## Supplementary material for "Factor Analysis on a Graph"

## A Proof for Theorem 1

We discuss the relation between the graph connectivity and our kernel $\widehat{\boldsymbol{\Sigma}}$, by using covariance decomposition of Jones and West (2005), which was originally proposed for analyzing paths on a graphical model. The $(i, j)$ element of the covariance matrix can be decomposed as a weighted sum of products of conditional correlations of consecutive node pairs on all possible paths between $i$ and $j$.
Theorem 4 (Jones and West (2005)). Let $\mathcal{P}_{i j}$ be a set of paths between nodes $i$ and $j$ on the graph. A path $\mathcal{P} \in \mathcal{P}_{i j}$ is defined by a set of nodes ordered from i to $j$, i.e., $\mathcal{P}:=\left\{\left(p_{1}, \ldots, p_{m}\right) \mid p_{1}=i, p_{m}=j, m \leq d\right\}$. We then have

$$
\begin{equation*}
\boldsymbol{\Sigma}_{i j}=(-1)^{m+1} \boldsymbol{\Theta}_{p_{1}, p_{2}} \boldsymbol{\Theta}_{p_{2}, p_{3}} \ldots \boldsymbol{\Theta}_{p_{m-1}, p_{m}} \frac{\operatorname{det}\left(\boldsymbol{\Theta}_{\backslash \mathcal{P}}\right)}{\operatorname{det}(\boldsymbol{\Theta})} \tag{10}
\end{equation*}
$$

According to the decomposition (10) and $\operatorname{det}\left(\boldsymbol{\Sigma}_{\mathcal{P}}\right)=\operatorname{det}\left(\boldsymbol{\Theta}_{\backslash \mathcal{P}}\right) / \operatorname{det}(\boldsymbol{\Theta})$, we obtain Theorem 1 in the main text.

## B Optimality Condition of Factor Loading Matrix

The optimality condition of factor loading matrix $\boldsymbol{A}$ is as follows:
Lemma 1 (e.g., Jöreskog 1967). Assuming that we already have $\widehat{\mathbf{\Psi}}$, defined as the maximum likelihood estimate for $\boldsymbol{\Psi}$, then the maximum likelihood solution for $\boldsymbol{A}$ satisfies the following equation:

$$
\left(\widehat{\boldsymbol{\Psi}}^{-1 / 2} \widehat{\boldsymbol{\Sigma}} \widehat{\boldsymbol{\Psi}}^{-1 / 2}\right)\left(\widehat{\boldsymbol{\Psi}}^{-1 / 2} \boldsymbol{A}\right)=\left(\widehat{\boldsymbol{\Psi}}^{-1 / 2} \boldsymbol{A}\right)\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{A}\right)
$$

Suppose that $\boldsymbol{A}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{A}$ is a diagonal matrix (This can be achieved by post-multiplying $\boldsymbol{A}$ by an orthogonal matrix, which does not affect the value of the likelihood), the equation can be regarded as an eigenvalue decomposition by which we obtain the estimator $\widehat{\boldsymbol{A}}$ for $\boldsymbol{A}$ as follows:

$$
\begin{equation*}
\widehat{\boldsymbol{A}}:=\widehat{\boldsymbol{\Psi}}^{1 / 2} \boldsymbol{U}_{k}\left(\boldsymbol{\Lambda}_{k}-\boldsymbol{I}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

where $\boldsymbol{\Lambda}_{k}:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ for the first $k$ largest eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of $\widehat{\boldsymbol{\Psi}}^{-1 / 2} \widehat{\boldsymbol{\Sigma}}^{\boldsymbol{\Psi}}{ }^{-1 / 2}$, and $\boldsymbol{U}_{k} \in \mathbb{R}^{d \times k}$ is a set of the corresponding eigenvectors.
We now derive the first order condition of $\boldsymbol{A}$ in the above lemma. The derivative of the objective function of factor analysis in the main text in terms of $\boldsymbol{A}$ is

$$
\begin{array}{r}
2\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \boldsymbol{A}-\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \widehat{\boldsymbol{\Sigma}}\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \boldsymbol{A} \\
=2\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1}\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}-\widehat{\boldsymbol{\Sigma}}\right)\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \boldsymbol{A}
\end{array}
$$

