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A Appendix

A.1 MVML optimization

Here we go through the derivations of the solutions
A, D and w for our optimization problem. The pre-
sented derivations are for the case without Nyström
approximation; however the derivations with Nyström
approximation are done exactly the same way.

Solving for g and w

Let us first focus on the case where A and w are fixed
and we solve for g. We calculate the derivative of the
expression in Equation (7):

d

dg
‖y − (wT ⊗ In)Hg‖2 + λ

〈
g,A†g

〉
=

d

dg
〈y,y〉 − 2〈y, (wT ⊗ In)Hg〉

+ 〈(wT ⊗ In)Hg, (wT ⊗ In)HD〉+ λ〈g,A†g〉
= −2H(wT ⊗ In)Ty

+ 2H(wT ⊗ In)T (wT ⊗ In)Hg + 2λA†g

By setting this to zero we obtain the solution

g = (H(wT⊗In)T (wT⊗In)H+λA†)−1H(wT⊗In)Ty.

As for w when A and g are fixed, we need only to
consider optimizing

min
w
‖y − (wT ⊗ In)Hg‖2. (19)

If we denote that Z ∈ Rn×v is equal to reshaping Hg
by taking the elements of the vector and arranging
them onto the columns of Z, we obtain a following
form:

min
w
‖y − Zw‖2. (20)

One can easily see by taking the derivative and setting
it to zero that the solution for this is

w =
(
ZTZ

)−1
ZTy. (21)

Solving for A in (6)

When we consider g (and w) to be fixed in the MVML
framwork (6), for A we have the following minimization
problem:

min
A

λ
〈
g,A†g

〉
+ η‖A‖2F

Derivating this with respect to A gives us

d

dA
λ
〈
g,A†g

〉
+ η‖A‖2F

=
d

dA
λ
〈
g,A†g

〉
+ η tr(AA)

= −λA†ggTA† 7 + 2ηA

Thus the gradient descent step will be

Ak+1 = (1− 2µη) Ak + µλ
(
Ak
)†

ggT
(
Ak
)†

when moving to the direction of negative gradient with
step size µ.

Solving for A in (11)

To solve A from equation (11) we use proximal mini-
mization. Let us recall the optimization problem after
the change of the variable:

min
A,g,w

‖y − (wT ⊗ In)Hg‖2 + λ〈g,A†g〉

+ η
∑
γ∈G
‖Aγ‖F ,

and denote
h(A) = λ

〈
g,A†g

〉
and

Ω(A) = η
∑
γ∈G
‖Aγ‖F

for the two terms in our optimization problem that
contain the matrix A.

7Matrix cookbook (Equation 61): https://www.math.
uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Without going into detailed theory of proximal opera-
tors and proximal minimization, we remark that the
proximal minimization algorithm update takes the form

Ak+1 = proxµkΩ(Ak − µk∇h(Ak)).

It is well-known that in traditional group-lasso situation
the proximal operator is

[proxµkΩ(z)]γ =

(
1− η

‖zγ‖2

)
+

zγ ,

where z is a vector and + denotes the maximum of
zero and the value inside the brackets. In our case we
are solving for a matrix, but due to the equivalence
of Frobenious norm to vector 2-norm we can use this
exact same operator. Thus we get as the proximal
update

[Ak+1]γ =(
1− η

‖[Ak − µk∇h(Ak)]γ‖F

)
+

[Ak − µk∇h(Ak)]γ ,

where

∇h(Ak) = −λ(Ak)−1ggT (Ak)−1.

We can see from the update fromula and the derivative
that if Ak is a positive matrix, the update without
block-multiplication, Ak − µk∇h(Ak), will be positive,
too. This is unfortunately not enough to guarantee the
general positivity of Ak+1. However we note that it is,
indeed, positive if it is block-diagonal, and in general
whenever a matrix of the multipliers α

αst =

(
1− η

‖[Ak − µk∇h(Ak)]st‖2

)
+

is positive, then Ak+1 is, too (see [12] for reference -
this is a blockwise Hadamard product where the blocks
commute).

A.2 Proof of Theorem 1

Theorem 1. Let H be a vector-valued RKHS asso-
ciated with the the multi-view kernel K defined by
Equation 4. Consider the hypothesis class Hλ =
{x 7→ fu,A(x) = ΓA(x)∗u : A ∈ ∆, ‖u‖H ≤ β},
with ∆ = {A : A � 0, ‖A‖F ≤ α}. The empirical
Rademacher complexity of Hλ can be upper bounded as
follows:

R̂n(Hλ) ≤
β
√
α‖q‖1
n

,

where q =
(
tr(K2

l )
)v
l=1

, and Kl is the Gram matrix
computed from the training set {x1, . . . , xn} with the
kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β
√
ατv

n
.

Proof. We start by recalling that the feature map asso-
ciated to the operator-valued kernel K is the mapping
Γ : X → L(Y,H), where X is the input space, Y = Rv,
and L(Y,H) is the set of bounded linear operators
from Y to H (see, e.g., [19, 7] for more details). It is
known thatK(x, z) = Γ(x)∗Γ(z). We denote by ΓA the
feature map associated to our multi-view kernel (Equa-
tion 4). We also define the matrix Σ = (σ)ni=1 ∈ Rnv

R̂n(Hλ) =
1

n
E

[
sup
f∈H

sup
A∈∆

n∑
i=1

σ>i fu,A(xi)

]

=
1

n
E

[
sup
u

sup
A

n∑
i=1

〈σi,ΓA(xi)
∗u〉Rv

]

=
1

n
E

[
sup
u

sup
A

n∑
i=1

〈ΓA(xi)σi, u〉H

]
(1)

≤ β

n
E

[
sup
A
‖

n∑
i=1

ΓA(xi)σi‖H

]
(2)

=
β

n
E

sup
A

 n∑
i,j=1

〈σi,KA(xi, xj)σj〉Rv


1
2

 (3)

=
β

n
E
[
sup
A

(〈Σ,KAΣ〉Rnv )
1/2

]
=
β

n
E
[
sup
A
〈Σ,HAHΣ〉1/2

]
=
β

n
E
[
sup
A
tr(HΣΣ>HA)1/2

]
≤ β

n
E
[
sup
A
tr([HΣΣ>H]2)1/4tr(A2)1/4

]
(4)

≤ β

n
E
[
sup
A
tr(H2ΣΣ>)1/2tr(A2)1/4

]
≤ β
√
α

n
E
[
sup
A
tr(H2ΣΣ>)1/2

]
=
β
√
α

n
E
[
tr(H2ΣΣ>)1/2

]
≤ β
√
α

n

(
E
[
tr(H2ΣΣ>)

])1/2

(5)

=
β
√
α

n

(
tr
[
H2 E(ΣΣ>)

])1/2

=
β
√
α

n

√
‖(tr(K1

2), . . . , tr(Kv
2))‖1.

Here (1) and (3) are obtained with reproducing prop-
erty, (2) and (4) with Cauchy-Schwarz inequality, and
(5) with Jensen’s inequality. The last equality follows
from the fact that tr(H2) =

∑v
l=1 tr(Kl

2). For kernels
kl that satisfy tr(K2

l ) ≤ τn, l = 1, . . . , v, we obtain
that

R̂n(Hλ) ≤ β
√
ατv

n
. �


