Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

Sanket Kamthe
Department of Computing
Imperial College London

Marc Peter Deisenroth
Department of Computing
Imperial College London

1 Appendix

1.1 Lipschitz Continuity

Lemma 1. The moment matching mapping $f_{M M}$ is Lipschitz continuous for controls defined over a compact set \mathcal{U}.

Proof: Lipschitz continuity requires that the gradient $\partial f_{M M} / \partial \boldsymbol{u}_{t}$ is bounded. The gradient is

$$
\begin{equation*}
\frac{\partial f_{M M}}{\partial \boldsymbol{u}_{t}}=\frac{\partial \boldsymbol{z}_{t+1}}{\partial \boldsymbol{u}_{t}}=\left[\frac{\partial \boldsymbol{\mu}_{t+1}}{\partial \boldsymbol{u}_{t}}, \frac{\partial \boldsymbol{\Sigma}_{t+1}}{\partial \boldsymbol{u}_{t}}\right] \tag{1}
\end{equation*}
$$

The derivatives $\left[\frac{\partial \boldsymbol{\mu}_{t+1}}{\partial \boldsymbol{u}_{t}}, \frac{\partial \boldsymbol{\Sigma}_{t+1}}{\partial \boldsymbol{u}_{t}}\right]$ can be computed analytically [1].
We first show that the derivative $\partial \boldsymbol{\mu}_{t+1} / \partial \boldsymbol{u}_{t}$ is bounded. Defining $\boldsymbol{\beta}_{d}:=\left(\boldsymbol{K}_{d}+\sigma_{f_{d}}^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}_{d}$, from [1], we obtain for all state dimensions $d=1, \ldots, D$

$$
\begin{align*}
\mu_{t+1}^{d}= & \sum_{i=1}^{N} \beta_{d_{i}} q_{d_{i}} \tag{2}\\
q_{d_{i}}= & \sigma_{f_{d}}^{2}\left|\boldsymbol{I}+\boldsymbol{L}_{d}^{-1} \widetilde{\boldsymbol{\Sigma}}_{t}\right|^{-\frac{1}{2}} \times \tag{3}\\
& \exp \left(-\frac{1}{2}\left(\widetilde{\boldsymbol{x}}_{i}-\widetilde{\boldsymbol{\mu}}_{t}\right)^{T}\left(\boldsymbol{L}_{d}+\widetilde{\boldsymbol{\Sigma}}_{t}\right)^{-1}\left(\widetilde{\boldsymbol{x}}_{i}-\widetilde{\boldsymbol{\mu}}_{t}\right)\right), \tag{4}
\end{align*}
$$

where N is the size of the training set of the dynamics GP and $\widetilde{\boldsymbol{x}}_{i}$ the i th training input. The corresponding gradient w.r.t. \boldsymbol{u}_{t} is given by the last F elements of

$$
\begin{align*}
\frac{\partial \mu_{t+1}^{d}}{\partial \widetilde{\boldsymbol{\mu}}_{t}} & =\sum_{i=1}^{N} \beta_{d_{i}} \frac{\partial q_{d_{i}}}{\partial \widetilde{\boldsymbol{\mu}}_{t}} \tag{5}\\
& =\sum_{i=1}^{N} \beta_{d_{i}} q_{d_{i}}\left(\widetilde{\boldsymbol{x}}_{i}-\widetilde{\boldsymbol{\mu}}_{t}\right)^{T}\left(\widetilde{\boldsymbol{\Sigma}}_{t}+\boldsymbol{L}_{d}\right)^{-1} \in \mathbb{R}^{1 \times(D+F)} \tag{6}
\end{align*}
$$