The first order condition is written as

$$
\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1}\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}-\widehat{\boldsymbol{\Sigma}}\right)\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \boldsymbol{A}=\mathbf{0}
$$

Multiplying this equation by $\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)$ from the left, we obtain

$$
\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}-\widehat{\boldsymbol{\Sigma}}\right)\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \boldsymbol{A}=\mathbf{0}
$$

Using Woodbury formula, we see

$$
\begin{aligned}
& \left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}\right)^{-1} \boldsymbol{A} \\
& =\left(\boldsymbol{\Psi}^{-1}-\boldsymbol{\Psi}^{-1} \boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1}\right) \boldsymbol{A} \\
& =\boldsymbol{\Psi}^{-1} \boldsymbol{A}\left(\boldsymbol{I}-\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right) \\
& =\boldsymbol{\Psi}^{-1} \boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right)^{-1}\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}-\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right) \\
& =\boldsymbol{\Psi}^{-1} \boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right)^{-1}
\end{aligned}
$$

By this transformation, the first order condition can be written as

$$
\begin{aligned}
\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}-\widehat{\boldsymbol{\Sigma}}\right) \boldsymbol{\Psi}^{-1} \boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right)^{-1} & =\mathbf{0} \\
\left(\boldsymbol{A} \boldsymbol{A}^{\top}+\boldsymbol{\Psi}-\widehat{\boldsymbol{\Sigma}}\right) \boldsymbol{\Psi}^{-1} \boldsymbol{A} & =\mathbf{0} \\
\boldsymbol{A} \boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}+\boldsymbol{A}-\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Psi}^{-1} \boldsymbol{A} & =\mathbf{0}
\end{aligned}
$$

To derive the second equation in the above, we multiplied through by $\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}\right)$ from the right. Arranging this equation, we obtain

$$
\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Psi}^{-1} \boldsymbol{A}=\boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}^{\top}\right)
$$

Multiplying this equation by $\Psi^{-1 / 2}$ from the left, we finally see

$$
\left(\boldsymbol{\Psi}^{-1 / 2} \widehat{\boldsymbol{\Sigma}} \boldsymbol{\Psi}^{-1 / 2}\right)\left(\boldsymbol{\Psi}^{-1 / 2} \boldsymbol{A}\right)=\left(\boldsymbol{\Psi}^{-1 / 2} \boldsymbol{A}\right)\left(\boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{A}^{\top}\right)
$$

## C Spectral Relaxation of Weighted Kernel $k$-means

Then the objective function of weighted kernel $k$-means is defined by

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j \in \mathcal{C}_{i}} \widehat{\psi}_{j}^{-1}\left\|\phi_{j}-\boldsymbol{\mu}_{i}\right\|_{2}^{2} \tag{12}
\end{equation*}
$$

where $\mathcal{C}_{i}$ for $i=1, \ldots, k$ is an index set of the $i$-th cluster, and $\boldsymbol{\mu}_{i}$ is a centroid of the $i$-th cluster. In this objective function (12), the squared error between each $\phi_{i}$ and its centroid is weighted by $\psi_{i}^{-1}$, which means that if the $i$-th dimension of the factor analysis error term $\boldsymbol{\epsilon}$ has a smaller variance, a corresponding $\phi_{i}$ is penalized more strongly. Using an indicator matrix $\boldsymbol{Z}$, in which the $(i, j)$ element takes 1 if the $i$-th instance belongs to the $j$-th cluster or takes 0 otherwise, this function can be re-written as:

$$
\begin{equation*}
\operatorname{trace}\left\{\left(\boldsymbol{\Phi}-\boldsymbol{Z} \boldsymbol{M}^{\top}\right)^{\top} \hat{\boldsymbol{\Psi}}^{-1}\left(\boldsymbol{\Phi}-\boldsymbol{Z} \boldsymbol{M}^{\top}\right)\right\} \tag{13}
\end{equation*}
$$

where $\boldsymbol{M}:=\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{k}\right]$.
We consider a spectral relaxation of this weighted kernel $k$-means. Given a cluster assignment $\mathcal{C}_{i}$, the centroid which minimizes the squared error is the weighted average of the instances: $\sum_{j \in \mathcal{C}_{i}} \widehat{\psi}_{j}^{-1} \boldsymbol{\phi}_{j} / \sum_{j \in \mathcal{C}_{i}} \widehat{\psi}_{j}^{-1}$. Then, the set of centroids can be written as

$$
\boldsymbol{M}=\boldsymbol{\Phi}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{Z} \boldsymbol{C}
$$

where $\boldsymbol{C}=\operatorname{diag}\left(1 / \sum_{j \in \mathcal{C}_{1}} \widehat{\psi}_{j}^{-1}, \ldots, 1 / \sum_{j \in \mathcal{C}_{k}} \widehat{\psi}_{j}^{-1}\right)$. Substituting this into (13), the objective function can be transformed into

$$
\begin{aligned}
& \operatorname{trace}\left\{\left(\boldsymbol{\Phi}-\boldsymbol{Z} \boldsymbol{M}^{\top}\right)^{\top} \widehat{\boldsymbol{\Psi}}^{-1}\left(\boldsymbol{\Phi}-\boldsymbol{Z} \boldsymbol{M}^{\top}\right)\right\} \\
& =\operatorname{trace}\left(\boldsymbol{\Phi}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{\Phi}-\boldsymbol{\Phi}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{Z} \boldsymbol{C} \boldsymbol{Z}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{\Phi}\right) \\
& =\operatorname{trace}\left(\boldsymbol{\Phi}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{\Phi}-\boldsymbol{C}^{1 / 2} \boldsymbol{Z}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{Z} \boldsymbol{C}^{1 / 2}\right)
\end{aligned}
$$

Here, we used $\boldsymbol{Z}^{\top} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{Z}=\boldsymbol{C}^{-1}$, and the first term is now constant. Defining $\boldsymbol{V}_{k}:=\widehat{\boldsymbol{\Psi}}^{-1 / 2} \boldsymbol{Z} \boldsymbol{C}^{1 / 2}$, which leads $\boldsymbol{V}_{k}^{\top} \boldsymbol{V}_{k}=\boldsymbol{C}^{1 / 2} \boldsymbol{Z} \widehat{\boldsymbol{\Psi}}^{-1} \boldsymbol{Z} \boldsymbol{C}^{1 / 2}=\boldsymbol{C}^{1 / 2} \boldsymbol{C}^{-1} \boldsymbol{C}^{1 / 2}=\boldsymbol{I}$, the following spectral relaxation of the weighted kernel $k$-means can be derived:

$$
\begin{align*}
\max _{\boldsymbol{V}_{k} \in \mathbb{R}^{d \times k}} & \operatorname{trace}\left(\boldsymbol{V}_{k}^{\top} \widehat{\boldsymbol{\Psi}}^{-1 / 2} \widehat{\boldsymbol{\Sigma}} \widehat{\boldsymbol{\Psi}}^{-1 / 2} \boldsymbol{V}_{k}\right)  \tag{14}\\
\text { s.t. } & \boldsymbol{V}_{k}^{\top} \boldsymbol{V}_{k}=\boldsymbol{I}
\end{align*}
$$

## D Proof for Theorem 2

Theorem 2 can be derived from the optimality condition for the factor loading matrix $\boldsymbol{A}$ written in supplementary appendix B.
Since the set of eigenvectors corresponding to the $k$ largest eigenvalues of $\widehat{\Psi}^{-1 / 2} \widehat{\boldsymbol{\Sigma}} \widehat{\Psi}^{-1 / 2}$ is an optimal solution to (14), we see $\boldsymbol{V}_{k}=\boldsymbol{U}_{k}$. We therefore obtain the relation $\widehat{\boldsymbol{Z}}=\widehat{\boldsymbol{A}} \boldsymbol{D}$, where $\boldsymbol{D}:=\boldsymbol{C}^{-1 / 2}\left(\boldsymbol{\Lambda}_{k}-\boldsymbol{I}\right)^{-1 / 2}$, which is a diagonal matrix.

## E Proof for Theorem 3

Replacing $\boldsymbol{V}_{k}$ in $\widehat{\boldsymbol{Z}}(5)$ (written the main text) by $\boldsymbol{V}_{k} \boldsymbol{Q}$ keeps the objective of kernel $k$-means (14) optimal, and we obtain $\widehat{\boldsymbol{Z}}=\widehat{\boldsymbol{\Psi}}^{1 / 2} \boldsymbol{V}_{k} \boldsymbol{Q} \boldsymbol{C}^{-1 / 2}$. Then, we see $\widehat{\boldsymbol{Z}} \boldsymbol{C}^{1 / 2}=\widehat{\boldsymbol{A}}\left(\boldsymbol{\Lambda}_{k}-\boldsymbol{I}\right)^{-1 / 2} \boldsymbol{Q}$ (Note that $\boldsymbol{C}$ is diagonal). The invariance of the likelihood can be easily seen by $\widehat{\boldsymbol{A}}_{\text {rot }}\left(\boldsymbol{Q}^{\top}\left(\boldsymbol{\Lambda}_{k}-\boldsymbol{I}\right) \boldsymbol{Q}\right) \widehat{\boldsymbol{A}}_{\text {rot }}^{\top}=\widehat{\boldsymbol{A}} \widehat{\boldsymbol{A}}^{\top}$.

## F Formulation of Lap-PCA

Let $\boldsymbol{W}$ be an adjacency matrix of the graph $\mathcal{G}$ in which the $(i, j)$ element is $W_{i j}=1$ if $(i, j) \in \mathcal{E}$, and $W_{i j}=0$ otherwise.

For factor analysis and PCA, In our case, the graph structure can be incorporated into the matrix $\boldsymbol{A}$ by the following formulation: in factor analysis or PCA by

$$
\begin{equation*}
\min _{\boldsymbol{A} \in \mathbb{R}^{d \times k}, \mathbf{\Psi} \in \mathcal{D}_{+}^{d}}(1-\alpha) \ell(\boldsymbol{A}, \mathbf{\Psi})+\alpha \sum_{k^{\prime}=1}^{k} \sum_{(i, j) \in \mathcal{E}} W_{i j}\left(A_{i k^{\prime}}-A_{j k^{\prime}}\right)^{2} \tag{15}
\end{equation*}
$$

where $\ell$ is a loss function (negative log-likelihood), $\boldsymbol{L} \in \mathbb{R}^{d \times d}$ is the graph Laplacian matrix (see, e.g., Chung, 1997, for detail), and $\alpha \in[0,1]$ is a regularization parameter. For PCA, $\boldsymbol{\Psi}$ has an additional constraint $\boldsymbol{\Psi}=\sigma^{2} \boldsymbol{I}$.
In experiments, we chose the best regularization parameter $\alpha$ in (15) out of $\{0.25,0.5,0.75\}$ in terms of each result.

