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Abstract

We investigate an online regression problem in
which the learner makes predictions sequentially
while only the limited information on features is
observable. In this paper, we propose a general
setting for the limitation of the available infor-
mation, where the observed information is de-
termined by a function chosen from a given set
of observation functions. Our problem setting
is a generalization of the online sparse linear re-
gression problem, which has been actively stud-
ied. For our general problem, we present an al-
gorithm by combining multi-armed bandit algo-
rithms and online learning methods. This algo-
rithm admits a sublinear regret bound when the
number of observation functions is constant. We
also show that the dependency on the number of
observation functions is inevitable unless addi-
tional assumptions are adopted. To mitigate this
inefficiency, we focus on a special case of prac-
tical importance, in which the observed informa-
tion is expressed through linear combinations of
the original features. We propose efficient al-
gorithms for this special case. Finally, we also
demonstrate the efficiency of the proposed algo-
rithms by simulation studies using both artificial
and real data.
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1 Introduction

Motivation Online regression refers to the problem of
making a prediction of properties for sequentially arriving
examples. The prediction should be performed using the
numerical features associated with each example, but the
relationship between the features and properties to be pre-
dicted is not known. Hence, in order to reach a good pre-
diction, it is necessary to learn a “hidden” model quickly
in the situations in which not all examples are available si-
multaneously.

Even though this problem is difficult already, there are
many real-word applications that require extending the
problem setting by restricting the information available
from the examples. For example, in a manufacturing pro-
cess, we must predict whether or not products are defect-
free through diagnostic tests [22]]. Because these tests are
costly, they cannot all be executed. In the medical diag-
nosis of a disease [7]], it is undesirable to subject a patient
to many medical tests. In such applications, predictions
should be made using a limited number of features. Moti-
vated by these applications, Kale et al. [[11] formulated the
online sparse linear regression (OSLR) problem, in which
an algorithm is only allowed to observe a limited number
of features per example.

However, there still exist applications that demand more
general restrictions on the available information. For exam-
ple, computed tomography (CT) [[19] presents the Radon
transforms of the original 2D images. This means that a
learner can observe the linear projections of features. Sim-
ilarly, in magnetic resonance imaging (MRI) [14] one can
observe transformed information. In these cases, it is suit-
able to consider a setting in which a learner makes predic-
tions from a limited number of projections of features. This
setting cannot be captured by the OSLR problem.

Motivated by this fact, we consider an online regression
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problem with more general limitations on the available in-
formation. In this problem, the available information is rep-
resented by the output of an observation function f, chosen
from a given set ¥ C {f: RY — R*}. For each arriv-
ing example with the feature vector x € R?, an algorithm
chooses f € F and observes f(x). Then, the algorithm
makes a prediction on the label of the example. We eval-
uate performance of this algorithm by its regret, which is
defined by comparison with an adversary. In our problem,
we assume that a hypothesis space H C {h: R¥ — R} is
also given, and the prediction of the adversary is defined as
h(f(x)) from the optimal choice of an observation func-
tion f € F and a hypothesis h € H. This setting indeed
generalizes OSLR, and also includes other practical situa-
tions. A more precise definition of the problem and special
cases included by the problem are given in Sec. [2]

Contributions Our contributions are twofold. We first
investigate the most general setting of our problem, and
present an algorithm that achieves a nontrivial regret bound
under reasonable assumptions. Second, we consider impor-
tant special cases obtained by restricting the observation
functions and hypotheses to linear mappings, and present
better regression algorithms.

Let us now explain the result for the general setting. Our
problem clearly includes the online learning problem [16]
defined on the hypothesis space H. Hence, if the online
learning problem with 7 admits no efficient algorithm,
then no regression algorithm achieves a nontrivial regret
bound for our problem. Because of this relationship, we
assume that the online learning problem with H admits
a sublinear regret algorithm. For example, if the number
of arriving examples is 7', then an online learning algo-
rithm achieves an O(T'9) regret for some g € (0,1). Un-
der this assumption, we present an online regression algo-
rithm that achieves a regret bound of O(|F |3}:72%1T??*;2%1)
This bound is clearly sublinear with respect to 7T'. Although
the dependence on |F| is undesirable when it is large (e.g.,
|F| = (,‘f) = O(d*) in OSLR), it is indeed impossible to
achieve a regret bound that is independent of |F|. Indeed,
we prove that it is difficult to improve the regret bound over
O(+/|F|T) unless additional assumptions are given on JF
or H.

In the second result, we focus on practically important spe-
cial cases, where the observation functions  and hypothe-
sis spaces ‘H consist of linear mappings. For the case that &
is the set of all linear mappings from R? to R*, we propose
an algorithm to achieve an O(1/dT/k) regret. Moreover,
we consider the case in which the observation is given by
a combination of k out of m given linear functions, which
is a generalization of OSLR. We present an algorithm for
this case with the aid of techniques developed in studies on
sparse linear regression. When the error made by a sparse
linear regression algorithm is bounded by e, the regret of

our algorithm is bounded by O(\/mT/k + €T').

Related work Attribute-efficient learning [7, [10] is a
batch learning problem aiming to find a linear regressor us-
ing a limited number of features per example. The goal of
attribute-efficient learning is not prediction, but rather com-
puting the optimal linear regressor, and the performance of
a given algorithm is evaluated by the cumulative loss cal-
culated with full access to the features. In contrast to this
setting, the goal of OSLR [8} [11} [12], which is a special
case of our problem, includes not only learning, but also
making predictions from a limited number of features. For
OSLR, in the absence of any assumptions on input data
only exponential-time algorithms [8| [11] are known, and
Foster et al. [8]] showed that there is no polynomial-time
algorithm with sublinear regret unless NP C BPP. On
the other hand, Kale et al. [[12] proposed computationally
efficient algorithms to achieve sublinear regret under the
assumption that input features satisfy the restricted isome-
tory property (RIP) [6]. Zolghadr et al. investigated a sim-
ilar problem, called online probing [22], in which a learner
purchases a subset of features in each round, and aims to
minimize the sum of the cumulative prediction error and
the observation cost (which depends on the features chosen
to observe). Only computationally inefficient algorithms
[22] have been created for this problem.

A common difficulty of our problem, OSLR, and online
probing lies in the choice of features to observe in each
round. This has a similar structure to the multi-armed ban-
dit 2, 5] problem, which is a sequential decision problem
with an exploration-exploitation trade-off. In a sequential
manner, we need to observe as much informative data as
possible (exploration), while we simultaneously have to
make correct decisions in as many rounds as possible to
minimize the loss (exploitation). A multi-armed bandit
technique is used to design an algorithm for online prob-
ing [22]]. Our first result also makes use of multi-armed
bandit techniques. The connection to multi-armed bandit is
also used to show the difficulty of our problem.

Another technique used in this paper is the well-establish
paradigm of online learning [16} 9], which corresponds
to our problem with full access to the features. Because
a learner does not have full access to the features in our
setting, online learning methods do not directly apply to
our problem. However, online learning methods combined
with a multi-armed bandit algorithm lead to an algorithm
for our problem with finite F. For the special case of lin-
ear F and H, we use the dual averaging method [18] to
compute a linear regressor.

2 Problem setting

We suppose that there are 7' rounds, and an example ar-
rives online in each round. Each example is represented
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by d features, and is associated with a label. We de-
note the features of the example arriving in round t by
x; = (w41,...,7a) " € {x €RY| x| <1}, where || - ||
denotes the /5 norm. The label of the example in round ¢ is
denoted by y, € [—1,1].

The purpose of our problem is to predict the label y; €
[—1, 1] from a compressed observation of x, in each round
t=1,...,T. We suppose that the compressed observation
2z = fi(xy) € R” is the output of a function f; : R? — RF,
where f; is chosen from a family 7 C {f : R? — R*} of
observation functions. Note that k is usually much smaller
than d. The prediction is performed through the following
four steps: (i) We choose an observation function f; € F,
(ii) observe the limited information z; = f;(x;), (iii) on
the basis of observation z;, estimate a predictor ¢, of y,
and (iv) observe the true label y;. It should be noted that
we cannot observe X, in this process.

Regret. Let ¢({,y) be the loss function for evaluating
how the prediction y deviates from the true label y. A typi-
cal choice of / is the quadratic loss, i.e., £(7, y) = (§—1y)?.
We use the quadratic loss in Sec.[dand[5] while we consider
arbitrary loss functions in Sec.[3| In our problem, the per-
formance of the prediction is evaluated by the regret Rr,
defined as

T T
g ytayt fefj{_l’ihne?_[ 2 g(h(f(xt))ayt)7 (D

where H C {h : R* — R} is a hypothesis space, which
is a set of functions for predicting y; from k-dimensional
feature vectors. Our goal is to minimize the regret R.

Below, we give examples of observation functions F and
hypothesis spaces H.

Example 1 (online sparse linear regression [[11}[8]). Define
F and H by

F=FF ={f:R'>RF|
Wir, ik} Sl [f()); =24}
H=HY = (h:RF 5 R|Iw e RF, h(z)

lin

=w'z}.

This case is equivalent to the online sparse linear regres-
sion problem introduced in [11]. Foster et al. [8] proved
that there is no polynomial-time algorithm to achieve
O(poly(d)T*~°%) regret for any § > 0. Recently, Kale
et al. [12] proposed a polynomial-time algorithm that
achieves a sublinear regret under the assumption of the RIP
condition.

Example 2. Let A = [a;
where m > k. Define F by

a,,] be a real d X m matrix,

F = ={f:R? - RF|
3{21,...72k} C [m],

[f(x)); = a; x}.

That is, we choose k linear functions from m given linear
functions, and observe their function values. The family

fgk) of observation functions is a generalization of ]-'S(l]f )

defined in Example Indeed, we have that }'S(Il,c ) — }'I(f),
for the identity matrix A of size d. Thus, for this problem
it is also difficult to achieve a sublinear regret, as implied
by [8]. On the other hand, under an assumption on the
matrix A, we can solve the problem efficiently. We will
give details of the assumptions and algorithms in Sec. 5]

Example 3. Define F by

F=F={r:r¢

T — RF | 3B € R**? f(x) = Bx},

ie., F (k) is the family of all linear maps from R? to R¥.

lin
Note that we have that }"(k) - .7-" and ]-'(k C ]—'(k) We

lin lin

will show in Sec. {4| that the problem with F = .7-"1(k)

H= ’Hlm admits a polynomial-time algorithm to achieve
a sublinear regret.

3 Algorithm for finite

In this section, we suppose that F is a finite set. We re-
mark that this case includes Examples [T] and [2] as special
cases. In this case, we construct a principled method for
choosing f;, with the aid of a multi-armed bandit (MAB)
algorithm. This method requires that the hypothesis space
7 admits an online learning algorithm. Sec. [3.1] explains
this assumption in further detail. Sec.[3.2]introduces an al-
gorithm for the MAB problem, which our algorithm uses as
a subroutine. Sec. [3.3|presents our algorithm, and Sec.
presents a regret bound for our algorithm. Sec. proves
that a lower bound on the regret.

3.1 Online learning algorithm

We assume that there exists an online learning algorithm
A that achieves an «(7) regret for the hypothesis space H.
That is, we assume the following: (i) Algorithm A takes
inputs data z,,y1, . . ., Z-, Y, sequentially, where z, € R¥.
For each t = 1,2,...,7, the algorithm receives z;, gives
a prediction g, of its label, and then receives the true label
Y. (ii) For arbitrary 7 and arbitrary inputs {(z;,y;)}7_;,
the regret RO" defined by

Zf (95, 95) ggg;ah(zj),m

is bounded by a/(7) in expectation, i.e., E[ROT] < a(7).

ROL

Such algorithms are developed in the context of online
learning or online optimization [16, [9]. For example, if H
is a finite set and #(7, y) is a convex function of § — y, then
there exists an algorithm that admits an a(7) = O(\/7)
regret [[16]. Another typical example is the case that H =
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th and £(9),y) = (§—v)?, for which there exists an algo-
rithm to achieve an «(7) = O(+/7) regret [9]]. It is known
that under the condition that H has one-to-one correspon-
dence to a compact convex set C, there is an algorithm A
that achieves a(7) = O(+/7) if £(h(z), y) is a convex func-
tio’|and a(7) = O(log 7) if it is strongly convex, as sum-
marized, e.g., in [9]].

Without loss of generality, we assume that £(h(f(x)),y) €
[0,1] for f € F,h € H,y € [-1,1] and x € R such that
%[l < 1.

3.2 Multi-armed bandit problem

The multi-armed bandit (MAB) problem is a sequential de-
cision making problem. In this problem, an instance is
specified by the number K of available actions and a se-
quence {Ly ¢ =1, € [0, 1] of losses from each action
k € [K]. Note that the loss sequences are not presented to
the algorithm. In each round ¢ = 1,...,n, an algorithm
selects an action k; € [K] and observes the loss Ly, , of
the selected action. The performance of the algorithm is
evaluated by the regret RMAP defined by

=> Lt~ kfél[ln ZLk t
t=1

We assume that we have an MAB algorithm B to achieve
E[RMAB] < B(n). It has been shown, e.g., in [1]], that
there exists an MAB algorithm B with 3(n) = O(vVKn)
for arbitrary loss sequences. For general MAB problems, it
is known that O(\/Kin) regret algorithms are minimax op-
timal, because every MAB algorithm admits an Q(v/Kn)
regret for some input sequences [3]]. Under additional as-
sumptions, such as stochastic models on loss sequences,
there are more effective MAB algorithms. For more details
on MAB algorithms, see, e.g., [3].

MAB
Rn

3.3 Algorithm

Our problem uses an algorithm A for the online learning
problem associated with the hypothesis space 7, and an
MAB algorithm B. Suppose that |F| = K and denote F =
{fi 1 ,. We assume for convenience that 7" is a multiple
of an integer 7, which is optimized later.

Our algorithm, summarized in Algorithm |1} is performed
as follows. We divide all rounds into blocks such that each
block consists of consecutive 7 rounds. The ¢-th block con-
sists of rounds iT + 1,i7 +2,..., (i + 1)7.

At the beginning of the i-th block, we define an instance of
the MAB problem by regarding each observation function
in F as an action, and apply the MAB algorithm B to select
an action f, € F. When the algorithm 5 is applied, the

! Under the correspondence H ~ C, £(h(z),y) is regarded as
a function on C, for fixed z, y.

Algorithm 1 An algorithm for finite F = {f;, },

Input: An algorithm A for the online learning problem as-
sociated with the hypothesis space 7. An MAB algo-
rithm B. A positive integer 7.

1: fori=0,...,T/7—1 do

2:  Choose k; € [K] by B.

3 Set Ly, ;= 0.

4:  Initialize the state of A.

5 forj=1,...,7do

6: Observe fy, (X;r+;) and input it to A.
7: Determine §;,; by A and output it.
8: Observe y;-; and input it to A.

9: Set Ly, i = L, i + U(Girtj» Yirtj)/T-
10:  end for
11:  Input Ly, ; to B.
12: end for

loss of the action f},, taken in the previous block i’ (< 1)
is defined by

T

1 N
-7 Zg(yi"r—&-ja Yirr+j)-

=1

Ly, &

The selected observation function f, is used through all
the rounds in the ¢-th block.

At the round ¢7 + j in the i-th block, the prediction ;4 ;
is computed by applying the algorithm A to the inputs

(fri (Kir1)s Yir)s - o (P (Kirj—1)s Yir+j—1)s Froi (Kiz5)-

3.4 Regret bound of Algorithm 1|

In this section, we give an upper bound on the regret
achieved by Algorithm [I]

Theorem 1. Assume that the algorithm A achieves
E[RPY] < a(r), and that the algorithm B achieves
E[RMAB] < B(n), where B[] stands for the expectation
with respect to the algorithm’s own randomization. Then,
Algorithm[l|achieves the following regret bound:

B[R] < ga(r) +78 (f) .

Corollary 2. If a(r) = O(19) for q € [0,
O(VKn), then we obtain E[Rr] = O(K
O((T/K)5 ).

]fd@g)
27) by

2¢ 3=
setting T =

Proof of Theorem[l] For each ¢ and k # k;, let

gfﬂl, e ,@gﬁlh be the output from A for the input

(fk(Xirt1)s Yir+1), - -+ » (fe(X(@i41)7), Y(is1)7)» Which are
not computed in Algorithm[T]but are used just for the anal-

ysis. Define Ly, = %2521 Z(g)i(flj,yiﬂrj). Then, for
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arbitrary k € [K] and arbitrary h € H, we have that

T T/7—1

E|> Gny)| =7E| > Li.
t=1 =0

<7|E T/i_lL | + 8 r

>~ vars k,i .
T/7—1 T

. (k T
g(ygfljvyifﬂ') + 75 (7_>
1

1=0

ZZEJ

T T

T
< Sk + T w7 (1),

where the first inequality comes from E[RMAB] ),
and the second inequality comes from E[RO] ).
Because the above inequality holds for all & € [K] and

n
h € H, we have that E[Ry] < Ta(r)/7 + 78(T/7). O

< B(n
< afr

Corollary [2] implies that if A achieves a sublinear regret,
ie., ¢ < 1, then Algorithm also achieves a sublinear re-
gret.

