
Supplementary Material for
SDCA-Powered Inexact Dual Augmented Lagrangian Method

for Fast CRF Learning

A Loss-Augmented CRF
In order to extend our learning formulation so as to encompass as well max-margin structured learning (i.e.,
structured SVM) in additional to maximum likelihood learning, we show in this section that our formulation
can be generalized to cover the loss-augmented CRF learning introduced by Pletscher et al. (2010) and Hazan
and Urtasun (2010).

The loss-augmented CRF pγ(y | y?, x) is an extension of the standard CRF with additional user-
defined loss functions `c(y?c , yc) for all cliques and an extra temperature hyperparameter γ ∈ (0,+∞). We
introduce a modified natural parameter η`(w) := η(w) + ` (similarly we have θ`) that includes the loss term
` =

[
[`c(y

?
c , yc) : yc ∈ Yc] : c ∈ C

]
. The density function of the loss-augmented CRF then takes the form

pγ(y | y?, x;w) = exp
(
〈η`(w)/γ, T (y)〉 − F (η`(w)/γ)

)
. (1)

A justification for the form of the loss-augmented CRF is based on a rationale that distinguishes the label
to predict y (which is essentially true unknown label) from the label provided by the annotation y?. The
assumption made is then that, given yc, the annotation y?c is independent of x and yc′ for c′ 6= c. This entails
that p(y, y?|x) = pγ(y | y?, x) ∝ p(y | y?)pγ(y | x), which yields the above form for pγ(y | y?, x;w) by Bayes’
rule for p(y | y?) ∝ exp(

∑
c∈C `c(y

?
c , yc)).

For learning, we use a rescaled maximum likelihood objective (i.e., multiplied by γ) of the form

min
w
γF
(

1
γ θ`(w)

)
+
λ

2
‖w‖22, (2)

with which we can see γ only affects the entropy term in the variational representation of F , thus it plays a
role to determine the learning regime. When γ → 0, we retrieve a max-margin formulation for structured
output learning, since the corresponding variational problem based on Fenchel duality is

min
w

max
µ∈M
〈µ, θ`〉+

λ

2
‖w‖22. (3)

Note that this is identical to the linear programming relaxation of the structured SVM formulation studied
by Meshi et al. (2010).

It is also possible to retrieve the maximum likelihood regime by making a change of variable: w′ = w/γ.
Then, (2) becomes

min
w′

F
(
θ(w′) +

1

γ
`
)

+
λγ

2
‖w′‖22. (4)

Increasing γ decreases the effect of the loss term and simultaneously increases the effect of the regularization.
The maximum likelihood regime is thus retrieved by letting γ → +∞ and λ→ 0.
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B Derivations of dual, and relaxed primal and dual objectives
In this section, we derive the dual objective D(µ) of P (w). Given the augmented Lagrangian Dρ(µ, ξ), we first
introduce a relaxed primal P̃ρ(w, δ, ξ) involving a new primal variable δ whose components can be interpreted
as messages exchanged between cliques in the context of marginal inference via message-passing algorithms.
The partial minimization with respect to δ then yields the corresponding primal of Dρ(µ, ξ) with respect to µ
for a fixed ξ: Pρ(w, ξ) := minδ P̃ρ(w, δ, ξ), which can be interpreted as a Moreau-Yoshida smoothing of the
original objective Pρ(w).

B.1 Derivation of the dual objective D(µ)

Given that θ`(w) = Ψᵀw + ` and introducing the Fenchel conjugate of FL, we have

P (w) = γFL

( 1

γ
θ`(w)

)
+
λ

2
‖w‖22

= max
µ∈L

[
〈Ψᵀw + `, µ〉 − γF ∗L(µ)

]
+
λ

2
‖w‖22.

Given that the local polytope constraints are defined by linear inequalities, weak Slater constraint qualification
are satisfied, so that strong duality holds and an equivalent dual problem in µ is obtained by switching the
order of minw and maxµ:

D(µ) = 〈`, µ〉 − γF ∗L(µ) + min
w

[
〈Ψᵀw, µ〉+

λ

2
‖w‖22

]
= 〈`, µ〉 − γF ∗L(µ)− λmax

w

[
− 1

λ
〈Ψµ,w〉 − 1

2
‖w‖22

]
= 〈`, µ〉 − γF ∗L(µ)− 1

2λ
‖Ψµ‖22.

B.2 Derivation of an extended primal P̃ρ(w, δ, ξ)

Proposition 4. For a fixed ξ, the primal objective function of Dρ(µ, ξ) takes the form

Pρ(w, ξ) := min
δ

[
P̃ρ(w, δ, ξ) := γFI

(θ(w) +Aᵀδ

γ

)
+
λ

2
‖w‖22 +

ρ

2
‖δ − ξ‖2

]
.

Proof. Clearly, we have D(µ) = minξDρ(µ, ξ). For a fixed value of ξ, consider the Lagrangian

Lρ,ξ(µ, ν, ν
′, w, δ) = 〈`, µ〉 − γF ∗I (µ)− 1

2λ
‖ν‖2 − 1

2ρ
‖ν′‖2 + 〈ξ, ν′〉+ 〈w,Ψµ− ν〉+ 〈δ, Aµ− ν′〉;

Then clearly minw,δ Lρ,ξ(µ, ν, ν
′;w, δ) = Dρ(µ, ξ). We compute the associated primal as

P̃ρ(w, δ, ξ) = max
µ,ν,ν′

Lρ,ξ(µ, ν, ν
′, w, δ)

= max
u

[
〈µ, `+ Ψᵀw +Aᵀδ〉 − γF ∗I (µ)

]
+ max

ν

[
〈ν,−w〉 − 1

2λ
‖ν‖2

]
+ max

ν′

[
〈ν′, ξ − δ〉 − 1

2ρ
‖ν′‖2

]
,

which yields the desired form of Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ) upon expliciting Fenchel conjugates.

Proposition 5.

min
δ
FI
(
1
γ (θ(w) +Aᵀδ)

)
= FL

(
1
γ θ(w)

)
and min

ξ,δ
P̃ρ(w, δ, ξ) = P (w).
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Proof. We have

min
δ
FI
(
1
γ (θ(w) +Aᵀδ)

)
= min

δ
max
µ

( 1

γ
〈θ(w) +Aᵀδ, µ〉+HApprox(µ)− ιI(µ)

)
= max

µ

( 1

γ
〈θ(w), µ〉+HApprox(µ)− ιI(µ)− ι{Aµ=0}

)
= FL

(
1
γ θ(w)

)
,

where the second equality follows by exchanging minimization and maximization (strong duality holds by
Slater’s conditions) and minimizing with respect to δ.

To show that minξ,δ P̃ρ(w, δ, ξ) = P (w), it is easy to minimize over ξ first, which cancels out the term
ρ
2‖δ − ξ‖

2 by setting ξ = δ. Then, δ only appears in FI and the result follows from the first result.

