D, U |K), and
derive the next equation [9]:

log p(D, U |K) = log p(D, U |Π̂,K)− 1

2
log detFΠ̂

− dimΠ̂

2
logN +O(1). (20)

By substituting this result to (19), we derive the lower
bound (15). �



Satoshi Hara, Kohei Hayashi

Lemma 2 The next inequality holds for any Π:

Eq(U)

[
log p(D, U |Π̂,K)

]
≥ Eq(U) [log p(D, U |Π,K)]

=

N∑
n=1

K∑
k=1

Eq(U)[u
(n)
k ] log p(y(n)|k, φ)p(s(n)|k, η)p(k|α),

(21)

where Π̂ = argmaxΠ log p(D, U |Π,K).

(proof) It directly follows from the definition of Π̂. �

Lemma 3 The next inequality holds:

− Eq(U)

[
1

2
log detFΠ̂

]
− dimΠ̂

2
logN

≥ −ω
K∑
k=1

log

(
N∑
n=1

Eq(U)[u
(n)
k ] + 1

)
+O(1), (22)

where ω = (dimφ/K + L+ 1)/2.

(proof) By expanding log detFΠ, we obtain

log detFΠ

=

K∑
k=1

log det

(
− ∂2

∂2φ

1

N

N∑
n=1

u
(n)
k log p(y(n)|k, φ)

)
︸ ︷︷ ︸

(A)

+

K∑
k=1

log det

(
− ∂2

∂2η

1

N

N∑
n=1

u
(n)
k log p(s(n)|k, η)

)
︸ ︷︷ ︸

(B)

+

K∑
k=1

log det

(
− ∂2

∂2α

1

N

N∑
n=1

u
(n)
k log p(k|α)

)
︸ ︷︷ ︸

(C)

. (23)

Here, we have

(A) =
dimφ

K
log

(
1

N

N∑
n=1

u
(n)
k

)
+ log detHk

=
dimφ

K
log

(
N∑
n=1

u
(n)
k

)
− dimφ

K
logN︸ ︷︷ ︸

O(logN)

+ log detHk︸ ︷︷ ︸
O(1)

,

(24)

(B) =

L∑
`=1

log

(
1

N

N∑
n=1

u
(n)
k

(
1

η2
k`

+
1

(1− ηk`)2

))

=L log

(
N∑
n=1

u
(n)
k

)
− L logN︸ ︷︷ ︸

O(logN)

+

L∑
`=1

log

∑N
n=1 u

(n)
k

(
1
η2k`

1
(1−ηk`)2

)
∑N
n=1 u

(n)
k


︸ ︷︷ ︸

O(1)

, (25)

and

(C) = log

(
1

N

N∑
n=1

u
(n)
k

1

α2
k

)

= log

(
N∑
n=1

u
(n)
k

)
− logN︸ ︷︷ ︸

O(logN)

− logα2
k︸ ︷︷ ︸

O(1)

, (26)

where O(1) denotes terms independent of N . The ma-
trix Hk is given as, for the regression case,

Hk =

 λk
∑N

n=1 u
(n)
k (µk−y(n))∑N
n=1 u

(n)
k∑N

n=1 u
(n)
k (µk−y(n))∑N
n=1 u

(n)
k

1
2λ2

k


and for the classification case,

Hk = diag

(
1

γ2
k1

,
1

γ2
k2

, . . . ,
1

γ2
kC

)
.

By using these results, we can express log detFΠ as

log detFΠ =2ω

K∑
k=1

log

(
N∑
n=1

u
(n)
k

)
− dimΠ logN +O(1). (27)

We note that the only O(1) term depends on Π and
the first two terms are independent of the value of Π.
Hence, the next equation holds for arbitrary Π:

− 1

2
log detFΠ̂ −

dimΠ̂

2
logN

= −1

2
log detFΠ −

dimΠ

2
logN +O(1)

= −ω
K∑
k=1

log

(
N∑
n=1

u
(n)
k

)
+O(1). (28)

Hence, the lower bound of −Eq∗(U)

[
1
2 log detFΠ̂

]
−
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dimΠ̂
2 logN can be derived as

− Eq(U)

[
1

2
log detFΠ̂

]
− dimΠ̂

2
logN

= −ω
K∑
k=1

Eq(U)

[
log

(
N∑
n=1

u
(n)
k

)]
+O(1)

≥ −ω
K∑
k=1

log

(
N∑
n=1

Eq(U)[u
(n)
k ] + 1

)
+O(1), (29)

where we used Jensen’ inequality. �

By using these lemmas, we now prove our main claim.

(proof of Theorem 1) By substituting (21) and (22)
into (15) and removing the O(1) term, the claim fol-
lows. �

C FAB Inference Algorithm
Derivation

E-Step In E-Step, we update the distribution q(U)
so that the lower bound (7) to be maximized. Let

β
(n)
k = Eq(U)[u

(n)
k ] = q(u

(n)
k ). The maximization prob-

lem can then be expressed as

max
β

N∑
n=1

K∑
k=1

β
(n)
k log f

(n)
k − ω

K∑
k=1

log

(
N∑
n=1

β
(n)
k + 1

)

−
N∑
n=1

K∑
k=1

β
(n)
k log β

(n)
k ,

s.t.

K∑
k=1

β
(n)
k = 1, (30)

where f
(n)
k = p(y(n)|k, φ)p(s(n)|k, η)p(k|α). We

note that the problem (30) is smooth concave
maximization, and a unique global optimum ex-
ists. Such an optimum can be found by iterative
maximization of the lower bound of (30). Recall

that log
(∑N

n=1 β
(n)
k + 1

)
≤ log

(∑N
n=1 ψ

(n)
k + 1

)
+∑N

n=1
β
(n)
k −ψ(n)

k∑N
n′=1

ψ
(n′)
k +1

holds for any ψ
(n)
k from the con-

cavity. Once the value of ψ
(n)
k is fixed, we can maxi-

mize the lower bound of (8) by solving

max
β

N∑
n=1

K∑
k=1

β
(n)
k log f

(n)
k − ω

K∑
k=1

N∑
n=1

β
(n)
k∑N

n′=1 ψ
(n′)
k + 1

−
N∑
n=1

K∑
k=1

β
(n)
k log β

(n)
k ,

s.t.

K∑
k=1

β
(n)
k = 1, (31)

which results in

β
(n)
k ∝ f (n)

k exp

(
− ω∑N

n=1 ψ
(n)
k + 1

)
, (32)

Using this result, we can solve the original maximiza-

tion problem (30) by iteratively setting ψ
(n)
k ← β

(n)
k

and updating β by (32). Because the lower bound
(31) increases in every iteration, the iteration proce-
dure converges to the global optimum.

M-Step In M-Step, we update the parameter Π so

that the lower bound (7) to be maximized. Let β
(n)
k =

Eq(U)[u
(n)
k ] = q(u

(n)
k ). The maximization problem (7)

can then be decomposed into subproblems:

max
φ

N∑
n=1

β
(n)
k log p(y(n)|k, φ), (33)

max
η

N∑
n=1

β
(n)
k log η

s
(n)
`

k` (1− ηk`)1−s(n)
` , (34)

max
α

K∑
k=1

(
N∑
n=1

β
(n)
k

)
logαk, s.t.

K∑
k=1

αk = 1, . (35)

These problems can be solved analytically. The solu-
tion to the problem (33) are derived as

(regression):


µk =

∑N
n=1 β

(n)
k y(n)∑N

n=1 β
(n)
k

,

λk =
∑N

n=1 β
(n)
k∑N

n=1 β
(n)
k (y(n)−µk)2

,
(36)

(classification): γkc =

∑N
n=1 β

(n)
k y

(n)
c∑N

n=1 β
(n)
k

. (37)

The solutions to the problem (34) and (35) are derived
as

ηk` =

∑N
n=1 β

(n)
k s

(n)
`∑N

n=1 β
(n)
k

, αk =
1

N

N∑
n=1

β
(n)
k . (38)

D Scalable FAB Inference with
Statement Sampling

The time complexity of the proposed FAB inference
is O(KmaxLN + ζKmaxN), where ζ is the number of
iterations in E-Step. This time complexity sometimes
gets prohibitive when L is large, i.e., when the tree
ensemble is huge.

To scale up the proposed FAB inference to large L, we
propose a simple heuristic, a sampling FAB inference,
based on the random sampling of the statements: we
do not use all the statements in the tree ensemble but
the randomly sampled subset. If the number of state-
ments is reduced and L gets very small, FAB inference
gets highly efficient and scalable.
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The sampling idea follows from the intuition that most
of the statements in the tree ensemble are redundant
when we make a simplified expression. This is because
we usually have similar statements such as x1 < 0.500
and x1 < 0.501 in the tree ensemble. When this subtle
change on the threshold is ignorable, removing one of
these two statements will have almost no impact to the
resulting simplified expression. Random sampling of
the statements can remove these redundant statements
effectively.

We now turn to the proposed heuristic, a sampling
FAB inference. Suppose that we randomly sampled L̃
statements out of L statements in the tree ensemble.
Then, the binary feature defined on the sampled state-

ments is given by s̃ ∈ {0, 1}L̃ where s̃`′ = I(xd̃`′ > b̃`′),

and d̃`′ and b̃`′ denote the feature index and the thresh-
old of each of the sampled statement, respectively. The
generative model of s̃ is given by

p(s̃|g) :=

L̃∏
`′=1

η′
s̃`
g`′(1− η′g`′)1−s̃`′ , (39)

where η′g`′ = p(s̃`′ = 1) = p(xd̃`′ > b̃`′). Here, we as-
sume that the sampled version of the generative model
(39) becomes a good approximation of the original gen-
erative model (4) when we virtually increase the num-
ber of statements from L̃ to L, i.e.,

p(s̃|g)L/L̃ ≈ p(s|g). (40)

With the approximation (40), the approximate FAB
lower bound becomes

N∑
n=1

K∑
k=1

Eq(U)[u
(n)
k ] log p(y(n)|k, φ)p(s̃(n)|k, η)L/L̃p(k|α)

− ω
K∑
k=1

log

(
N∑
n=1

Eq(U)[u
(n)
k ] + 1

)
+H(q(U)), (41)

where ω = (dimφ/K + L + 1)/2. The sampling
FAB inference algorithm can be derived by a slight
modification of the original E-step (32): we replace

f
(n)
k = p(y(n)|k, φ)p(s(n)|k, η)p(k|α) with f̃

(n)
k =

p(y(n)|k, φ)p(s̃(n)|k, η)L/L̃p(k|α). The M-step remains
the same as the original FAB inference except that η is
replaced with the sampled version η′ in (39). Because
the number of statements appearing in the sampling
FAB inference is L̃ rather than L, its time complexity
is O(KmaxL̃N + ζKmaxN), which can be significantly
smaller than the original FAB inference. For example,
when the number of original statements is L = 10, 000,
the sampling FAB inference can be nearly 100 times
faster when we set L̃ = 100. We show in Appendix E
that the speed up can be achieved with almost no ef-
fects on the prediction performance of the resulting
simplified expression.

Table 4: [Datasets] Four real world datasets are
obtained from the UCI Machine Learning Reposi-
tory [23]. The task of the first five data are binary
classification, while the task of the last Energy data
is regression. D is the data dimensionality, Nall is
the number of data points in the original dataset, and
Ntrain and Ntest denote the number of data points ran-
domly sampled for training and testing the models in
the experiment.

D Nall Ntrain, Ntest

Synthetic1 2 - 1,000
Synthetic2 2 - 1,000
Spambase 57 4,601 1,000

MiniBooNE 50 130,065 5,000
Higgs 28 11,000,000 5,000

Energy 8 768 384

E Experiments

E.1 Implementations

In all experiments, we used randomForest pack-
age in R to train tree ensembles with 100 trees.
The tree ensemble simplification methods are then
applied to extract rules from the learned tree en-
sembles. The proposed method is implemented
in Python. For the proposed method, we used
the statement sampling heuristic with the sampling
size 100. We set Kmax = 10 and ran FAB
inference for 20 different random initial parame-
ters, and derived learned 20 parameters {Πm}20

m=1.
We then adopted the parameter with the small-
est training error, i.e., Π̃ = argminΠm

Error(D,Πm)

with Error(D,Π) :=
∑N
n=1

(
y(n) − ŷ(n)

)2
for re-

gression, and Error(D,Π) :=
∑N
n=1 I(y(n) 6= ŷ(n))

for classification. The BATrees is implemented
also in Python. The depth of BATrees is cho-
sen from {2, 3, 4, 6, 8, 10} using 5-fold cross valida-
tion. For inTrees and Node Harvest, we used
their R implementations with their default settings.
For DTree2, we used DecisionTreeRegressor and
DecisionTreeClassifier of scikit-learn in Python
while fixing their depth to two. All experiments were
conducted on 64-bit CentOS 6.7 with an Intel Xeon
E5-2670 2.6GHz CPU and 512GB RAM.

E.2 Datasets

In the experiments, we used six datasets summarized
in Table 4. Because BATrees is not scalable to large
datasets, we limited the number of dataset size to 5,000
for MiniBooNE and Higgs. Later in Appendix E.3.3,
we show that the proposed method scales to the large
dataset.

The first synthetic data (Synthetic1) is generated from
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the following procedure:

x = (x1, x2) ∼ Uniform[0, 1],

y∗ = XOR(x1 > 0.5, x2 > 0.5),

y = XOR(y∗, θ),

where θ ∈ {0, 1} with p(θ = 1) = 0.1, which corre-
sponds to the 10% label noise. Similarly, the second
synthetic data (Synthetic2) is generated by replacing
the second step with y∗ = I(x2 > r(x1)) where r(x1) =
0.25 + 0.5/(1 + exp(−20∗ (x1−0.5))) + 0.05 cos(2πx1).
Synthetic1 has a box-shaped class boundary (upper
figure of Figure 1(a)), and can be expressed by the
region-based model using four regions. On the other
hand, Synthetic2 has a more complicated class bound-
ary (bottom figure of Figure 1(a)). Hence, it is more
difficult to simplify the tree ensemble and derive a
good approximate model.

E.3 Results

E.3.1 FAB Inference vs. EM Algorithm

We compared the runtimes of FAB inference and the
EM algorithm. For the EM algorithm, we ran the
algorithm by varying the value of K from 1 to 10, and
reported the total runtime. For both methods, we used
the sampling heuristic described in Appendix D.

Table 5 summarizes that FAB inference was from three
to nearly ten times faster than the EM algorithm.
FAB inference attained smaller runtimes by avoiding
searching over several possible number of rules K and
deciding the number automatically. Figure 5 shows
the comparison of the test errors of the found rules:
they show that FAB inference could find an appropri-
ate number of rules K with small prediction errors.
These results suggest the superiority of FAB inference
over the EM algorithm as it could find an appropriate
number of rules by avoiding redundant computations
for searching the number of rules K.

E.3.2 Comparison with Baseline Methods

Figure 6 shows the trade-off between the number of
found rules K and the test errors of each method.
The figures show that DTree2 tended to attain the
smallest number of rules (i.e., four), and the proposed
method was second (from four to ten). The number
of rules found by inTrees and Node Harvest tended to
be around 30 to 100, while the number of rules found
by BATrees sometimes exceeded 100. The figures also
show inTrees and BATrees tended to attain the small-
est errors while DTree2 tended to be the worst on most
of the datasets. The proposed method attained a good
trade-off between the number of rules and the test er-
rors: it tended to score smaller errors than DTree2

while using only a few rules, which is significantly
smaller than the other baseline methods. These re-
sults suggest that the proposed method is favorable
for interpretation as it generates only a few rules with
small test errors. Smaller number of rules helps users
to check the found rules easily. The small test errors
support that the found rules are reliable, i.e., the rules
well explain the original tree ensemble.

E.3.3 Naive FAB Inference vs. Sampling
FAB Inference

Table 6 shows how the samling FAB inference help to
improve the computational scalability. For the sam-
pling FAB inference, we fixed the number of statement
sampling L̃ to be 100. For the naive FAB inference,
we used all the statements taken from the original tree
ensemble. The table shows that the sampling FAB in-
ference ran from 2 to 20 times faster than the naive
FAB inference. In particular, we can find that the sam-
pling FAB inference is computationally efficient when
the data size is large such as in MiniBooNE and Higgs.
It also shows that, compared to the naive FAB in-
ference, there is almost no changes on the number of
found rules and the test errors even if we use the sam-
pling FAB inference. This result suggests that we can
use the sampling FAB inference for efficient computa-
tion with almost no sacrifices on the resulting perfor-
mances.

To see the success of the sampling FAB inference in
detail, we increased the training size of MiniBooNE to
Ntrain = 100, 000, and conducted the experiment over
ten random data realizations. Because BATrees was
too slow, we omitted it from the experiment. Figure 7
and Table 7 show that the sampling FAB inference
was still effective under the large sample size. Fig-
ure 7 shows that the sampling FAB inference attained
the good trade-off between the number of rules and
the test errors as we have observed in Appendix E.3.2.
Table 7 reports that the sampling FAB inference was
computationally efficient even under the large sample
size. Indeed, compared to the naive FAB inference in
Table 6, the sampling FAB inference was more than
two times faster even though the training size was in-
creased by twenty times. We also note that, compared
to inTrees and Node Harvest, the sampling FAB infer-
ence was comparably fast: it was slightly slower than
inTrees and a few times faster than Node Harvest.