3.5 Regret lower bound for finite 7

The upper bound on the regret achieved by Algorithm I]is
at least O(v/KT) if we use an MAB algorithm achieving
a f(n) = O(V/Kn) regret (minimax optimal [3]). This
dependence on K is undesirable, because K = |F| may
be extremely large in many practically important problems.
For example, in Example we have that K = \]-}(I}f )\ =
(4), which grows exponentially w.r.t. k. However, the
worst-case regret unfortunately cannot be improved over
VKT, as implied by the following theorem.

Theorem 3. Consider the problem in which F = fs(ff ),
UY,y) = |y —yl|, and H = {h*}, which is the set con-
sisting of exactly one element defined by h*([z]F_|) =

Hle zi. For all algorithms with T' > 0, there exist input
sequences {(x¢,y¢) 1, such that E[Rr] = Q(VKT) =

/(7).

The proof of this theorem is summarized in Appendix A of
the supplementary material.

Note that in the case that |#| = 1, as in this theorem, we
can assume that a; = 0. Indeed, for the hypothesis space
H = {h*}, the trivial online learning algorithm that out-
puts §; = h*(x;) achieves R2* = 0. Hence, for the prob-
lem setting in Theorem[3] Algorithm[T|with 7 = 1 achieves
E[Ry] = O(VKT), which matches the lower bound up to
a constant factor.

H= Hl(ilf])
Input: A positive real D > 0, a positive non-decreasing
real sequence {\;}.

1: Set flo =0.

2: fort=1,...,T do
Define w; by ().
Randomly choose a set S; of (k — 1) elements from
[d], uniformly without replacement.
5:  Define f; by @).
6:  Observe f;(x;) and output §; = [f;(x¢)]1 = W, x;.
7. Observe y; and define g; by (3)
8.
9

Algorithm 2 An algorithm for F = 7"

lin °

»w

: Set ht = htfl + gt-
: end for

4 Algorithm for ]-'l(lﬁ) and Hl(i];)

In this section, we consider the case when F = .7-'1(1];) and

H = Hl(ilfl) (see Example . That is, in each round ¢, we
construct a linear mapping f; € .7-'1(1]:1) and a vector v; € R¥,
and compute a predictor §; by 9; = v, f;(x;) from x;.
In the following, we consider the quadratic loss /(§,y) =
(5 —y)*

4.1 Algorithm

Our algorithm always uses v; = (1 0 ...O)T, ie., g =
(ft(x¢))1 for each round ¢. To construct f;, our algorithm
first computes a weight vector w; € R? where the detalis
are described below. Then the algorithm randomly chooses
a set Sy of k — 1 elements from [d], uniformly without re-
placement. On the basis of w; and Sy = {i1,...,ix_1} C

[d], the observation function g; € ]:l(k) is determined by

m

fi(x) = [w/.x, 2z, mi, ] )
After observing f;(x;), the algorithm outputs the predic-
tion §; = [fi(x¢)]1 = W, X, and after that, observes the
true label y;. For reference, we describe the algorithm as
Algorithm 2]

Computing w;. We compute w; based on the dual aver-
aging method [18]. For this purpose, we construct an unbi-
ased estimator g; of the gradient g; of the loss function in
rounds j = 1,...,t—1. Let us explain this in more details.
For a weight vector w, define the loss function ¢;(w) =
(9, — y;)? = (W'x; — y;)%. We denote the gradient of
lj(w;) by gj = V{;(w;) € R% Then it holds that g; =
2(x;'—wj —y;)x; = 2(y;—y;)%x;. We remark that g; cannot
be computed without knowing the full information of x;.

Instead of g;, we use an estimator g; of g;, computed as
follows. For all i € [d], let x; € R be the indicator vector
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of index i. Define g; € R? by

. 2d g
gj = k Z Tji X
i€S;

3)

The vector g; can be computed from the observation
fj(x;) and the true label y;.

The weight w; is defined from the estimators

{g;}j=1...t—1, a monotonically non-decreasing se-
quence (A1,...,A;) of positive numbers, and a positive

real number D > 0. Leth, ; = Zz;ll g;. Then we define
W by

W = arg min

. N A
{h31w+ t||w||2}
weRd || wl|<D 2
1 N

_ . h, ;. 4
max{ A, [[hs—1]|/D} o

From the definition, w; satisfies ||w;|| < D.

4.2 Regret bound of Algorithm

In this subsection, we show that the regret achieved by Al-
gorithm I is O(dv/T) in expectation, as stated in the fol-
lowing theorem.

Theorem 4. Assume that w* := arg min Zt LW Ty —

weRd

yt||? satisfies || w*||? < D. Algorithm[2|achieves

2D+ 1)2d 1 D2\
Emﬂgl?——kaf —SH©

By setting Ay = Lft foreacht = 1,...,T, we obtain

E[Rr] < (D +1)2,/ 2 VT + 1.

In the rest of this section, we prove Theorem [Z_F} We first
show that g, is an unbiased estimator of g; and give an
upper bound on E[||g;[|?].

Lemma 5. Function g; defined in (3) satisfies E[g;] = g;.
2

Moreover, El||g;]|?] < % holds.

The proof of this lemma is provided in Appendix B of the

supplementary material.

Let us discuss the regret of Algorithm[2] Recall that the loss
in each round ¢ is expressed as /s (w;) = (w, x;—y;)%. We
hence rewrite the regret R in (1)) as

=

RT = max Z ét Wt —ét( )) (6)

weRd

. T
because min o , qi00 gy (R(F(x0)) = we)® =

. T
mingera Y ;_q Le(W).

From the convexity of the loss function ¢; and Lemma
we obtain the following upper bound of the expected regret:

T

> (lu(wi) = br(w™))

Zg:(wt—w

E[R;] =E

T
E > g (w
t=1

(7

The value Zthl g (w; — w*) can be bounded via a stan-
dard analysis of the dual averaging method, as follows.

Lemma 6. Suppose that w, is defined by (@) for each t =
T, and w* € R? satisfies |w*|| < D. Then, we
have

T ~ 112 2
D=X
S (- w < Y 18I PR

2)¢ 2
Proof. See, e.g., [18]. O
We are now ready to prove Theorem 4]

Proof of Theorem{] By taking the expectation of both
sides of (8) and applying Lemma 5] we obtain

T ~
; E[|g:(*] , D*Ar+1
T * +
B> & (Wt_w)]gz 2, 2
t=1 t=1
2D+ 1)2d 1  D>Apyq
= k-1 Z A\ T

Combining the above inequality with the inequality (7), we
obtain (3). O

5  Algorithm for 7 and 1"

In this section, we consider the case that 7 = F, (k) and
H o= A

lin

(see Example . That is, in each round ¢

we construct a mapping f; € .7-'1(4]6) and a linear func-
tion hy(z) = w, z, and compute a predictor ; by J; =
w, fi(x;) from x;. A mapping f; corresponds to choosing

k column indices {i1, ..., i)} from the given matrix A.

Define a vector u; € R™ by us;; = wy; (j € [k]) and uy; =
0 (i € [m] \ {i;}¥_,). Then, we can rewrite §; = x " Au,.
Therefore, instead of constructing f; and w,, we attempt to
find u; in each round ¢t. We denote the loss when we use a

vector u by (;(u) = £(x, Au) = (x] Au — y;)2.

Without loss of generality, we assume that the /5 operator
norm || Al|z := max;y|<1 [[Au|| of A satisfies [|Al]> < 1.

—W*)‘| .
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5.1 Algorithm

Similar to Algorlthm 2l we aim to compute u; in each
round such that Zt 1 Ge(uy) is as small as possible, based
on the dual averaging method. Let 4; be an estimator of
the gradient 7; = V(;(u;) of the loss function, which
is computed in the previous round j, and define 7,1 =
Zz;ll 4;. Then, letting (Aq1,..., Ar) be a monotonically
non-decreasing sequence of positive numbers, we define u;
by

~ . ~ >\
U; = arg min {nt—r_lu+ t||u||2}
ueR™,|uf| <D 2

1
= — N N p— ) 9
max{\, [+ /D} " ©)

where D > 0 is a fixed positive real number. Then, x, At
may be suitable for use as ;.

The main difficulty is that the value x; Ali; cannot be com-
puted from the limited observation. In fact, to compute
x,| AW it is necessary to observe x;] A = [a] x;...a, x],
while only & values from {a, x,}, are available in our

setting.