B.3 Interpretation as Moreau-Yosida smoothing
To understand the structure of Pρ(w, ξ), we shall look at P̃ρ(w, δ, ξ). One may be interested in where does δ
comes from? In fact, forming the Lagrangian of minw P (w) with Lagrangian multiplier δ corresponding to
the marginalization constraint Aµ = 0, we see that

L(w, δ, µ) :=〈θ`(w), µ〉 − γF ∗I (µ) +
λ

2
‖w‖22 + 〈δ, Aµ〉.

Recall that the Moreau-Yosida regularization of a function f is defined as the infimal convolution

Mρf (x) = min
z

[
f(z) +

ρ

2
‖z − x‖2

]
.

Both Pρ(w, ξ) and Dρ(µ, ξ) have a nice interpretation in terms of the Lagrangian L and Moreau-Yosida
regularization. Note that the Moreau-Yosida regularization admits the same optimum as the original function,
and that it is smooth even when the original function is not. It is furthermore γρ

γ+ρ -strongly convex if the
original function is γ-strongly convex.

Proposition 6. Pρ(w, ξ) and Dρ(µ, ξ) are respectively the Moreau-Yosida regularizations of Lµ? : w, δ 7→
maxµ L(w, δ, µ) and Lw? : µ, δ 7→ minw L(w, δ, µ) about δ. that is

Pρ(w, ξ) = MρLµ? (w, ξ) = min
δ

[
max
µ

L(w, δ, µ) +
ρ

2
‖δ − ξ‖22

]
Dρ(µ, ξ) = MρLw? (µ, ξ) = min

δ

[
min
w
L(w, δ, µ) +

ρ

2
‖δ − ξ‖22

]
.

Proof. For Pρ(w, ξ), note that maxµ L(w, δ, µ) ≡ γFI
(
θ(w)+Aᵀδ

γ

)
+λ

2 ‖w‖
2
2. The equivalent form is immediately

derived from Proposition 4.
For Dρ(µ, ξ), note that minw L(w, δ, µ) ≡ 〈θ, µ〉 − γF ∗I (µ)− 1

2λ‖Ψµ‖
2 + 〈δ, Aµ〉, and minδ〈δ, Aµ〉+ ρ

2‖δ −
ξ‖2 ≡ 〈ξ, Aµ〉 − 1

2ρ‖Aµ‖
2
2. Thus, the equivalence holds.

Note that the penalty formulation corresponds to a special case of P̃ρ(w, δ, ξ) and Dρ(µ, ξ) with ξ = 0. It
introduces an additional term ρ

2‖δ‖
2, thus making the primal strongly convex with respect to δ and the dual

smoother in µ. This effect is similar to that of using Moreau-Yosida smoothing. However, the additional
term ρ

2‖δ‖
2 will never vanish, so Aµ = 0 will never be satisfied. The more Aµ = 0 is violated, the less the

structure of CRF will be perserved.
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B.4 Duality gaps and representer theorem
Besides, if we define gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−Dρ(µ, ξ) as an upper-bound estimate of the duality gap
Pρ(w, ξ)−Dρ(µ, ξ), specifically

gap(w, δ, µ, ξ) =
[
γFI

(
1
γ θ`(w) +Aᵀδ

)
+ γF ∗I (µ)− 〈θ`(w) +Aᵀδ, µ〉

]
+
[λ

2
‖w‖2 +

1

2λ
‖Ψµ‖2 − 〈−w,Ψµ〉

]
+
[ρ

2
‖ξ − δ‖2 +

1

2ρ
‖Aµ‖2 − 〈ξ − δ, Aµ〉

]
,

we can see that the recovered w and δ by the optimality condition make the 2nd and 3rd term of gap(w, δ, µ, ξ)
disappear. We will see later this is important in designing the algorithm to solve maxµDρ(µ, ξ).

Finally, we give a rough picture of all the quantities that we introduced in this section, which can be
easily derived from Proposition 6.

Corollary 5. The relations between D, Dρ, P and Pρ could be summarized as

D(µ) ≤ Dρ(µ, ξ) ≤ Pρ(w, ξ);
Dρ(µ) ≤ P (w) ≤ Pρ(w, ξ) ≤ P̃ρ(w, δ, ξ);
max
µ

min
ξ
Dρ(µ, ξ) ≤ min

w
P (w),

with equalities hold for the saddle point (µ?, w?, ξ?). Moreover, the first-order optimality conditions are given
as

w? = − 1

λ
Ψµ?, δ? = ξ? − 1

ρ
Aµ? (5)

Proof. By constructions, D(µ) = minξDρ(µ, ξ) ≤ Dρ(µ, ξ) and Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ) ≤ P̃ρ(w, δ, ξ).
Other inequalities are the consequences of Proposition 6 and the min-max inequality. Since the strong duality
holds (Slater conditions satisfied and the problem is convex), we know that the equalities will hold at the
saddle point.

Given the saddle point (µ?, w?, ξ?), to derive w?, δ? from µ?, we know that w?, δ? = arg minw,δ P̃ρ(w, δ, ξ
?).

The result follows after computing ∇wP̃ρ(w, δ, ξ?) = 0 and ∇δP̃ρ(w, δ, ξ?) = 0.

So our strategy for CRF learning is minξ maxµDρ(µ, ξ), since we know that

Dρ(µ
?, ξ?) ≡ L(w?, δ?, µ?) ≡ P (w?).

Since we work on the space of µ and ξ, to compute the primal objectives or the duality gap, we can use
the mapping specified by the optimality condition (5). More precisely, we define

w(µt,s) = − 1

λ
Ψµt,s, δ(µt,s, ξt) = ξt − 1

ρ
Aµt,s,

which is equivalent to the representer theorem. The above condition is also useful to recover intermediate
wt,s from µt,s, which allows us to test on the validation set or decide if we should stop the learning earlier.

B.5 Comparison with State-of-the-Art Structured Learning Methods
A number of recent works for CRF learning can be viewed as optimizing formulations which are exactly or
fairly close to one of P (w), D(µ), Pρ(w, δ), P̃ρ(w, δ, ξ) or Dρ(µ, ξ). In the following table, we compare these
approaches, in terms of the optimization formulation, the convergence rate (respectively in the primal or in
the dual), and the inference oracle used for computing the gradients (or blockwise gradients).
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Table 1: The Comparison of Structured Learning Methods
Method Learning Regime Primal/Dual Convergence Inference Oracle
Meshi et al. (2010) SSVM Primal (w, δ) Sublinear graphwise MAP (inexact)
Hazan and Urtasun (2010) LossAugCRF Primal (w, δ) Sublinear graphwise marginal (inexact)
Lacoste-Julien et al. (2013) SSVM Dual (µ) Sublinear graphwise MAP
Schmidt et al. (2015) CRF Primal (w) Linear graphwise marginal
Tang et al. (2016) CRF Dual (µ) Sublinear graphwise MAP
Meshi et al. (2015) SSVM (soft) Dual (µ, ξ = 0) Sublinear cliquewise MAP
Yen et al. (2016) SSVM Dual (µ, ξ) Linear cliquewise MAP
IDAL LossAugCRF Dual (µ, ξ) Linear cliquewise marginal

C Gini Oriented Tree-Reweighted Entropy
The Bethe entropy (Yedidia et al., 2005) is generally non-concave. Its concave counterparts, such as the tree-
reweighted entropy (Wainwright et al., 2005) or the region-based entropy (London et al., 2015; Yedidia et al.,
2005), are only concave on the local consistency polytope, but non-concave on I\L (i.e., when Aµ 6= 0). Indeed,
the Bethe entropy and its concave variants are of the form HBethe(µ) =

∑
i∈V ciHi(µi) +

∑
{i,j}∈E cijHij(µij),

where ci and cij are counting numbers. Even when HBethe is concave on L, some of the ci or cij can be
negative.