## References

M. Ashburner. Gene ontology: Tool for the unification of biology. Nature Genetics, 25:25-29, 2000.
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
D. M. Boyd and N. B. Ellison. Social network sites: Definition, history, and scholarship. Journal of ComputerMediated Communication, 13(1):210-230, 2007.
E. G. Cerami and et al. Pathway commons, a web resource for biological pathway data. Nucleic Acids Research, 39:685-690, 2011.
F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
R. Cohen and S. Havlin. Complex networks: Structure, Robustness and Function. Cambridge University Press, 2010.
I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: Spectral clustering and normalized cuts. In Proc. of the 10th ACM SIGKDD, pages 551-556. ACM, 2004.
A. B. Goldberg, X. Zhu, and S. J. Wright. Dissimilarity in graph-based semi-supervised classification. In M. Meila and X. Shen, editors, Proceedings of the 11th International Conference on Artificial Intelligence and Statistics, volume 2, pages 155-162. JMLR.org, 2007.
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel method for the two-sampleproblem. In Advances in NIPS 19, pages 513-520. MIT Press, 2007.
H. H. Harman. Modern Factor Analysis. The university of chicago press, 1960.
T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(suppl 1):S233-S240, 2002.
B. Jiang, C. Ding, B. Luo, and J. Tang. Graph-Laplacian PCA: Closed-form solution and robustness. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3492-3498, 2013.
I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2002.
B. Jones and M. West. Covariance decomposition in undirected gaussian graphical models. Biometrika, 92(4): 779-786, 2005.
K. G. Jöreskog. Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4):443-482, 1967.
H. F. Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3):187-200, 1958.
M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1): 27-30, 2000.
B. Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. PHYSICAL REVIEW E, 83:016107, Jan 2011.
R. Kosala and H. Blockeel. Web mining research: A survey. SIGKDD Explorations Newsletter, 2(1):1-15, June 2000.
S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics, 22(1): 79-86, 1951.
C. Li and H. Li. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24(9):1175-1182, 2008.
M. Meila and J. Shi. A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artifical Intelligence and Statistics. Morgan Kaufmann, 2001.
M. E. J. Newman. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23):8577-8582, 2006.
A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in NIPS 14, pages 849-856. MIT Press, 2001.
J. S.-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge university press, 2004.
M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal components analysis of a graph, and its relationships to spectral clustering. In Proc. of the $15 t h$ ECML, volume 3201 of $L N C S$, pages $371-383$. Springer Berlin Heidelberg, 2004.
G. Sales, E. Calura, D. Cavalieri, and C. Romualdi. graphite - a bioconductor package to convert pathway topology to gene network. BMC Bioinformatics, 13(1):20, 2012.
T. Sandler, J. Blitzer, P. P. Talukdar, and L. H. Ungar. Regularized learning with networks of features. In Advances in NIPS 21, pages 1401-1408, 2008.
S. E. Schaeffer. Survey: Graph clustering. Computer Science Review, 1(1):27-64, Aug. 2007.
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.
A. J. Smola and I. R. Kondor. Kernels and regularization on graphs. In Proceedings of the Annual Conference on Computational Learning Theory, pages 144-158, 2003.
R. Tibshirani and J. Taylor. The solution path of the generalized lasso. The Annals of Statistics, 39(3):1335-1371, 2011.
M. J. van de Vijver and et al. A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine, 347(25):1999-2009, 2002.
U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley Publishing, 1990.
L. Wu, X. Ying, X. Wu, A. Lu, and Z.-H. Zhou. Spectral analysis of $k$-balanced signed graphs. In Advances in Knowledge Discovery and Data Mining - 15th Pacific-Asia Conference (PAKDD), volume 6635 of Lecture Notes in Computer Science, pages 1-12. Springer, 2011.
S. Yang, L. Yuan, Y.-C. Lai, X. Shen, P. Wonka, and J. Ye. Feature grouping and selection over an undirected graph. In Proc. of the 18th ACM SIGKDD, pages 922-930. ACM, 2012.
H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Spectral relaxation for k-means clustering. In Advances in NIPS 14, pages 1057-1064. MIT Press, 2001.
M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai. Graph regularized sparse coding for image representation. Image Processing, IEEE Transactions on, 20(5):1327-1336, 2011.
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems (NIPS) 16. MIT Press, 2004.
X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In T. Fawcett and N. Mishra, editors, Proceedings of the 20th International Conference on Machine Learning (ICML), pages 912-919. AAAI Press, 2003.