In order to mitigate this issue, our algorithm computes u; €
R™ from u; such that Au; is close to A, and the number
k' of non-zero entries of u; satisfies k' < k. Further detail
are given below.

On the basis of supp(u;), the observation function f; €
Fa *) is determined by

[ft(x)]l...k’ = [ajx]iesupp(ut)v
[fe()]k 1.k = [a] XJies, (10)

where S is a set of indices chosen uniformly at random
from (k[m,l,) Then, our algorithm outputs § := x, Auy,
which can be computed from a part of the observation
[fe(x)]1.. = [8] Xt]icsupp(u,)» and is close to x| Aw.
The remainder of the observation [f;(x)]x/+1...x is used to
compute an unbiased estimator 4; of the gradient ;, as de-

scribed below.

Computing u; from ;. Let k' be a fixed integer param-
eter satisfying 1 < k¥’ < k — 1, which corresponds to the
number of non-zero entries of the vector u;. When search-
ing for u; such that Au, is close to At; and u,; has at most
k' non-zero entries, we naturally arrive at the following op-
timization problem:

Minimize | Au:

— Au|| subjectto |lullo < K, (11)

which is a sparse linear regression. This problem is in
general NP-hard [15], but there are many approximation
algorithms for computing it, e.g., LASSO [17], orthogo-
nal matching pursuit (OMP) [21], iterative hard threshold-
ing (IHT) [4], and the forward-backward greedy algorithm

Algorithm 3 An algorithm for F = (k), H="H,

Input: A positive real D > 0, a positive non-decreasing
real sequence {\;}, an integer k' € [1,k — 1]. The

matrix A corresponding to }'XC).

1: Setny = 0.

2: fort=1,...,T do

3:  Define u; by ().

4:  Solve (TI) and let u; be the (approximate) solution
to (TT).

5:  Randomly choose a set S; of (k — k') elements from
[d] uniformly, without replacement.

6:  Output j; = u/ AT x,.

7:  Observe y; and define 4; by (12).

8: Set 'I?t = ﬁtfl + ’Q/t.

9: end for

[20]. These algorithms are proven to achieve a small ob-
jective value, under the assumptions that A satisfies a suf-
ficient condition for sparse recovery, such as the restricted
isometry property [6], and that the true optimal value of
(TT) is close to zero.

Our procedure employs an arbitrary algorithm for approx-
imately solving the problem to determine u;. Let
€; > 0 denote the achieved objective value of , ie.,
define ¢; := || Aty — Auy|| for computed u;.

Computing 4;. Consider estimating 7, = V{;(u;) =
2(x; Aug —y ) ATx; = 2(9¢ —yi) AT x;. Because ; is di-
rectly computed from a part of the observation [f:(x¢)]1.. x/
and y; is observed after returning y;, we need to estimate
ATx; alone. This A" x; can be estimated from the remain-
der of the observation [f;(x¢)|r+1..x = [ X¢]ics. In
fact, k k, ZiES a;-'— XX 1s an unbiased estimator of ATx,,
where x; € R™ is the indicator vector of the index i. Ac-
cordingly, 4; is defined by

—y) Y a] xixi. (12)

Y = - (
k k €S

Lemma 7. 4; defined in is an unbiased estimator of
Vi, i.e., we have that E[y;] = ~;. The expected value of

52|12 is bounded by EJ||3,]|?] < 1L+D m

Proof. Because ||Allz < 1 and ||x¢|| < 1, we have that
|ATx;|| < 1. Using this fact, the lemma is proved in a
similar manner to Lemmal[5] O

5.2 Regret bound of Algorithm

In this subsection, we show that the regret achieved by Al-
gorithmis O(d+/T) in expectation, as claimed in the fol-
lowing theorem.
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Theorem 8. Assume that u* = arg min

u€R™, |lullo<k
ZZ;I luTATx; — yi||? satisfies ||u*||> < D. Then,
Algorithm[3|achieves

E[Rr]

2
_ 2D +1)%m

2(D+1)E
< R +

T
N

where €, is the achieved objective value of (L1)). By setting
A = /2ot T, we obtain E[Ry] <

Wforeacht:l...
(D+1)2 ,/ VI+1 +2(D+1)Zt 1 Eleq].