E.3.4 Example of Found Rules

Synthetic Data: Figure 8 and 9 show the simplified
rules of the learned tree ensemble on Synthetic1 and
Synthetic2, respectively. The results on Node Har-
vest can be found in Figure 10 and 11. The proposed
method well simplified the boundary using only a few



Satoshi Hara, Kohei Hayashi

Table 5: Average runtimes in seconds for one restart: the EM algorithm ran over K = 1, 2, . . . , 10, and its total
time is reported.

Synthetic1 Synthetic2 Spambase MiniBooNE Higgs Energy
FAB 3.01± 1.73 3.30± 1.43 5.32± 1.98 93.0± 49.2 54.3± 13.7 0.14± 0.12
EM 19.1± 5.99 18.3± 4.38 35.7± 3.47 282± 60.1 227± 63.6 1.79± 0.64
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Figure 5: Test Errors of FAB inference and the EM algorithm.
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Figure 6: Comparison of the simplification methods: # of rules vs. test error. Ensemble denotes the average
error of the tree ensemble over the ten random data realizations.

rules. On the other hand, BATrees and inTrees re-
quired more rules. It is important to note that inTrees
and Node Harvest found rules that highly overlap each
other. The rule overlapping is not favorable for inter-

pretation: if the prediction of the overlapping rules
are distinct, we cannot decide which rule to trust. Al-
though there are some overlaps between the rules in
the proposed method, this is not that critical as ob-



Running heading title breaks the line

Table 6: Comparison of the naive FAB inference and the sampling FAB inference: The average runtime in
seconds for one restart, the average number of found rules, and the average test error are reported.

Synthetic1 (Ntrain = 1, 000) Synthetic2 (Ntrain = 1, 000)
Time # of Rules Test Error Time # of Rules Test Error

Naive FAB 11.7± 4.69 5.10± 1.76 0.11± 0.01 17.8± 4.75 6.40± 1.02 0.15± 0.02
Sampl. FAB 3.63± 0.85 6.60± 0.80 0.11± 0.01 4.09± 0.50 7.60± 1.28 0.15± 0.02

Spambase (Ntrain = 1, 000) MiniBooNE (Ntrain = 5, 000)
Time # of Rules Test Error Time # of Rules Test Error

Naive FAB 19.5± 4.30 5.40± 1.56 0.09± 0.01 1962± 509 9.10± 0.83 0.12± 0.00
Sampl. FAB 7.77± 2.02 6.40± 1.80 0.10± 0.01 81.5± 7.74 9.30± 0.90 0.12± 0.01

Higgs (Ntrain = 5, 000) Energy (Ntrain = 384)
Time # of Rules Test Error Time # of Rules Test Error

Naive FAB 1503± 519 9.10± 0.83 0.36± 0.01 0.25± 0.02 3.60± 0.66 12.9± 2.58
Sampl. FAB 56.5± 8.04 9.40± 0.66 0.37± 0.01 0.11± 0.01 3.60± 0.66 12.9± 2.58
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Figure 7: Comparison of the simplification
methods on the large MiniBooNE dataset
(Ntrain = 100, 000): # of rules vs. test er-
ror. Ensemble denotes the average error of
the tree ensemble over the ten random data
realizations.

Table 7: Performance of the sampling FAB inference, inTrees, and
Node Harvest: The average runtime in seconds (per one restart for
the sampling FAB inference), the average number of found rules,
and the average test error are reported.

MiniBooNE (Ntrain = 100, 000)
Time # of Rules Test Error

Sampl. FAB 790± 71.2 9.90± 0.30 0.12± 0.00
inTrees 588± 40.0 41.9± 1.81 0.09± 0.00

Node Harvest 2902± 117 66.5± 12.7 0.12± 0.00

served for inTrees and Node Harvest because the over-
lapped regions are limited. Table 8 shows the average
number of overlapped rules where the ideal value is
one. While the proposed method attained values close
to one, inTrees and Node Harvest scored far larger val-
ues.

Energy Data: Energy efficiency data is a simula-
tion data sampled from 12 different building shapes.
The dataset comprises eight numeric features which
are Relative Compactness, Surface Area, Wall Area,
Roof Area, Overall Height, Orientation, Glazing Area,
and Glazing Area Distribution. The task is regression,
which aims to predict the heating load of the building
from these eight features.

In Table 9, the four rules found by the proposed
method are characterized by the two features Over-
all Height and Wall Area. The four rules are ex-
pressed as a direct product of the two statements;
(i) Overall Height ∈ {low,high}, and (ii) Wall Area
∈ {small, large}. The resulting rules are intuitive such
that the load is small when the building is small, while
the load is large when the building is huge. Hence,
from these simplified rules, we can infer that the tree

ensemble is learned in accordance with our intuition
about the data. In contrast to the simple rules found
by the proposed method, the baseline methods found
more rules: BATrees learned 66 rules, inTrees enu-
merated 23 rules, and Node Harvest found 10 rules,
respectively. Table 9 shows four example rules found
by each method.
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Figure 8: Synthetic1: Original data, leaned tree ensemble, and simplified rules.
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Figure 9: Synthetic2: Original data, leaned tree ensemble, and simplified rules.

Table 8: Average Number of Rules Covering Each Test Point: BATrees is omitted because its value is always
one.

Synthetic1 Synthetic2 Spambase MiniBooNE Higgs Energy
Proposed 1.03± 0.04 1.05± 0.06 2.03± 0.26 4.53± 0.86 1.56± 0.20 0.95± 0.08
inTrees 4.65± 0.38 3.73± 0.41 5.39± 0.34 6.25± 0.28 5.53± 0.27 3.30± 0.19

Node Harvest 3.53± 0.95 8.78± 2.02 12.4± 1.76 17.9± 2.24 9.42± 1.85 3.61± 0.19
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Figure 10: Synthetic1: Found rules by Node Harvest.
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Figure 11: Synthetic2: Found rules by Node Harvest.
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Table 9: Examples of extracted rules using the tree ensemble simplification methods on Energy data.
y Rule

P
ro

p
o
se

d 12.33 OverallHeight < 5.25, WallArea < 306.25
14.39 OverallHeight < 5.25, WallArea ≥ 318.50
28.17 OverallHeight ≥ 5.25, WallArea < 330.75
37.38 OverallHeight ≥ 5.25, WallArea ≥ 343.00

B
A

T
re

es

17.18 RelativeCompactness < 0.84, WallArea < 330.75, RoofArea < 183.75, GlazingArea <
0.33, GlazingAreaDistribution < 0.50

24.50 RelativeCompactness < 0.84, WallArea < 330.75, RoofArea < 183.75, Orientation < 3.50,
GlazingArea < 0.33, 0.50 ≤ GlazingAreaDistribution < 3.50

24.20 RelativeCompactness < 0.84, WallArea < 330.75, RoofArea < 183.75, 3.50 ≤
Orientation < 4.50, GlazingArea < 0.33, 0.50 ≤ GlazingAreaDistribution < 3.50

23.94 RelativeCompactness < 0.84, WallArea < 330.75, RoofArea < 183.75, Orientation ≥ 4.50,
GlazingArea < 0.33, 0.50 ≤ GlazingAreaDistribution < 3.50

in
T

re
es

12.58 RelativeCompactness ≥ 0.65, OverallHeight < 5.25, GlazingArea < 0.33
33.20 RelativeCompactness ≥ 0.75, SurfaceArea ≥ 624.75, GlazingAreaDistribution ≥ 0.50
33.20 RelativeCompactness ≥ 0.84, GlazingArea ≥ 0.33
23.61 673.75 ≤ SurfaceArea < 796.25, WallArea ≥ 306.25, GlazingArea ≥ 0.17

N
H

14.53 SurfaceArea ≥ 674.00, GlazingArea ≥ 0.17
28.17 RelativeCompactness ≥ 0.81, SurfaceArea < 674.00
37.38 RelativeCompactness < 0.81, SurfaceArea < 674.00
11.21 SurfaceArea ≥ 674.00, GlazingArea < 0.17

D
T

re
e2

11.21 SurfaceArea ≥ 673.75, GlazingArea < 0.17
14.53 SurfaceArea ≥ 673.75, GlazingArea ≥ 0.17
28.17 SurfaceArea < 624.75
37.38 624.75 ≤ SurfaceArea < 673.75