Let us examine the individual terms in the sum on the rhs in (6): For a given trained GP $\left\|\boldsymbol{\beta}_{d}\right\|<\infty$ is constant. The definition of $q_{d_{i}}$ in (4) contains an exponentiated negative quadratic term, which is bounded between $[0,1]$. Since $\boldsymbol{I}+\boldsymbol{L}_{d}^{-1} \widetilde{\boldsymbol{\Sigma}}_{t}$ is positive definite, the inverse determinant is defined and bounded. Finally,
$\sigma_{f_{d}}^{2}<\infty$, which makes $q_{d_{i}}<\infty$. The remaining term in (6) is a vector-matrix product. The matrix is regular and its inverse exists and is bounded (and constant as a function of \boldsymbol{u}_{t}. Since $\boldsymbol{u}_{t} \in \mathcal{U}$ where \mathcal{U} is compact, we can also conclude that the vector difference in (6) is finite, which overall proves that $f_{M M}$ is (locally) Lipschitz continuous and Lemma 1 .

1.2 Sequential Quadratic Programming

We can use SQP for solving non-linear optimization problems (NLP) of the form,

$$
\begin{array}{cl}
\min _{u} & f(\boldsymbol{x}) \\
\text { s.t. } & b(\boldsymbol{x}) \geq 0 \\
& \boldsymbol{c}(\boldsymbol{x})=0
\end{array}
$$

The Lagrangian \mathcal{L} associated with the NLP is

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\sigma})=f(\boldsymbol{x})-\boldsymbol{\sigma}^{T} b(\boldsymbol{x})-\boldsymbol{\lambda}^{T} c(\boldsymbol{x}) \tag{7}
\end{equation*}
$$

where, $\boldsymbol{\lambda}$ and $\boldsymbol{\sigma}$ are Lagrange multipliers. Sequential Quadratic Programming (SQP) forms a quadratic (Taylor) approximation of the objective and linear approximation of constraints at each iteration k

$$
\begin{array}{cl}
\min _{d} & f\left(\boldsymbol{x}_{k}\right)+\nabla f\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d}+\frac{1}{2} \boldsymbol{d}^{T} \nabla_{x x}^{2} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\sigma}) \boldsymbol{d} \\
\text { s.t. } & b\left(\boldsymbol{x}_{k}\right)+\nabla b\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} \geq 0 \\
& c\left(\boldsymbol{x}_{k}\right)+\nabla c\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d}=0 \tag{8}
\end{array}
$$

The Lagrange multipliers $\boldsymbol{\lambda}$ associated with the equality constraint are same as the ones defined in the control Hamiltonian \mathcal{H} ??. The Hessian matrix $\boldsymbol{\nabla}_{x x}^{2}$ can be computed by exploiting the block diagonal structure introduced by the Hamiltonian [? ?].

1.3 Moment Matching Approximation [1]

Following the law of iterated expectations, for target dimensions $a=1, \ldots, D$, we obtain the predictive mean

$$
\begin{align*}
\mu_{t}^{a} & =\mathbb{E}_{\tilde{\boldsymbol{x}}_{t-1}}\left[\mathbb{E}_{f_{a}}\left[f_{a}\left(\tilde{\boldsymbol{x}}_{t-1}\right) \mid \tilde{\boldsymbol{x}}_{t-1}\right]\right]=\mathbb{E}_{\tilde{\boldsymbol{x}}_{t-1}}\left[m_{f_{a}}\left(\tilde{\boldsymbol{x}}_{t-1}\right)\right] \\
& =\int m_{f_{a}}\left(\tilde{\boldsymbol{x}}_{t-1}\right) \mathcal{N}\left(\tilde{\boldsymbol{x}}_{t-1} \mid \tilde{\boldsymbol{\mu}}_{t-1}, \tilde{\boldsymbol{\Sigma}}_{t-1}\right) d \tilde{\boldsymbol{x}}_{t-1} \\
& =\boldsymbol{\beta}_{a}^{T} \boldsymbol{q}_{a} \tag{9}\\
\boldsymbol{\beta}_{a} & =\left(\boldsymbol{K}_{a}+\sigma_{w_{a}}^{2}\right)^{-1} \boldsymbol{y}_{a} \tag{10}
\end{align*}
$$

