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Appendix A SPECIFIC BOUNDS
FOR OnlineBMR

We begin this section by introducing a random walk
framework to compute potentials. Suppose Xi :=
(X1, · · · , Xk) is a random vector that tracks the number
of draws of each label among i i.i.d. random draws
w.r.t. uYtγ . Then according to (1), we may write

φit(s) = ELYt(s + X).

This framework will appear frequently throughout the
proofs. We start from rank loss.
Lemma 6. Under the same setting as in Theorem 2
but with potentials built upon rank loss, we may bound
φNt (0) as following:

φNt (0) ≤ e−
γ2N

2 .

Proof. For simplicity, we drop t in the proof. Let XN

be the aforementioned random vector. Then we may
write the potential by

φN (0) = ELYrnk(XN )

≤ wY
∑
l∈Y

∑
r/∈Y

E1(Xr ≥ Xl)

= wY
∑
l∈Y

∑
r/∈Y

P(Xr −Xl ≥ 0).

Fix l ∈ Y and r /∈ Y . By definition of uYγ , we have

a := uYγ [l] = uYγ [r] + γ =: b.

Now suppose we draw 1 with probability a, −1 with
probability b, and 0 otherwise. Then P(Xr −Xl ≥ 0)
equals the probability that the summation of N i.i.d.
random numbers is non-negative. Then we can apply
the Hoeffding’s inequality to get

P(Xr −Xl ≥ 0) ≤ e−
γ2N

2 .

Since wY is the inverse of the number of pairs (l, r),
this proves our assertion.

Lemma 7. Under the same setting as in Theorem 2
but with potentials built upon rank loss, we can show
that ∀i, wi∗ ≤ O( 1√

N−i ).

Proof. First we fix t and i. We also fix l∗ ∈ Yt and r∗ ∈
Y ct . Then write s1 := si−1t + el∗ and s2 := si−1t + er∗ .
Again we introduce XN−i. Then we may write

cit[r
∗]− cit[l

∗] = φN−it (s2)− φN−it (s1)

= E[LYtrnk(s2 + XN−i)− LYtrnk(s1 + XN−i)]

≤ wYt
∑
l∈Yt

∑
r/∈Yt

f(r, l),

where

f(r, l) := E[1(s2[r] +Xr ≥ s2[l] +Xl)

− 1(s1[r] +Xr > s1[l] +Xl)].

Here we intentionally include and exclude equality for
the ease of computation. Changing the order of terms,
we can derive

f(r, l) ≤ P(s1[l]− s1[r] ≥ Xr −Xl ≥ s2[l]− s2[r])

≤ 3 max
n

P(Xr −Xl = n),

where the last inequality is deduced from the fact that

(s1[l]− s1[r])− (s2[l]− s2[r]) ∈ {0, 1, 2}.

Using Berry-Esseen theorem, it is shown by Jung
et al. [2017, Lemma 10] that maxn P(Xr −Xl = n) ≤
O( 1√

N−i ), which implies that

cit[r
∗]− cit[l

∗] ≤ O(
1√
N − i

).

Since l∗ and r∗ are arbitrary, and the bound does not
depend on t, the last inequality proves our assertion.

Now we provide similar bounds when the potentials
are computed from hinge loss.

Lemma 8. Under the same setting as in Theorem 2
but with potentials built upon hinge loss, we may bound
φNt (0) as following:

φNt (0) ≤ (N + 1)e−
γ2N

2 .

Proof. Again we drop t in the proof and introduce XN .
Then we may write the potential by

φN (0) = ELYhinge(X
N )

= wY
∑
l∈Y

∑
r/∈Y

E(1 +Xr −Xl)+

= wY
∑
l∈Y

∑
r/∈Y

N∑
n=0

P(Xr −Xl ≥ n)

≤ wY
∑
l∈Y

∑
r/∈Y

(N + 1)P(Xr −Xl ≥ 0).

We already checked in Lemma 6 that

P(Xr −Xl ≥ 0) ≤ e−
γ2N

2 ,

which concludes the proof.

Lemma 9. Under the same setting as in Theorem 2
but with potentials built upon hinge loss, we can show
that ∀i, wi∗ ≤ 2.
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Proof. First we fix t and i. We also fix l∗ ∈ Yt and r∗ ∈
Y ct . Then write s1 := si−1t + el∗ and s2 := si−1t + er∗.
Again with XN−i, we may write

cit[r
∗]− cit[l

∗] = φN−it (s2)− φN−it (s1)

= E[LYthinge(s2 + XN−i)− LYthinge(s1 + XN−i)]

= wYt
∑
l∈Yt

∑
r/∈Yt

f(r, l),

where

f(r, l) := E[(1 + (s2 + XN−i)[r]− (s2 + XN−i)[l])+

− (1 + (s1 + XN−i)[r]− (s1 + XN−i)[l])+].

