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Supplementary material for “Factor Analysis on a Graph”

A Proof for Theorem 1

We discuss the relation between the graph connectivity and our kernel Σ̂, by using covariance decomposition
of Jones and West (2005), which was originally proposed for analyzing paths on a graphical model. The (i, j)
element of the covariance matrix can be decomposed as a weighted sum of products of conditional correlations
of consecutive node pairs on all possible paths between i and j.

Theorem 4 (Jones and West (2005)). Let Pij be a set of paths between nodes i and j on the graph. A path
P ∈ Pij is defined by a set of nodes ordered from i to j, i.e., P := {(p1, . . . , pm)|p1 = i, pm = j,m ≤ d}. We
then have

Σij = (−1)m+1Θp1,p2Θp2,p3 . . .Θpm−1,pm

det
(
Θ\P

)

det (Θ)
(10)

According to the decomposition (10) and det (ΣP) = det
(
Θ\P

)
/ det (Θ), we obtain Theorem 1 in the main

text.

B Optimality Condition of Factor Loading Matrix

The optimality condition of factor loading matrix A is as follows:

Lemma 1 (e.g., Jöreskog 1967). Assuming that we already have Ψ̂, defined as the maximum likelihood estimate
for Ψ, then the maximum likelihood solution for A satisfies the following equation:

(Ψ̂
−1/2

Σ̂Ψ̂
−1/2

)(Ψ̂
−1/2

A) = (Ψ̂
−1/2

A)(I +A>Ψ̂
−1
A).

Suppose that A>Ψ̂
−1
A is a diagonal matrix (This can be achieved by post-multiplying A by an orthogonal

matrix, which does not affect the value of the likelihood), the equation can be regarded as an eigenvalue decom-

position by which we obtain the estimator Â for A as follows:

Â := Ψ̂
1/2
Uk(Λk − I)1/2, (11)

where Λk := diag(λ1, . . . , λk) for the first k largest eigenvalues λ1, . . . , λk of Ψ̂
−1/2

Σ̂Ψ̂
−1/2

, and Uk ∈ Rd×k is
a set of the corresponding eigenvectors.

We now derive the first order condition of A in the above lemma. The derivative of the objective function of
factor analysis in the main text in terms of A is

2(AA> + Ψ)−1A− (AA> + Ψ)−1Σ̂(AA> + Ψ)−1A

= 2(AA> + Ψ)−1(AA> + Ψ− Σ̂)(AA> + Ψ)−1A.

The first order condition is written as

(AA> + Ψ)−1(AA> + Ψ− Σ̂)(AA> + Ψ)−1A = 0.

Multiplying this equation by (AA> + Ψ) from the left, we obtain

(AA> + Ψ− Σ̂)(AA> + Ψ)−1A = 0.

Using Woodbury formula, we see

(AA> + Ψ)−1A

= (Ψ−1 −Ψ−1A(I +A>Ψ−1A)−1A>Ψ−1)A

= Ψ−1A(I − (I +A>Ψ−1A)−1A>Ψ−1A)

= Ψ−1A(I +A>Ψ−1A)−1(I +A>Ψ−1A−A>Ψ−1A)

= Ψ−1A(I +A>Ψ−1A)−1.
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By this transformation, the first order condition can be written as

(AA> + Ψ− Σ̂)Ψ−1A(I +A>Ψ−1A)−1 = 0

(AA> + Ψ− Σ̂)Ψ−1A = 0

AA>Ψ−1A+A− Σ̂Ψ−1A = 0.

To derive the second equation in the above, we multiplied through by (I+A>Ψ−1A) from the right. Arranging
this equation, we obtain

Σ̂Ψ−1A = A(I +A>Ψ−1A>).

Multiplying this equation by Ψ−1/2 from the left, we finally see

(Ψ−1/2Σ̂Ψ−1/2)(Ψ−1/2A) = (Ψ−1/2A)(I +A>Ψ−1A>).

C Spectral Relaxation of Weighted Kernel k-means

Then the objective function of weighted kernel k-means is defined by

k∑

i=1

∑

j∈Ci
ψ̂−1j

∥∥φj − µi

∥∥2
2
, (12)

where Ci for i = 1, . . . , k is an index set of the i-th cluster, and µi is a centroid of the i-th cluster. In this objective
function (12), the squared error between each φi and its centroid is weighted by ψ−1i , which means that if the
i-th dimension of the factor analysis error term ε has a smaller variance, a corresponding φi is penalized more
strongly. Using an indicator matrix Z, in which the (i, j) element takes 1 if the i-th instance belongs to the j-th
cluster or takes 0 otherwise, this function can be re-written as:

trace
{

(Φ−ZM>)>Ψ̂
−1

(Φ−ZM>)
}
, (13)

where M := [ µ1, . . . ,µk ].

We consider a spectral relaxation of this weighted kernel k-means. Given a cluster assignment Ci, the centroid
which minimizes the squared error is the weighted average of the instances:

∑
j∈Ci ψ̂

−1
j φj/

∑
j∈Ci ψ̂

−1
j . Then,

the set of centroids can be written as

M = Φ>Ψ̂
−1
ZC,

where C = diag(1/
∑

j∈C1 ψ̂
−1
j , . . . , 1/

∑
j∈Ck ψ̂

−1
j ). Substituting this into (13), the objective function can be

transformed into

trace
{

(Φ−ZM>)>Ψ̂
−1

(Φ−ZM>)
}

= trace
(
Φ>Ψ̂

−1
Φ−Φ>Ψ̂

−1
ZCZ>Ψ̂

−1
Φ
)
.

= trace
(
Φ>Ψ̂

−1
Φ−C1/2Z>Ψ̂

−1
ΦΦ>Ψ̂

−1
ZC1/2

)
.

Here, we used Z>Ψ̂
−1
Z = C−1, and the first term is now constant. Defining V k := Ψ̂

−1/2
ZC1/2, which

leads V >k V k = C1/2ZΨ̂
−1
ZC1/2 = C1/2C−1C1/2 = I, the following spectral relaxation of the weighted kernel

k-means can be derived:

max
V k∈Rd×k

trace

(
V >k Ψ̂

−1/2
Σ̂Ψ̂

−1/2
V k

)
(14)

s.t. V >k V k = I.
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D Proof for Theorem 2

Theorem 2 can be derived from the optimality condition for the factor loading matrixA written in supplementary
appendix B.

Since the set of eigenvectors corresponding to the k largest eigenvalues of Ψ̂
−1/2

Σ̂Ψ̂
−1/2

is an optimal solution
to (14), we see V k = Uk. We therefore obtain the relation Ẑ = ÂD, where D := C−1/2(Λk − I)−1/2, which is
a diagonal matrix.

E Proof for Theorem 3

Replacing V k in Ẑ (5) (written the main text) by V kQ keeps the objective of kernel k-means (14) optimal,

and we obtain Ẑ = Ψ̂
1/2
V kQC

−1/2. Then, we see ẐC1/2 = Â(Λk − I)−1/2Q (Note that C is diagonal). The

invariance of the likelihood can be easily seen by Ârot(Q
>(Λk − I)Q)Â

>
rot = ÂÂ

>
.

F Formulation of Lap-PCA

Let W be an adjacency matrix of the graph G in which the (i, j) element is Wij = 1 if (i, j) ∈ E , and Wij = 0
otherwise.

For factor analysis and PCA, In our case, the graph structure can be incorporated into the matrix A by the
following formulation: in factor analysis or PCA by

min
A∈Rd×k,Ψ∈Dd

+

(1− α) `(A,Ψ) + α

k∑

k′=1

∑

(i,j)∈E
Wij(Aik′ −Ajk′)

2, (15)

where ` is a loss function (negative log-likelihood), L ∈ Rd×d is the graph Laplacian matrix (see, e.g., Chung,
1997, for detail), and α ∈ [0, 1] is a regularization parameter. For PCA, Ψ has an additional constraint Ψ = σ2I.

In experiments, we chose the best regularization parameter α in (15) out of {0.25, 0.5, 0.75} in terms of each
result.
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