with $\boldsymbol{q}_{a}=\left[q_{a_{1}}, \ldots, q_{a_{n}}\right]^{T}$. The entries of $\boldsymbol{q}_{a} \in \mathbb{R}^{n}$ are computed using standard results from multiplying and integrating over Gaussians and are given by
$q_{a_{i}}=\int k_{a}\left(\tilde{\boldsymbol{x}}_{i}, \tilde{\boldsymbol{x}}_{t-1}\right) \mathcal{N}\left(\tilde{\boldsymbol{x}}_{t-1} \mid \tilde{\boldsymbol{\mu}}_{t-1}, \tilde{\boldsymbol{\Sigma}}_{t-1}\right) d \tilde{\boldsymbol{x}}_{t-1}$
$=\sigma_{f_{a}}^{2}\left|\tilde{\boldsymbol{\Sigma}}_{t-1} \boldsymbol{\Lambda}_{a}^{-1}+\boldsymbol{I}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \boldsymbol{\nu}_{i}^{T}\left(\tilde{\boldsymbol{\Sigma}}_{t-1}+\boldsymbol{\Lambda}_{a}\right)^{-1} \boldsymbol{\nu}_{i}\right)$
where we define

$$
\begin{equation*}
\boldsymbol{\nu}_{i}:=\left(\tilde{\boldsymbol{x}}_{i}-\tilde{\boldsymbol{\mu}}_{t-1}\right) \tag{12}
\end{equation*}
$$

is the difference between the training input $\tilde{\boldsymbol{x}}_{i}$ and the mean of the test input distribution $p\left(\boldsymbol{x}_{t-1}, \boldsymbol{u}_{t-1}\right)$.

Computing the predictive covariance matrix $\boldsymbol{\Sigma}_{t} \in$ $\mathbb{R}^{D \times D}$ requires us to distinguish between diagonal elements and off-diagonal elements: Using the law of total (co-)variance, we obtain for target dimensions $a, b=1, \ldots, D$

$$
\begin{align*}
\sigma_{a a}^{2} & =\mathbb{E}_{\tilde{\boldsymbol{x}}_{t-1}}\left[\operatorname{var}_{f}\left[x_{t}^{a} \mid \tilde{\boldsymbol{x}}_{t-1}\right]\right]+\mathbb{E}_{f, \tilde{\boldsymbol{x}}_{t-1}}\left[\left(\boldsymbol{x}_{t}^{a}\right)^{2}\right]-\left(\mu_{t}^{a}\right)^{2}, \tag{13}\\
\sigma_{a b}^{2} & =\mathbb{E}_{f, \tilde{\boldsymbol{x}}_{t-1}}\left[x_{t}^{a} x_{t}^{b}\right]-\mu_{t}^{a} \mu_{t}^{b}, \quad a \neq b, \tag{14}
\end{align*}
$$

respectively, where μ_{t}^{a} is known from (9). The offdiagonal terms do not contain the additional term $\mathbb{E}_{\tilde{\boldsymbol{x}}_{t-1}}\left[\operatorname{cov}_{f}\left[x_{t}^{a}, x_{t}^{b} \mid \tilde{\boldsymbol{x}}_{t-1}\right]\right]$ because of the conditional independence assumption of the GP models. Different target dimensions do not covary for given $\tilde{\boldsymbol{x}}_{t-1}$.
We start the computation of the covariance matrix with the terms that are common to both the diagonal and the off-diagonal entries: With $p\left(\tilde{\boldsymbol{x}}_{t-1}\right)=$ $\mathcal{N}\left(\tilde{\boldsymbol{x}}_{t-1} \mid \tilde{\boldsymbol{\mu}}_{t-1}, \tilde{\boldsymbol{\Sigma}}_{t-1}\right)$ and the law of iterated expectations, we obtain

