Multi-view Metric Learning in Vector-valued Kernel Spaces Supplementary Material

Riikka Huusari

Hachem Kadri
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

A Appendix

A. 1 MVML optimization

Here we go through the derivations of the solutions \mathbf{A}, \mathbf{D} and \mathbf{w} for our optimization problem. The presented derivations are for the case without Nyström approximation; however the derivations with Nyström approximation are done exactly the same way.

Solving for g and w

Let us first focus on the case where \mathbf{A} and \mathbf{w} are fixed and we solve for \mathbf{g}. We calculate the derivative of the expression in Equation (7):

$$
\begin{aligned}
& \frac{d}{d \mathbf{g}}\left\|\mathbf{y}-\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H g}\right\|^{2}+\lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle \\
&= \frac{d}{d \mathbf{g}}\langle\mathbf{y}, \mathbf{y}\rangle-2\left\langle\mathbf{y},\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H g}\right\rangle \\
&+\left\langle\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H g},\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H D}\right\rangle+\lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle \\
&=-2 \mathbf{H}\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right)^{T} \mathbf{y} \\
&+2 \mathbf{H}\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right)^{T}\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H g}+2 \lambda \mathbf{A}^{\dagger} \mathbf{g}
\end{aligned}
$$

By setting this to zero we obtain the solution
$\mathbf{g}=\left(\mathbf{H}\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right)^{T}\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H}+\lambda \mathbf{A}^{\dagger}\right)^{-1} \mathbf{H}\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right)^{T} \mathbf{y}$.

As for \mathbf{w} when \mathbf{A} and \mathbf{g} are fixed, we need only to consider optimizing

$$
\begin{equation*}
\min _{\mathbf{w}}\left\|\mathbf{y}-\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H g}\right\|^{2} \tag{19}
\end{equation*}
$$

If we denote that $\mathbf{Z} \in \mathbb{R}^{n \times v}$ is equal to reshaping $\mathbf{H g}$ by taking the elements of the vector and arranging them onto the columns of \mathbf{Z}, we obtain a following form:

$$
\begin{equation*}
\min _{\mathbf{w}}\|\mathbf{y}-\mathbf{Z} \mathbf{w}\|^{2} . \tag{20}
\end{equation*}
$$

One can easily see by taking the derivative and setting it to zero that the solution for this is

$$
\begin{equation*}
\mathbf{w}=\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{y} \tag{21}
\end{equation*}
$$

Solving for A in (6)

When we consider \mathbf{g} (and \mathbf{w}) to be fixed in the MVML framwork (6), for \mathbf{A} we have the following minimization problem:

$$
\min _{\mathbf{A}} \lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle+\eta\|\mathbf{A}\|_{F}^{2}
$$

Derivating this with respect to \mathbf{A} gives us

$$
\begin{aligned}
& \frac{d}{d \mathbf{A}} \lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle+\eta\|\mathbf{A}\|_{F}^{2} \\
& =\frac{d}{d \mathbf{A}} \lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle+\eta \operatorname{tr}(\mathbf{A} \mathbf{A}) \\
& =-\lambda \mathbf{A}^{\dagger} \mathbf{g g}^{T} \mathbf{A}^{\dagger} \mathbf{7}^{7}+2 \eta \mathbf{A}
\end{aligned}
$$

Thus the gradient descent step will be

$$
\mathbf{A}^{k+1}=(1-2 \mu \eta) \mathbf{A}^{k}+\mu \lambda\left(\mathbf{A}^{k}\right)^{\dagger} \mathbf{g g}^{T}\left(\mathbf{A}^{k}\right)^{\dagger}
$$

when moving to the direction of negative gradient with step size μ.

Solving for A in
To solve \mathbf{A} from equation (11) we use proximal minimization. Let us recall the optimization problem after the change of the variable:

$$
\begin{aligned}
\min _{\mathbf{A}, \mathbf{g}, \mathbf{w}} & \left\|\mathbf{y}-\left(\mathbf{w}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{H g}\right\|^{2}+\lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle \\
& +\eta \sum_{\gamma \in \mathcal{G}}\left\|\mathbf{A}_{\gamma}\right\|_{F},
\end{aligned}
$$

and denote

$$
h(\mathbf{A})=\lambda\left\langle\mathbf{g}, \mathbf{A}^{\dagger} \mathbf{g}\right\rangle
$$

and

$$
\Omega(\mathbf{A})=\eta \sum_{\gamma \in \mathcal{G}}\left\|\mathbf{A}_{\gamma}\right\|_{F}
$$

for the two terms in our optimization problem that contain the matrix \mathbf{A}.