It is not hard to check that the term inside the expecta-
tion is always bounded above by 2. This fact along with
the definition of wYt provides that cit[r∗] − cit[l∗] ≤ 2.
Since our choice of l∗ and r∗ are arbitrary, this proves
wi[t] ≤ 2, which completes the proof.

Appendix B COMPLETE PROOF
OF THEOREM 4

Proof. We assume that an adversary draws a label
Yt uniformly at random from 2[k] − {∅, [k]}, and the
weak learners generate single-label predictions w.r.t.
pt ∈ ∆[k]. Any boosting algorithm can only make
a final decision by weighted cumulative votes of N
weak learners. We manipulate pt such that weak learn-
ers satisfy OnlineWLC (δ, γ, S) but the best possible
performance is close to (6).

As we are assuming single-label predictions, ht = elt
for some lt ∈ [k] and ct · ht = ct[lt]. Furthermore, the
bounded condition of Ceor0 ensures ct[lt] is contained in
[0, 1]. The Azuma-Hoeffding inequality provides that
with probability 1− δ,

T∑
t=1

wtct[lt] ≤
T∑
t=1

wtct · pt +

√
2||w||22 ln(

1

δ
)

≤
T∑
t=1

wtct · pt +
γ||w||22
k

+
k ln( 1

δ )

2γ

≤
T∑
t=1

wtct · pt +
γ||w||1
k

+
k ln( 1

δ )

2γ
,

(18)

where the second inequality holds by arithmetic mean
and geometric mean relation and the last inequality
holds due to wt ∈ [0, 1].

We start from providing a lower bound on the number
of weak learners. Let pt = uYt2γ for all t. This can be
done by the constraint γ < 1

4k . From the condition of
Ceor0 that minl c[l] = 0,maxl c = 1 along with the fact

that Y /∈ {∅, [k]}, we can show that c · (uYγ −uY2γ) ≥ γ
k .

Then the last line of (18) becomes

T∑
t=1

wtct · uYt2γ +
γ||w||1
k

+
k ln( 1

δ )

2γ

≤
T∑
t=1

(wtct · uYtγ −
γwt
k

) +
γ||w||1
k

+
k ln( 1

δ )

2γ

≤
T∑
t=1

wtct · uYtγ + S,

which validates that weak learners indeed satisfy On-
lineWLC (δ, γ, S). Following the argument of Schapire
and Freund [2012, Section 13.2.6], we can also prove
that the optimal choice of weights over the learners is
( 1
N , · · · ,

1
N ).

Now we compute a lower bound for the booster’s loss.
Let X := (X1, · · · , Xk) be a random vector that tracks
the number of labels drawn from N i.i.d. random draws
w.r.t. uY2γ . Then the expected rank loss of the booster
can be written as:

ELYrnk(X) ≥ wY
∑
l∈Y

∑
r/∈Y

P(Xl < Xr).

Adopting the arguments in the proof by Jung et al.
[2017, Theorem 4], we can show that

P(Xl < Xr) ≥ Ω(e−4Nk
2γ2

).

This shows ELYrnk(X) ≥ Ω(e−4Nk
2γ2

). Setting this
value equal to ε, we have N ≥ Ω( 1

γ2 ln 1
ε ), considering

k as a fixed constant. This proves the first part of the
theorem.

Now we move on to the optimality of sample complexity.
We record another inequality that can be checked from
the conditions of Ceor0 : c · (uY0 −uYγ ) ≤ γ. Let T0 := S

4γ

and define pt = uYt0 for t ≤ T0 and pt = uYt2γ for t > T0.
Then for T ≤ T0, (18) implies

T∑
t=1

wtct[lt]

≤
T∑
t=1

wtct · uYt0 +
γ||w||1
k

+
k ln( 1

δ )

2γ

≤
T∑
t=1

wtct · uYtγ + γ(1 +
1

k
)||w||1 +

k ln( 1
δ )

2γ

≤
T∑
t=1

wtct · uYtγ + S.

(19)

where the last inequality holds because ||w||1 ≤ T0 =
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S
4γ . For T > T0, again (18) implies

T∑
t=1

wtct[lt] ≤
T0∑
t=1

wtct · uYt0 +

T∑
t=T0+1

wtct · uYt2γ

+
γ||w||1
k

+
k ln( 1

δ )

2γ

≤
T∑
t=1

wtct · uYtγ +
k + 1

k
γT0 +

k ln( 1
δ )

2γ

≤
T∑
t=1

wtct · uYtγ + S.

(20)

(19) and (20) prove that the weak learners indeed satisfy
OnlineWLC (δ, γ, S). Observing that weak learners
do not provide meaningful information for t ≤ T0,
we can claim any online boosting algorithm suffers
a loss at least Ω(T0). Therefore to get the certain
accuracy, the number of instances T should be at least
Ω(T0

ε ) = Ω( Sεγ ), which completes the second part of
the proof.