$$
\begin{gather*}
\mathbb{E}_{f, \tilde{\boldsymbol{x}}_{t-1}}\left[x_{t}^{a}, x_{t}^{b}\right]=\mathbb{E}_{\tilde{\boldsymbol{x}}_{t-1}}\left[\mathbb{E}_{f}\left[x_{t}^{a} \mid \tilde{\boldsymbol{x}}_{t-1}\right] \mathbb{E}_{f}\left[x_{t}^{b} \mid \tilde{\boldsymbol{x}}_{t-1}\right]\right] \\
=\int m_{f}^{a}\left(\tilde{\boldsymbol{x}}_{t-1}\right) m_{f}^{b}\left(\tilde{\boldsymbol{x}}_{t-1}\right) p\left(\tilde{\boldsymbol{x}}_{t-1}\right) d \tilde{\boldsymbol{x}}_{t-1} \tag{15}
\end{gather*}
$$

because of the conditional independence of x_{t}^{a} and x_{t}^{b} given $\tilde{\boldsymbol{x}}_{t-1}$. Using the definition of the mean function,
we obtain

$$
\begin{align*}
& \mathbb{E}_{f, \tilde{\boldsymbol{x}}_{t-1}}\left[x_{t}^{a} x_{t}^{b}\right]=\boldsymbol{\beta}_{a}^{T} \boldsymbol{Q} \boldsymbol{\beta}_{b} \tag{16}\\
& \boldsymbol{Q}:=\int k_{a}\left(\tilde{\boldsymbol{x}}_{t-1}, \boldsymbol{X}\right)^{T} k_{b}\left(\tilde{\boldsymbol{x}}_{t-1}, \boldsymbol{X}\right) p\left(\tilde{\boldsymbol{x}}_{t-1}\right) d \tilde{\boldsymbol{x}}_{t-1} \tag{17}
\end{align*}
$$

Using standard results from Gaussian multiplications and integration, we obtain the entries $Q_{i j}$ of $\boldsymbol{Q} \in \mathbb{R}^{n \times n}$

$$
\begin{equation*}
Q_{i j}=\frac{k_{a}\left(\tilde{\boldsymbol{x}}_{i}, \tilde{\boldsymbol{\mu}}_{t-1}\right) k_{b}\left(\tilde{\boldsymbol{x}}_{j}, \tilde{\boldsymbol{\mu}}_{t-1}\right)}{\sqrt{|\boldsymbol{R}|}} \exp \left(\frac{1}{2} \boldsymbol{z}_{i j}^{T} \boldsymbol{T}^{-1} \boldsymbol{z}_{i j}\right) \tag{18}
\end{equation*}
$$

where we define

$$
\begin{aligned}
\boldsymbol{R} & :=\tilde{\boldsymbol{\Sigma}}_{t-1}\left(\boldsymbol{\Lambda}_{a}^{-1}+\boldsymbol{\Lambda}_{b}^{-1}\right)+\boldsymbol{I}, \quad \boldsymbol{T}:=\boldsymbol{\Lambda}_{a}^{-1}+\boldsymbol{\Lambda}_{b}^{-1}+\tilde{\boldsymbol{\Sigma}}_{t-1}^{-1}, \\
\boldsymbol{z}_{i j} & :=\boldsymbol{\Lambda}_{a}^{-1} \boldsymbol{\nu}_{i}+\boldsymbol{\Lambda}_{b}^{-1} \boldsymbol{\nu}_{j}
\end{aligned}
$$

with $\boldsymbol{\nu}_{i}$ taken from (12). Hence, the off-diagonal entries of $\boldsymbol{\Sigma}_{t}$ are fully determined by (9)-(12), (14), (16), (17), and 18.

References

[1] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian Processes for Data-Efficient Learning in Robotics and Control. Transactions on Pattern Analysis and Machine Intelligence, 37(2):408-23, 2015.