The construction of the oriented tree-reweighted entropy stems from the expression of the entropy of a
directed tree as the sum of of the entropy of the root and the conditional entropies of the variable at each
node given their parent variable. Precisely, for an oriented tree T with the root i0, the joint entropy can be
computed as

HT (Y ) := H(Yi0) +
∑

j→i∈T
H(Yi | Yj). (6)

On a general graph, if T is a (directed) spanning tree of the graph, then

HT (Y ) := H(Yi0) +
∑
t→i∈T

H(Yi | Yj) ≥ H(Yi0) +

m∑
k=1

H(Yik | Yik−1
, . . . , Yi0) =: HShannon(Y ). (7)

Thus, for any probability distribution over the set of valid directed spanning trees, in which tree T has
probability ρT , the inequality above entails that HShannon(Y ) ≤

∑
T ρTHT (Y ) =: HOTRW(Y ), where ρT ≥ 0

and
∑
T ρT = 1.

HT (Y ) is concave since it is a sum of concave functions, and so is HOTRW(Y ) (who is a convex combination
of HT (Y )). To see that, we need to prove the following fact.

Fact 1 (Concavity of the conditional entropy). The conditional entropy H(Yj | Yi) is in fact a function of
µij, namely H(Yj | Yi) = H(µij)−H(Aiµij). Moreover, H(Yj | Yi) is a concave function of µij.

Proof. By definition,

H(Yj | Yi) =
∑
yj ,yi

µij(yj , yi) log

∑
yj
µij(yj , yi)

µij(yj , yi)
= H(µij)−H(Aiµij).

To show H(Yj | Yi) is concave, we compute its Hessian:

∂2H(Yj | Yi)
∂µ2

ij

= −diag
(
1� µij

)
+Aᵀdiag

(
1�Aµ

)
A

= −diag
(
1� µij

)
+ diag

(
{ 1

µ̃i(yi)
11ᵀ}kiyi=1

)
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where µ̃i = Aiµij , and � denotes entrywise division. Let’s focus on the i-th block of the negative Hessian.
To show that the i-th block is positive semidefinite, that is, that

diag
({ 1

µij(yi, yj)

}
1≤yj≤kj

)
− 1

µ̃i(yi)
11ᵀ � 0, (8)

we can use the Schur complement condition for positive semidefiniteness. Let U = µ̃i(yi). Since µ̃i(yi) � 0,

L−BᵀU−1B � 0 iff

[
U B
Bᵀ L

]
=

[
µ̃i(yi) 1ᵀ

1 diag
(
{ 1
µij(yi,yj)

}1≤yj≤kj
)] � 0.

We also have L = diag
({

1
µij(yi,yj)

}kj
yj=1

)
� 0, then[

U B
Bᵀ L

]
� 0 iff U −BL−1Bᵀ = µ̃i(yi)− 1ᵀdiag

(
{µij(yi, yj)}

kj
yj=1

)
1 = µ̃i(yi)− µ̃i(yi) � 0.

Because the last inequality holds, we know (8) must be true, which implies that the Hessian of H(Yj | Yi) is
negative semidefinite, thus H(Yj | Yi) is concave.

Note that HOTRW(µ) is concave on the entire set I, unlike many Bethe entropy variants who are only
concave in the local consistency polytope.

We define
−→
E the directed edge set by expanding each edge from E with two directed edges, ρi and ρi|j

respectively as the probabilities of i (as the root) and i→ t appearing in an oriented spanning tree when the
latter is drawn with probability ρT . Then the oriented tree-reweighted entropy takes the form

HOTRW(µ) :=
∑
{i,j}∈E

ρj|i
[
He(µij)−Hi(Aiµij)

]
+ ρi|j

[
He(µij)−Hj(Ajµij)

]
+
∑
i∈V

ρiHi(µi), (9)

whereHi(µi) = −
∑
yi
µi(yi) logµi(yi),He(µij) = −

∑
yi,yj

µi(yi, yj) logµi(yi, yj) and ρi, ρi|j , ρj|i are node/edge
appearance probabilities in [0, 1]. HOTRW is concave, since Hi is concave and it can be checked that so
is µij 7→ He(µij) − Hi(Aiµij) (although not strongly concave). It is easy to precompute the appearance
probabilities ρi and ρi|j via a variant of the directed matrix-tree theorem. See Koo et al. (2007) for more
details.

A generic difficulty with entropies, is that Hi and He do not have Lipschitz gradients, which prevents the
direct application of proximal methods with usual quadratic proximity terms. We thus propose to replace Hi

and He by their second-order Taylor approximation around the uniform distribution. This yields a surrogate
of the form

HGTRW(µ) :=
∑
{i,j}∈E

ε
[
kiρj|i‖Aiµij‖2 + kjρi|j‖Ajµij‖2

]
− kikj(ρi|j + ρj|i)‖µij‖2 +

∑
i∈V

kiρi(1− ‖µi‖2), (10)

where ε = 1. Since this function is not strongly convex w.r.t. µij because kjIki − A
ᵀ
iAi has a non-trivial

kernel, so we also consider variants with ε < 1 and denote them HGTRW,ε. We call this approximation the
Gini OTRW entropy, since it is consistent with the definition of Gini conditional entropy of Furuichi (2006).

D Proof of Lemma 1 and associated lemma
To prove Lemma 1, we first need to show d(ξ) is a smooth function, and then we build up the associated
lemmas which will be used in the proof of Lemma 1. Finally, in the end of this section, we prove Corollary 2
as a result to show the linear convergence in the primal.
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D.1 Smoothness of d(ξ)
Lemma D.1. (Hong and Luo, 2017, Lemma 2.3) d(ξ) is convex and Ld-smooth, where Ld ≤ ρ.

Proof. By definition we have

Dρ(µ, 0) = −〈µ, `〉+ γF ∗I (µ) +
1

2λ
‖Ψµ‖2 +

1

2ρ
‖Aµ‖2.

We then have d(ξ) = maxµDρ(µ, ξ) = maxµ〈µ,Aᵀξ〉 − Dρ(µ, 0) so that if J(µ) := Dρ(µ, 0), then d(ξ) =
J∗(Aᵀξ) and d is a convex function by Fenchel conjugacy.