Proof. The regret R can be expressed as

Ry

T
Z l;(Auy) — £;(Au))

ueRm Hu||0<k

T

= Z (u)).

ueRm,HuHo -

From the convexity of the loss function (; and Lemma
we obtain

<E

T
Z Gi(uy) — G(u"))

—Aug[| = [|A(u; —

t=1

Because || Auy U;)|| = e, we have that

¥ (= ut) = (B —u) + 9 (0 — )
= (8 — u) + 205 — y) Aluy — 1)
<, (8 —u*) +2(D + 1)e;.
Combining the above two inequalities, we obtain

T

> (i —u*)

t=1

T
+2(D+1)) Ele].

t=1

E[R;] <E

13)
The first term on the right-hand side can be bounded as

T
S 4T (- u*>]

t=1

ZH eI D2>\T+1
2)X¢
2(

+1 ZTJL D’Aria
k/ N, 2

where the first and the second inequalities come from
Lemma (7] and the third inequality comes from Lemma [6]
By combining and (T4), we obtain the desired re-
sult. O

% (8 —u*)| =E

E

t=

(14)

T
S (e - u*>].

6 Experiments

In this section, we evaluate Algorithms[2]and [3|through nu-
merical experiments. To solve (TT)) in Algorithm[3] we em-
ploy the orthogonal matching pursuit method [21]. We use
the algorithm proposed in [12, Algorithm?2] as a baseline.
Note that this baseline algorithm is designed for OSLR, and
hence it cannot be applied to the more general settings con-
sidered in Sec.[d|and 5] To evaluate the performance of our
algorithms in these general settings, we apply the baseline
algorithm as follows.

Recall that Algorithm |2|receives a feature vector x; € R4,

chooses a linear mapping f € ~7:1(i]:1)’ and estimates the true
label y; from the observation f(x;) € R* in each round
t. To evaluate Algorithm [2] we apply the baseline algo-
rithm to the feature vector x; directly. Then, the baseline
algorithm makes a prediction after observing k entries in
x¢. We call this version of the baseline Kale-Karnin-Liang-
Pal (KKLP).

Algorithm [3| makes a prediction after observing k entries
chosen from A"x,;. To evaluate this algorithm, we apply
the baseline algorithm to ATx,. Hence, it observes k en-
tries of AT x;. We call this version KKLP_A.

In this section, we define the regrets of these algorithms by
comparison with an adversary that observes only k entries
of x;. This is slightly different from the definition (T)). Be-
cause of space limitations, we only present typical results
here. Other results and detailed descriptions of experiment
settings are provided in the supplementary material.

Synthetic data. First, we present results for synthetic
datasets. For each combination of parameters (d, k, k'), we
executed all algorithms on five instances with 7" = 5000,
and computed the averages of the final regrets and execu-
tion time. Figure [I(a)| plots the regrets over the number of
rounds on a typical instance with (d, k, k) = (10,2,4). In
this instance, Algorithms[2]and [3] KKLP, and KKLP_A re-
quired 0.32, 2.31, 4.58 and 46.76 seconds, respectively. Ta-
ble [T| summarizes the final regrets for small instances. We
observe that our algorithms achieve the smallest regrets.

(a) A typical result for syn-
thetic datasets.

(b) The square loss for CT-
slice datasets.

Figure 1: The regrets over the number of rounds.
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Table 1: Average regrets.

(d, k', k) | Algorithm[2[ ~Algorithm[3] KKLP KKLP_A
(10,2, 4) 427.0 2544.3 46494  4335.0
(10, 2, 8) 265.2 1271.7 4365.8  3952.8
(10, 5, 8) 245.8 787.7 43704  4087.1
Real data. Next, we describe the experiments using a

CT-slice dataset, which is available online [13]]. Each data
item consists of 384 features retrieved from 53500 CT im-
ages associated with a label that denotes the relative posi-
tion of an image on the axial axis.

Because we do not know the ground-truth regression
weights, we measure the performance by the first term of
(1), i.e., the square losses of predictions. Figure [I(b)| plots
the losses over the number of rounds, where the parameters
are k = 50 and £’ = 40. For this instance, the run times of
Algorithms 2| and |3| were 6.6 and 11035.7 seconds, respec-
tively. We did not plot the regrets for KKLP and KKLP_A,
because they did not terminate within three hours. We ob-
serve that our algorithms can efficiently process large in-
stances, while the baseline algorithms cannot.
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