[^0]Without going into detailed theory of proximal operators and proximal minimization, we remark that the proximal minimization algorithm update takes the form

$$
\mathbf{A}^{k+1}=\operatorname{prox}_{\mu^{k} \Omega}\left(\mathbf{A}^{k}-\mu^{k} \nabla h\left(\mathbf{A}^{k}\right)\right)
$$

It is well-known that in traditional group-lasso situation the proximal operator is

$$
\left[\operatorname{prox}_{\mu^{k} \Omega}(\mathbf{z})\right]_{\gamma}=\left(1-\frac{\eta}{\left\|\mathbf{z}_{\gamma}\right\|_{2}}\right)_{+} \mathbf{z}_{\gamma}
$$

where \mathbf{z} is a vector and + denotes the maximum of zero and the value inside the brackets. In our case we are solving for a matrix, but due to the equivalence of Frobenious norm to vector 2-norm we can use this exact same operator. Thus we get as the proximal update

$$
\begin{aligned}
& {\left[\mathbf{A}^{k+1}\right]_{\gamma}=} \\
& \left(1-\frac{\eta}{\left\|\left[\mathbf{A}^{k}-\mu^{k} \nabla h\left(\mathbf{A}^{k}\right)\right]_{\gamma}\right\|_{F}}\right)_{+}\left[\mathbf{A}^{k}-\mu^{k} \nabla h\left(\mathbf{A}^{k}\right)\right]_{\gamma}
\end{aligned}
$$

where

$$
\nabla h\left(\mathbf{A}^{k}\right)=-\lambda\left(\mathbf{A}^{k}\right)^{-1} \mathbf{g g}^{T}\left(\mathbf{A}^{k}\right)^{-1}
$$

We can see from the update fromula and the derivative that if \mathbf{A}^{k} is a positive matrix, the update without block-multiplication, $\mathbf{A}^{k}-\mu^{k} \nabla h\left(\mathbf{A}^{k}\right)$, will be positive, too. This is unfortunately not enough to guarantee the general positivity of \mathbf{A}^{k+1}. However we note that it is, indeed, positive if it is block-diagonal, and in general whenever a matrix of the multipliers α

$$
\alpha_{s t}=\left(1-\frac{\eta}{\left\|\left[\mathbf{A}^{k}-\mu^{k} \nabla h\left(\mathbf{A}^{k}\right)\right]_{s t}\right\|_{2}}\right)_{+}
$$

is positive, then \mathbf{A}^{k+1} is, too (see [12] for reference this is a blockwise Hadamard product where the blocks commute).

A. 2 Proof of Theorem 1

Theorem 1. Let \mathcal{H} be a vector-valued RKHS associated with the the multi-view kernel K defined by Equation 4. Consider the hypothesis class $\mathcal{H}_{\lambda}=$ $\left\{x \mapsto f_{u, \mathbf{A}}(x)=\Gamma_{\mathbf{A}}(x)^{*} u: \mathbf{A} \in \Delta,\|u\|_{\mathcal{H}} \leq \beta\right\}$, with $\Delta=\left\{\mathbf{A}: \mathbf{A} \succ 0,\|\mathbf{A}\|_{F} \leq \alpha\right\}$. The empirical Rademacher complexity of \mathcal{H}_{λ} can be upper bounded as follows:

$$
\hat{\mathcal{R}}_{n}\left(\mathcal{H}_{\lambda}\right) \leq \frac{\beta \sqrt{\alpha\|q\|_{1}}}{n}
$$

where $q=\left(\operatorname{tr}\left(\mathbf{K}_{l}^{2}\right)\right)_{l=1}^{v}$, and \mathbf{K}_{l} is the Gram matrix computed from the training set $\left\{x_{1}, \ldots, x_{n}\right\}$ with the kernel k_{l} defined on the view l. For kernels k_{l} such that $\operatorname{tr}\left(\mathbf{K}_{l}^{2}\right) \leq \tau n$, we have

$$
\hat{\mathcal{R}}_{n}\left(\mathcal{H}_{\lambda}\right) \leq \beta \sqrt{\frac{\alpha \tau v}{n}}
$$

Proof. We start by recalling that the feature map associated to the operator-valued kernel K is the mapping $\Gamma: \mathcal{X} \rightarrow \mathcal{L}(\mathcal{Y}, \mathcal{H})$, where \mathcal{X} is the input space, $\mathcal{Y}=\mathbb{R}^{v}$, and $\mathcal{L}(\mathcal{Y}, \mathcal{H})$ is the set of bounded linear operators from \mathcal{Y} to \mathcal{H} (see, e.g., [19, 7 for more details). It is known that $K(x, z)=\Gamma(x)^{*} \Gamma(z)$. We denote by $\Gamma_{\mathbf{A}}$ the feature map associated to our multi-view kernel (Equation (4). We also define the matrix $\boldsymbol{\Sigma}=(\boldsymbol{\sigma})_{i=1}^{n} \in \mathbb{R}^{n v}$