For any ξ1 and ξ2, denote by µ1 and µ2 the minimizers of Dρ(·, ξ1) and Dρ(·, ξ2) respectively. By convexity
of d(ξ) and the definition of subgradient, there exists s1 ∈ ∂F ∗I (µ1) and s2 ∈ ∂F ∗I (µ2) such that

Aᵀξ1 + `− γs1 −
1

λ
ΨᵀΨµ1 −

1

ρ
AᵀAµ1 = 0

Aᵀξ2 + `− γs2 −
1

λ
ΨᵀΨµ2 −

1

ρ
AᵀAµ2 = 0

By convexity of F ∗I (µ), we have
〈s1 − s2, µ1 − µ2〉 ≥ 0,

which together with the equations above yields

〈Aᵀ(ξ1 − ξ2)− 1

λ
ΨᵀΨ(µ1 − µ2)− 1

ρ
AᵀA(µ1 − µ2), µ1 − µ2〉 ≥ 0.

Hence,

〈ξ1 − ξ2, A(µ1 − µ2)〉 ≥ 1

λ
‖Ψ(µ1 − µ2)‖2 +

1

ρ
‖A(µ1 − µ2)‖2 ≥ 1

ρ
‖A(µ1 − µ2)‖2.

Now substituting ∇d(ξ1)−∇d(ξ2) = A(µ1 − µ2) into the above inequality and using the Cauchy-Schwarz
inequality yields

‖∇d(ξ1)−∇d(ξ2)‖ ≤ ρ‖ξ1 − ξ2‖.

That completes the proof.

D.2 Associated lemmas for Lemma 1
We first quantify in the next two lemmas how much D(µ, ξt) should be minimized in µ to provide a sufficiently
accurate approximate gradient that it guarantees descent on d.

Lemma D.2 (Error on the gradient). Denote µ̄t := µ?(ξt) = argminµD(µ, ξt); gt := ∇d(ξt) = Aµ?(ξt) and
ĝt := Aµ̂t. Let ∆̂t := Dρ(µ̄

t, ξt) − Dρ(µ̂
t, ξt). We have 1

2Ld
‖ĝt − gt‖2 ≤ ∆̂t, where Ld is the smoothness

constant of d.

Proof. Let d∗(y) = maxξ〈ξ, y〉 − d(ξ). Then, it can easily be checked by using the definition of d and
exchanging the order of maximization and minimization that d∗(y) = minµDρ(µ, 0) + ι{Aµ=y},

Since d is convex, we have d(ξ) = maxy〈ξ, y〉 − d∗(y), so that if y?(ξ) is a maximizer for fixed ξ we have

0 ∈ ξ − ∂d∗(y?(ξ))⇒ ξ ∈ ∂d∗(y?(ξ)).

The strong convexity of d∗(y) implies that, for all y,

d∗(y)− d∗(y?(ξ))− 〈ξ, y − y?(ξ)〉 ≥ 1

2Ld
‖y − y?(ξ)‖2.
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But for any µ, we have Dρ(µ, ξ) = 〈Aµ, ξ〉 −Dρ(µ, 0) ≤ 〈Aµ, ξ〉 − d∗(Aµ), and, for µ?(ξ), this inequality is an
equality, since we have Dρ(µ

?(ξ), ξ) = 〈y?(ξ), ξ〉 − d∗(y?(ξ)) and y?(ξ) = Aµ?(ξ). As a consequence, setting
y = Aµ, we have

Dρ(µ
?(ξ), ξ)−Dρ(µ, ξ) ≥

1

2Ld
‖Aµ−Aµ?(ξ)‖2

by definition of Dρ(µ, ξ). We conclude the proof by substituting µ with µ̂t and ξ with ξt.

Lemma D.3 (Guaranteed decrease on d). If we take inexact gradient on ξ with a fixed step size 1
Ld

, namely
ξt+1 = ξt − 1

Ld
ĝt, then

d(ξt)− d(ξt+1) ≥ τ

Ld
Γt − ∆̂t, (11)

where τ ∈ (0, Ld) satisfying 1
2τ ‖gt‖

2 ≥ Γt.

Proof. Since d(ξ) is Ld-smooth, we have

d(ξt+1)− d(ξt) ≤ 〈∇d(ξt), ξt+1 − ξt〉+
Ld
2
‖ξt+1 − ξt‖2

Using the gradient step and ∇d(ξt) = gt, the above inequality can be simplified as

d(ξt+1)− d(ξt) ≤ 〈gt,−1/Ldĝt〉+
Ld
2
‖1/Ldĝt‖2

=
1

2Ld

(
‖ĝt − gt‖2 − ‖gt‖2

)
. (12)

We notice that the error bound given by the Lemma 2.3 of Hong and Luo (2017) holds for d(ξ). Specifically,

∃τ ′ > 0, such that ‖∇d(ξ)‖ ≥ τ ′‖ξ − ξ?‖.

Since d(ξ) is Ld-smooth and ∇d(ξ?) = 0, we have

d(ξ)− d(ξ?) ≤ Ld
2
‖ξ − ξ?‖2 ≤ Ld

2τ ′
‖∇d(ξ)‖2,

which implies
1

2τ
‖gt‖2 ≥ Γt,

where τ = τ ′

Ld
. By using (12) and the above inequality on ‖gt‖2, we obtain

d(ξt)− d(ξt+1) ≥ 1

2Ld

(
‖gt‖2 − ‖ĝt − gt‖2

)
≥ τ

Ld
Γt − ∆̂t.

Since for each value of ξt the value and gradient of d(ξt) need to be computed approximately by
minimizing the augmented Lagrangian Dρ(·, ξt), and since the difference between two consecutive strongly
convex objectives is Dρ(µ, ξ

t) −Dρ(µ, ξ
t−1) = 〈ξt−1 − ξt, Aµ〉, which is a function that converges to zero

when if the sequence {ξt}t converges, a warm-restart strategy using µ̂t as the initial point to the subproblem
maxµDρ(µ, ξ

t+1) is beneficial, as characterized by the following lemma.

Lemma D.4 (Dual gap at warm start). Denote ∆0
t+1 := Dρ(µ̄

t+1, ξt+1) − Dρ(µ
t+1,0, ξt+1). If we let

µt+1,0 = µ̂t, then

∆0
t+1 ≤ (4 +

2

ω
)∆̂t + (1 + 2ω)Γt, ∀ω > 0. (13)
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Proof. By definition, we have Dρ(µ̄
t+1, ξt+1) = Dρ(µ

t+1,∗, ξt+1) = d(ξt+1). The initial gap of µ at iteration t
can then be decomposed as

∆0
t+1 = Dρ(µ̄

t+1, ξt+1)−Dρ(µ
t+1,0, ξt+1) + d(ξt)− d(ξt)−Dρ(µ̂

t, ξt) +Dρ(µ̂
t, ξt)

=
[
d(ξt)−Dρ(µ̂

t, ξt)
]

+
[
Dρ(µ̂

t, ξt)−Dρ(µ
t+1,0, ξt+1)

]
+Dρ(µ̄

t+1, ξt+1)− d(ξt)

=
[
Dρ(µ̄

t, ξt)−Dρ(µ̂
t, ξt)

]
+
[
Dρ(µ̂

t, ξt)−Dρ(µ̂
t, ξt+1)

]
+ d(ξt+1)− d(ξt)

= ∆̂t +
1

Ld
‖ĝt‖2 + d(ξt+1)− d(ξt)

Again, we used the gradient step ξt+1 = ξt − 1
Ld
ĝt, and recall that Aµ̂t = ĝt.

Now, we can bound the term ‖ĝt‖2 from above using the fact that

1

Ld
‖ĝt‖2 =

1

Ld

[
‖gt‖2 + 2〈gt, ĝt − gt〉+ ‖ĝt − gt‖2

]
≤ 1

Ld

[
(1 + ω)‖gt‖2 + (1 + 1/ω)‖ĝt − gt‖2

]
,

where the last inequality stems from the Cauchy-Schwarz inequality 〈gt, ĝt − gt〉 ≤ ‖gt‖ ‖ĝt − gt‖ and the fact
that for any any a, b ∈ R and ω > 0, we have 2ab ≤ ωa2 + b2/ω.

Combining the upper bound of d(ξt+1)− d(ξt) from (12), we get

∆0
t+1 ≤ ∆̂t +

3ω + 2

2ωLd
‖ĝt − gt‖2 +

2ω + 1

2Ld
‖gt‖2. (14)

Here, we can use again Lemma D.2 and the fact that 1
2Ld
‖gt‖2 ≤ Γt, which is due to the smoothness of d(ξ).

It follows that

∆0
t+1 ≤

(
4 + 2

ω

)
∆̂t +

(
1 + 2ω

)
Γt, ∀ω > 0.

D.3 Proof of Lemma 1
Combining Lemma D.3 and D.4, we now show that IDAL enjoys a linear convergence rate if we take a fixed
number of inner iterations to estimate the gradient.

Lemma 1 (Linear convergence of the outer iteration). Suppose we have an algorithm A to approximately
solve maxµDρ(µ, ξ

t) in the sense that

∃β ∈ (0, 1), E[∆̂t] ≤ β E[∆0
t ].

Then ∃κ ∈ (0, 1) characterizing d and C > 0 such that, for any ω > 0, after Tex gradient steps on ξ, the
suboptimalities ∆Tex

and ΓTex
are bounded from above:∥∥∥∥E[∆̂Tex ]

E[ΓTex ]

∥∥∥∥ ≤ C λmax(β)Tex

∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥ , where M(β) =

[
β(4 + 2

ω ) β(1 + 2ω)
1 1− κ

]
, (15)

and λmax(β) is the largest eigenvalue of M(β). Thereby, if β is chosen so that λmax(β) < 1, Algorithm 1 is
linearly convergent with a rate λmax(β).

Proof. Note that Γt+1 − Γt = d(ξt+1) − d(ξt). By using Lemma D.3, we have an upper bound on Γt+1 in
terms of Γt and ∆̂t, namely

Γt+1 ≤ ∆̂t + (1− κ) Γt with κ =
τ

Ld
. (16)
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On the other hand, we can also derive an upper bound on ∆̂t+1 in terms of Γt and ∆̂t. To achieve that, we
relate the inner problem with Γt by running the steps on µ until E[∆̂t+1] ≤ (1− π)TinE[∆0

t+1] ≤ β E[∆0
t+1],

which means Tin ≥ log β
log(1−π) . By Lemma D.4, we have

E[∆̂t+1] ≤ β E[∆0
t+1] ≤ β

(
4 + 2

ω

)
E[∆̂t] + β(1 + 2ω)E[Γt]. (17)

Combining (17) and (16), and taking expectations on both sides, we get[
E[∆̂t+1]
E[Γt+1]

]
≤M

[
E[∆̂t]
E[Γt]

]
(18)

Since by definition, all the elements of M are positive, we can telescope a sequence of matrix multiplications
to get [

E[∆̂Tex ]
E[ΓTex ]

]
≤M

[
E[∆̂Tex−1]
E[ΓTex−1]

]
≤ · · · ≤MTex

[
E[∆̂0]
E[Γ0]

]
(19)

Assuming the eigen decomposition of M takes the form M = PDP−1, then M t = PDtP−1. Applying norms
on both sides of the vector inequality, we have∥∥∥∥E[∆̂Tex

]
E[ΓTex

]

∥∥∥∥ ≤ ‖P‖op λmax(β)Tex‖P−1‖op
∥∥∥∥E[∆̂0]
E[Γ0]

∥∥∥∥ . (20)

Note that C = ‖P‖op‖P−1‖op is a constant.

Corollary 2. Let σ denote the strong convexity constant of µ 7→ Dρ(µ, ξ) and Ld the smoothness constant
of d. Assume that (‖ξt‖2)t∈N is almost surely bounded by a constant B. Then the squared residuals to the
constraint Aµ = 0 satisfy

1

2
‖Aµ̂t‖22 ≤ 2LdΓt +

2

σ
‖A‖2op∆̂t.

Furthermore, if we let D∞(µ) := 〈`, µ〉 − γF ∗I (µ)− 1
2λ‖Ψµ‖

2
2, so that we have D(µ) = D∞(µ)− ι{Aµ=0}, then

(given that µt ∈ I throughout the algorithm) the gap between the smooth part of the objective in µ̂t and at the
optimum can be bounded as follows

|D∞(µ̂t)−D∞(µ?)| ≤ B
√

2Ld Γt +B
‖A‖op√

σ

√
2∆̂t +

(
1 + 2

Ld
ρ

)
Γt +

(
1 + 2

‖A‖2op
ρσ

)
∆̂t.

Finally, if Γt and ∆̂t converge to 0 linearly then both the residuals ‖Aµ̂t‖22 and the gap in objective value
|D∞(µ̂t)−D∞(µ?)| converge to 0 linearly.

Proof. For the first inequality, by Fact D.1 we know that d is an Ld-smooth function. It is then a standard
result (see e.g. Nesterov, 2013, Thm 2.1.5) that we therefore have ‖∇d(ξt)‖22 ≤ 2Ld(d(ξt)− d(ξ?)) = 2LdΓt.
But since ∇d(ξt) = Aµ̄t, and using the strong convexity of µ 7→ Dρ(µ, ξ), we have

1

2
‖Aµ̂t‖22 ≤ ‖Aµ̄t‖22 + ‖A‖2op‖µ̄t − µ̂t‖22 ≤ 2LdΓt + 2

‖A‖2op
σ

∆̂t.