$$
\begin{align*}
\hat{\mathcal{R}}_{n}\left(\mathcal{H}_{\lambda}\right) & =\frac{1}{n} \mathbb{E}\left[\sup _{f \in \mathcal{H}} \sup _{\mathbf{A} \in \Delta} \sum_{i=1}^{n} \boldsymbol{\sigma}_{i}^{\top} f_{u, \mathbf{A}}\left(x_{i}\right)\right] \\
& =\frac{1}{n} \mathbb{E}\left[\sup _{u} \sup _{\mathbf{A}} \sum_{i=1}^{n}\left\langle\boldsymbol{\sigma}_{i}, \Gamma_{\mathbf{A}}\left(x_{i}\right)^{*} u\right\rangle_{\mathbb{R}^{v}}\right] \\
& =\frac{1}{n} \mathbb{E}\left[\sup _{u} \sup _{\mathbf{A}} \sum_{i=1}^{n}\left\langle\Gamma_{\mathbf{A}}\left(x_{i}\right) \boldsymbol{\sigma}_{i}, u\right\rangle_{\mathcal{H}}\right] \tag{1}\\
& \leq \frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}}\left\|\sum_{i=1}^{n} \Gamma_{\mathbf{A}}\left(x_{i}\right) \boldsymbol{\sigma}_{i}\right\|_{\mathcal{H}}\right] \tag{2}\\
& =\frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}}\left(\sum_{i, j=1}^{n}\left\langle\boldsymbol{\sigma}_{i}, K_{\mathbf{A}}\left(x_{i}, x_{j}\right) \boldsymbol{\sigma}_{j}\right\rangle_{\mathbb{R}^{v}}\right)^{\frac{1}{2}}\right] \tag{3}\\
& =\frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}}\left(\left\langle\boldsymbol{\Sigma}, \mathbf{K}_{\mathbf{A}} \boldsymbol{\Sigma}\right\rangle_{\mathbb{R}^{n v}}\right)^{1 / 2}\right] \\
& =\frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}}\langle\boldsymbol{\Sigma}, \mathbf{H} \mathbf{A} \mathbf{H} \boldsymbol{\Sigma}\rangle^{1 / 2}\right] \\
& =\frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}} \operatorname{tr}\left(\mathbf{H} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \mathbf{H} \mathbf{A}\right)^{1 / 2}\right] \\
& \leq \frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}} \operatorname{tr}\left(\left[\mathbf{H} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \mathbf{H}\right]^{2}\right)^{1 / 4} \operatorname{tr}\left(\mathbf{A}^{2}\right)^{1 / 4}\right] \tag{4}\\
& \leq \frac{\beta}{n} \mathbb{E}\left[\sup _{\mathbf{A}} \operatorname{tr}\left(\mathbf{H}^{2} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top}\right)^{1 / 2} \operatorname{tr}\left(\mathbf{A}^{2}\right)^{1 / 4}\right] \\
& \leq \frac{\beta \sqrt{\alpha}}{n} \mathbb{E}\left[\sup _{\mathbf{A}} \operatorname{tr}\left(\mathbf{H}^{2} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top}\right)^{1 / 2}\right] \\
& =\frac{\beta \sqrt{\alpha}}{n} \mathbb{E}\left[\operatorname{tr}\left(\mathbf{H}^{2} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top}\right)^{1 / 2}\right] \\
& \leq \frac{\beta \sqrt{\alpha}}{n}\left(\mathbb{E}\left[\operatorname{tr}\left(\mathbf{H}^{2} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top}\right)\right]\right)^{1 / 2} \tag{5}\\
& =\frac{\beta \sqrt{\alpha}}{n}\left(\operatorname{tr}\left[\mathbf{H}^{2} \mathbb{E}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top}\right)\right]\right)^{1 / 2} \\
& =\frac{\beta \sqrt{\alpha}}{n} \sqrt[\left\|\left(\operatorname{tr}\left(\mathbf{K}_{\mathbf{1}}{ }^{2}\right), \ldots, \operatorname{tr}\left(\mathbf{K}_{\mathbf{v}}{ }^{2}\right)\right)\right\|_{1}]{ } \\
& \\
&
\end{align*}
$$

Here (1) and (3) are obtained with reproducing property, (2) and (4) with Cauchy-Schwarz inequality, and (5) with Jensen's inequality. The last equality follows from the fact that $\operatorname{tr}\left(\mathbf{H}^{2}\right)=\sum_{l=1}^{v} \operatorname{tr}\left(\mathbf{K}_{\mathbf{l}}{ }^{2}\right)$. For kernels k_{l} that satisfy $\operatorname{tr}\left(\mathbf{K}_{l}^{2}\right) \leq \tau n, l=1, \ldots, v$, we obtain that

$$
\hat{\mathcal{R}}_{n}\left(\mathcal{H}_{\lambda}\right) \leq \beta \sqrt{\frac{\alpha \tau v}{n}}
$$

[^0]: ${ }^{7}$ Matrix cookbook (Equation 61): https://www.math uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