For the second inequality, by definition of D∞, we have Dρ(µ, ξ) := D∞(µ) + 〈ξ, Aµ〉 − 1
2ρ‖Aµ‖

2
2, and

D∞(µ?) = D(µ?).
But then

|D∞(µ̂t)−D∞(µ?)| = |D∞(µ̂t)−Dρ(µ̂
t, ξt)|+ |Dρ(µ̂

t, ξt)−Dρ(µ̄
t, ξt)|+ |Dρ(µ̄

t, ξt)−D∞(µ?)|

≤ |〈ξt, Aµ̂t〉|+ 1

2ρ
‖Aµ̂t‖22 + ∆̂t + Γt.
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but we then have |〈ξt, Aµ̂t〉| + 1
2ρ‖Aµ̂

t‖22 ≤ B‖Aµ̄t‖ + B‖A‖op‖µ̂t − µ̄t‖2 + 1
ρ (‖Aµ̂t‖22 + ‖A‖2op‖µ̂t − µ̄t‖22),

which yields the result using the same inequalities as before.
Finally, to show the implications of linear convergence, by Lemma 2.3 of Hong and Luo (2017), there

exists τ ′ > 0 such that ‖∇d(ξ)‖ ≥ τ ′‖ξ− ξ?‖. So that, since ‖∇d(ξt)‖22 ≤ 2LdΓt, we have that if the sequence
(Γt)t∈N is bounded then so is (ξt)t∈N. Letting B be a bound on ‖ξt‖ the previous statements shows the results.

D.4 Proofs of Corollaries 3 and 4 (Total number of iterations)

Corollary 3. To ensure that E∆̂t ≤ ε and EΓ̂t ≤ ε it is enough to run the algorithm for a total number of
inner iteration Ttot := TinTex such that

Ttot ≥
log(β)

log λmax(β) log(1− π)
log(ε)

Proof. To guarantee that (1− π)Tin < β requires that Tin ≥ log(1−π)
log(β) and to guaranteed that λmax(β)Tex < ε

requires similarly that Tex ≥ log(ε)
log(λ(β)) . Taking the product of these inequalities yields the result.

Corollary 4. Let ∆?
t Tin+s

:= ∆s
t + Γt. If κ < 1

2 and α = 1
12 , if Tin ≥

log(ακ)
log(1−π) , then, there exist a constant

C ′ > 0 such that after a total of i clique updates, we have

E[∆?
s] ≤ C ′

(
1− κπ

2 log(12/κ)

)s
.

Proof. Using solving the quadratic formula for the largest eigenvalue of a two-by-two matrix yields

λmax(β) = (1− κ+ 6β) +
√

(1− κ− 6β)2 + 12β.

It is immediate to verify that λmax(β) < 1 if and only if β < 1
3

κ
1+2κ . This shows that we need to choose

β = ακ with α < 1
3(1+2κ) . So in particular, if α < 1

9 , then the previous inequality is satisfied for any 0 < κ < 1.

Moreover, if κ ≤ 1
2 and α < 1

6 , we have λmax(β) = λmax(ακ) < 1 − κ(1 − 6α). Indeed, letting x = 3β,
and α′ = 3α, we have

2λmax(β) = (1− κ+ 2x) +
√

(1− κ− 2x)2 + 4x

= 1− κ+ 2x+
√

(1− κ)2 + 4xκ+ 4x2

= 1− κ+ 2α′κ+

√
(1− κ)2 + 4α′κ2 + 4α′2κ2

≤ 1− κ+ 2α′κ+

√
(1− κ)2 + 4α′κ(1− κ) + 4α′2κ2

≤ 2 (1− κ+ 6ακ).

Setting α = 1
12 , given that the rate r is r = 1− exp

( log(1−π) log(λmax(β))
log(β)

)
, we have

r ≥ 1− (1− π)
log(1−κ2 )
log( κ12 ) ≥

log(1− κ
2 )

log( κ12 )
π ≥ κ

−2 log( κ12 )
π,

where, for the second and the third inequality, we used the fact that log(1− z) ≥ z respectively for z = π and
for z = −κ2 .
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E Details of Algorithm A and convergence proofs for SDCA
In this section, we specify the detailed form of Dρ(µ, ξ), and show how to apply the proof scheme of Shalev-
Shwartz and Zhang (2016) to SDCA for the maximization of Dρ(µ, ξ) w.r.t. µ in order to prove Proposition
1. We first write a fully decomposed expression of Dρ(µ, ξ). We have:

Dρ(µ, ξ) =
∑
c∈C
〈`c, µc〉 − f∗c (µc)−

1

2λ

∑
τ∈T

∥∥∥ ∑
c∈Cτ

Ψcµc

∥∥∥2 − 1

2ρ

∑
e∈E
i∈e

‖µi −Aiµe‖2 +
∑
e∈E
i∈e

〈ξei, µi −Aiµe〉, (21)

where −f∗c (µc) = γhc(µc)− ι4c(µc).
We assume here that the entropy surrogate used is such that hc is σc-strongly concave w.r.t. µc.
In particular this corresponds to two possible choices:

• The naive Gini entropy, for which hc(µc) = (1− ‖µc‖22).

• The Gini-OTRW entropy (see Appendix C) for which, given positive numbers ρi, ρi|j and ρj|i for all
nodes and edges, we have

– hi(µi) = ρiki(1− ‖µi‖22) for i ∈ V
– hij(µij) = hi|j(µij) + hj|i(µij) for {i, j} ∈ E with hi|j(µij) = kiρi|j(ε‖Ajµij‖22 − kj‖µij‖22)

for ε < 1 which is σc-strongly concave in µc with σi = 2kiρi if i ∈ V else σ{i,j} = 2(1−ε)kikj(ρi|j +ρj|i).
(For ε = 1, the surrogate is not strongly concave, and a modification of the decomposition into a
separable terms and a smooth term must be used to leverage strong convexity: see the discussion in
Section 6.2 after Proposition 2).

The proof of convergence for SDCA is based on showing that the expected increase in dual objective
provides an upper bound on a measure of duality gap. For the problem, we are considering the gap of interest
is gap(w, δ, µ, ξ) := P̃ρ(w, δ, ξ)−Dρ(µ, ξ), which is an upper bound on the duality gap Pρ(w, ξ)−Dρ(µ, ξ). It
can be decomposed as follows:

gap(w, δ, µ, ξ) =
[
γFI(`+ Ψᵀw +Aᵀδ) + γF ∗I (µ)− 〈`+ Ψᵀw +Aᵀδ, µ〉

]
+
[λ

2
‖w‖2 +

1

2λ
‖Ψµ‖2 − 〈−w,Ψµ〉

]
+
[ρ

2
‖ξ − δ‖2 +

1

2ρ
‖Aµ‖2 − 〈ξ − δ, Aµ〉

]
(22)

=
[∑
c∈C

f∗c
(
1
γ θ̃c(w, δ)

)
+ f∗c (µc)− 〈θ̃c(w, δ), µc〉

]
+
[∑
τ∈T

λ

2
‖wτ‖2 +

1

2λ
‖
∑
c∈Cτ

Ψcµc‖2 − 〈−wτ ,
∑
c∈Cτ

Ψcµc〉
]

+
[∑
e∈E

∑
i∈e

ρ

2
‖ξei − δei‖2 +

1

2ρ
‖µi −Aiµi‖2 − 〈ξei − δei, µi −Aiµi〉

]
, (23)

where θ̃c is defined by

θ̃c(w, δ) :=


`i + Ψᵀ

i wτi +
∑
e3s

δei for c = i ∈ V,

`e + Ψᵀ
ewτe −

∑
i∈e

Aᵀ
i δei for c = e ∈ E .

(24)

We now proceed to characterize the progress of the algorithm at each iteration, and to that end, we
introduce appropriate notations. In particular, since ξ is fixed during the algorithm, we drop the dependance
on ξ in different functions: Denote the objective of the subproblem w.r.t. clique c as

Dρ,c(µc, µ
s
−c) := −f∗c (µc)− r(µc, µs−c), (25)
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with r defined by

r(µc, µ
s
−c) :=

1

2λ

∥∥∥ ∑
b∈Cτc\{c}

Ψbµ
s
b + Ψcµc

∥∥∥2 +


∑
e3c

1

2ρ
‖µi −Aiµse‖2 − 〈µi,

∑
e3i

ξei + `i〉, c = i ∈ V,

∑
i∈e

1

2ρ
‖µsi −Aiµe‖2 − 〈µe,−

∑
i∈e

Aᵀ
i ξei + `e〉, c = e ∈ E .

It is straightforward to show that r is convex and smooth with cliquewise smoothness constants

Li =
1

λ
eigmax(Ψᵀ

i Ψi) +
|{e : e 3 i}|

ρ
, i ∈ V and Le =

1

λ
eigmax(Ψᵀ

eΨe) +
1

ρ

∑
i∈e

eigmax(Aᵀ
iAi), e ∈ E .

The proof of convergence hinges on the following key lemma.

Lemma E.1. Taking one of the following updates on µc with µ−c fixed:

• µs+1
c = arg maxµc Dρ,c(µc, µ

s
−c).

• or, if u ∈ ∂fc(θ̃c(ws, δs)), where fc is the conjugate function of f∗c .

solve α̂ = arg max
α∈[0,1]

Dρ,c(µ
s
c + α(u− µsc);µs), and set µs+1

c = µsc + α̂(u− µsc).

Then, with π = minc∈C
σc

|C|(σc+Lc) , the following inequality holds

Ec[Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ)] ≥ π Ec[P̃ρ(ws, δs, ξ)−Dρ(µ
s, ξ)], ∀ξ,

where ws, δs are updated to maintain the optimality conditions:

ws = − 1

λ
Ψµs, δs = ξ − 1

ρ
Aµs.

Proof. Letting D̆ρ,c be defined as,

D̆ρ,c(µc;µ
s) := −f∗c (µc)− r(µs)− 〈∇µcr(µs), µc − µsc〉 −

Lc
2
‖µc − µsc‖2,

we have D̆ρ,c(µc;µ
s) ≤ Dρ,c(µc), since µc 7→ r(µc, µ

s
−c) is Lc-smooth.

First, for the update µs+1
c = arg maxµc Dρ,c(µc, µ

s
−c), we have that, for any direction u− µsc and any step

size α ∈ [0, 1]

Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ) = Dρ,c(µ
s+1
c , µs−c)−Dρ,c(µ

s
c, µ

s
−c)

≥ Dρ,c(µ
s
c + α(u− µsc), µs−c)−Dρ,c(µ

s
c, µ

s
−c)

≥ D̆ρ,c(µ
s
c + α(u− µsc);µs)−Dρ,c(µ

s
c, µ

s
−c). (26)

Showing the desired inequality for the second form of update thus implies the inequality for the first type of
update. Expliciting D̆ρ,c(µ

s
c + α(u− µsc);µs), we have

D̆ρ,c(µ
s
c + α(u− µsc);µs) =− f∗c (µsc + α(u− µsc))

− r(µs)− 〈∇µcr(µs), α(u− µsc)〉 −
α2Lc

2
‖u− µsc‖2. (27)

Since f∗c (u) assumed σc-strongly convex, we have

f∗c (µsc + α(u− µsc)) ≤ αf∗c (u) + (1− α)f∗c (µsc)−
σc
2
α(1− α)‖u− µsc‖22. (28)
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Combining (27) and (28), we obtain

D̆ρ,c(µ
s
c + α(u− µsc);µs) ≥ −α

(
f∗c (u)− f∗c (µsc) + 〈∇µcr(µs), u− µsc〉

)
− f∗c (µsc)− r(µs) +

(σc
2
α(1− α)− α2Lc

2

)
‖u− µsc‖2. (29)

Now, if we choose u ∈ ∂fc
(
−∇µcr(µs)

)
, by Fenchel conjugacy, it follows that

fc
(
−∇µcr(µs)

)
= −f∗c (u)− 〈∇µcr(µs), u〉.

One can easily see that θ̃c(ws, δs) = −∇µcr(µs) by maintaining the optimality conditions

∀c ∈ C : wsτc = − 1

λ

∑
b∈Cτ

Ψbµ
s
b, ∀e ∈ E , i ∈ e : δsei = ξei −

1

ρ
(µsi −Aiµse).

Thus, we can further simplify (29) as

D̆ρ,c(µ
s
c + α(u− µsc);µs)−Dρ,c(µ

s
c, µ

s
−c) ≥α

(
fc(θ̃c(w

s, δs)) + f∗c (µsc)− 〈θ̃c(ws, δs), µsc〉
)
, (30)

provided that σc
2 α(1− α)− α2Lc

2 ≥ 0, that is, 0 ≤ α ≤ σc
σc+Lc

.
The key observation is that

gap(w, δ, µ, ξ) =
∑
c∈C

fc(θ̃c(w, δ)) + f∗c (µc)− 〈θ̃c(w, δ), µc〉 (31)

if we maintain the optimality conditions. By using (31) and taking expectation Ec w.r.t. a uniform random
choice of the clique c on both sides of (30), we guarantee that, for α ∈ [0, σc

σc+Lc
],

Ec[Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ)] ≥ Ec
[ α
|C|

gap(ws, δs, µs, ξ)
]
.

So, we can choose the maximum value σc
σc+Lc

for α. It follows that

Ec[Dρ(µ
s+1, ξ)−Dρ(µ

s, ξ)] ≥
(

min
c∈C

σc
|C|(σc + Lc)

)
Ec[ gap(ws, δs, µs, ξ)].

We can now prove Proposition 1.

Proposition 1. If A is SDCA, let |C| be the total number of cliques, σc the strong convexity constant of f∗c ,
and Lc the Lipschitz constant of µc 7→ r(µ), then A is linearly convergent with rate π = minc∈C

σc
|C|(σc+Lc) .

Proof. Denote ∆s
t := Dρ(µ̄

t, ξt) − Dρ(µ
t,s, ξt). Since we update µt,s to µt,s+1 using SDCA, according to

Lemma E.1, we have

Ec[∆s
t −∆s+1

t ] = Ec[Dρ(µ
t,s+1, ξt)−Dρ(µ

t,s, ξt)]

≥ π Ec[P̃ρ(w(µt,s), δ(µt,s, ξt), ξt)−Dρ(µ
t,s, ξt)]

≥ π Ec[Dρ(µ̄
t, ξt)−Dρ(µ

t,s, ξt)] = πEc[∆s
t ],

and π = minc∈C
σc

|C|(σc+Lc) . The above inequality implies that

Ec[∆s+1
t ] ≤ (1− π)Ec[∆s

t ] ≤ (1− π)s+1 Ec[∆0
t ].

The result follows if we set Tin = s+ 1.
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E.1 Proof of Propositions 2 and 3 (Linear convergence in the primal)
Proposition 2. Let ŵt = w(µ̂t). If A is SDCA, then

E[P (ŵt)− P (w?)] ≤ E[
1

π
∆̂t + Γt].

Proof. Recall that P (w?) = D(µ?) = Dρ(µ
?, ξ?) by Corollary 5.

P (wt,s)− P (w?) = P (wt,s)−Dρ(µ̄
t, ξt) +Dρ(µ̄

t, ξt)− P (w?)

= P (wt,s)−Dρ(µ̄
t, ξt) +Dρ(µ̄

t, ξt)−Dρ(µ
?, ξ?)

≤ P̃ (wt,s, δt,s, ξt)−Dρ(µ̄
t, ξt) + d(ξt)− d(ξ?)

≤ P̃ (wt,s, δt,s, ξt)−Dρ(µ
t,s, ξt) + d(ξt)− d(ξ?)

= gap(wt,s, δt,s, µt,s, ξt) + Γt

If A is SDCA, by Lemma E.1, we have

E[P (wt,s)− P (w?)] = E[ gap(wt,s, δt,s, µt,s, ξt) + Γt]

≤ E
[ 1

π
(∆s

t −∆s+1
t ) + Γt

]
≤ 1

π
E[∆s

t ] + E[Γt].

Given that ∆̂t = ∆Tin
t , the result follows by setting s = Tin.

Proposition 3. Let wt,s = w(µt,s). If A is a linearly convergent algorithm and µ 7→ −Happrox + 1
2ρ‖Aµ‖

2
2

is strongly convex then P (wt,s)− P (w?) converges to 0 linearly.

Proof. Note that, if σ is the strong convexity constant ofDρ w.r.t. µ, then given that Pρ(w, ξ) = minδ P̃ρ(w, δ, ξ)
with

P̃ρ(w, δ, ξ) = γFI

(θ(w) +Aᵀδ

γ

)
+
ρ

2
‖δ − ξ‖2 +

λ

2
‖w‖22,

we also have

Pρ(w, ξ) = max
µ

[
〈µ,Ψᵀw〉+ γHapprox(µ) + 〈ξ, Aµ〉 − 1

2ρ
‖Aµ‖22

]
+
λ

2
‖w‖22,

which shows that w 7→ Pρ(w, ξ) is a function with Lipschitz gradient as the sum of w 7→ λ
2 ‖w‖

2
2 and of the

Fenchel conjugate of a strongly convex function. Let LP be its Lipschitz smoothness constant and note that
it does not depend on the value of ξ. We thus have

Pρ(w
t,s, ξt)− Pρ(w̄t, ξt) ≤ LP ‖wt,s − w̄t‖22.

Then given the representer theorem, and by strong convexity of µ 7→ Dρ(µ, ξ) we have

‖wt,s − w̄t‖22 = ‖Ψ(µt,s − µ̄t)‖22 ≤
1

σ
‖Ψ‖2op(Dρ(µ

t,s, ξt)−Dρ(µ̄
t, ξt))

So that, since P (wt,s) ≤ Pρ(wt,s, ξt) and P (w?) = Pρ(w
?, ξ?), we have

P (wt,s)− P (w?) ≤ Pρ(wt,s, ξt)− Pρ(w̄t, ξt) + Pρ(w̄
t, ξt)− Pρ(w?, ξ?) ≤

LP
σ
‖Ψ‖2op ∆s

t + Γt.

Finally, global linear convergence in the primal also follows from the linear convergence of ∆̂t and Γt.
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F Notation summary
Given the number of notations in the main paper, we summarize some of them in Tables 2,3 and 4. The
block matrices Ψ and A are schematically drawn below to illustrate their structure.

Ψ =


c

...
τc · · · Ψc

 A =


i ij

...
...

ij · · · Iki −Ai



Table 2: Notations for sets
Notation Dimension Description
C the set of cliques
E the set of edges
V the set of nodes
Yi = Sk Sk := {u ∈ {0, 1}k | ‖u‖1 = 1}
Yc

∏
i∈c ki Yc :=×i∈c Yi

Y
∏
i∈V ki Y :=×i∈V Yi

T the set of clique types
Cτ the set of cliques of type τ
M the marginal polytope
L the local polytope
I I :=

∏
i∈V ∆ki ×

∏
e∈E ∆ke
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Table 3: Notations for variables, parameters and functions
Notation Domain Description
ki N the number of values that Yi can take
kc N kc := |Yc| =

∏
i∈c ki

τ N the type of a clique
τc N the type of clique c
wτ Rdτ the parameter shared by all cliques with type τ
w R

∑
τ dτ w := [wτ ]τ∈T

φc(x, yc) Rdτc the feature vector associated with the clique c given Yc = yc
Z(x,w) R+∗ the partition function of p(y|x;w)

`c(y
(n)
c , yc) R+ the user defined loss function associated with the clique c

γ (0,+∞) the temperature parameter of the loss-augmented CRF
Ψ

(n)
c Rdτc×kc Ψ

(n)
c :=

[
φc(x

(n), yc)− φc(x(n), y(n)c )
]
yc∈Yc

Ψ(n) R
∑
τ dτ×

∑
c kc see the drawing

`
(n)
c Rkc `

(n)
c :=

[
`c(y

(n)
c , yc)

]
yc∈Yc

`(n) R
∑
c kc `(n) := [`

(n)
c ]c∈C

θ
(n)
c (w) Rkc θ

(n)
c (w) := Ψ

(n)
c

ᵀ
wτc + `

(n)
c

θ(n)(w) R
∑
c kc θ(n)(w) := [θ

(n)
c (w)]c∈C , the natural parameter

F R
∑
c kc → R the log partition function of θ

T (y) R
∑
c kc the sufficient statistics

µc Rkc the mean parameter associated with the clique c
µ R

∑
c kc the mean parameter

F ∗ R
∑
c kc → R the Fenchel conjugate of F

ιC R
∑
c kc → {0,+∞} the indicator function of set C

λ R+ the coefficient of the regularizer
Ai Rki×ke the matrix encoding the marginalization constraint for i in e.
A R

∑
e

∑
i∈e ki×

∑
c kc see the matrix form

Table 4: Notations smoothness, strong convexity constant and related quantities
Notation Description
Ld the Lipschitz constant of ∇d(ξ)
τ the constant of PL inequality for d(ξ)
σc the strong convexity constant of µc 7→ −HApprox(µ)
Lc the Lipschitz constant of µc 7→ 1

λΨᵀw(µ) + 1
ρA

ᵀδ(µ, ξt)
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