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Supplementary material:
Riemannian stochastic quasi-Newton algorithm with variance

reduction and its convergence analysis

A Manifolds in numerical comparison

This section gives a brief explanation of the manifolds that appear in the numerical comparisons in Section 5.

A.1 SPD manifold

Let Sd
++ be the manifold of d× d SPD matrices [35]. If we endow Sd

++ with the Riemannian metric [36] defined
by

⟨ξX, ηX⟩X = trace(ξXX−1ηXX−1), ξX, ηX ∈ TXSd
++,

at X ∈ Sd
++, the SPD manifold Sd

++ becomes a Riemannian manifold. The explicit formula for the exponential
mapping with repsect to this metric is given by

ExpX(ξX) = X1/2 exp(X−1/2ξXX−1/2)X1/2

for any ξX ∈ TXSd
++ and X ∈ Sd

++, where exp(·) is the matrix exponential function. On the other hand,
RX(ξX) = X + ξX + 1

2ξXX−1ξX proposed in [37] is a retraction, which is symmetric positive-definite for all
ξX ∈ TXSd

++ and X ∈ Sd
++. The parallel translation on Sd

++ along ηX is given by

PηX(ξX) = X1/2YX−1/2ξXX−1/2YX1/2,

where Y = exp(X−1/2ηXX−1/2/2). A more efficient algorithm that constructs an isometric vector transport is
proposed based on a field of orthonormal tangent bases [31] while satisfying the locking condition in Assumption
3. We use it in the experiment, and the details are in [21, 31]. The logarithm map of Y at X is given by

LogX(Y) = X1/2 log(X−1/2YX−1/2)X1/2 = log(YX−1)X,

where log(·) is the matrix logarithm function.

A.2 Grassmann manifold

A point on the Grassmann manifold is an equivalence class represented by a d × r orthogonal matrix U with
orthonormal columns, i.e., UTU = I. Two d×r orthogonal matrices express the same element on the Grassmann
manifold if they are mapped to each other by the right multiplication of an r × r orthogonal matrix O ∈ O(r).
Equivalently, an element of Gr(r, d) is identified with a set of d×r orthogonal matrices [U] := {UO : O ∈ O(r)}.
That is, Gr(r, d) := St(r, d)/O(r), where St(r, d) is the Stiefel manifold, which is the set of matrices of size d× r
with orthonormal columns. The Grassmann manifold has the structure of a Riemannian quotient manifold [1,
Section 3.4].

The exponential mapping for the Grassmann manifold from U(0) := U ∈ Gr(r, d) in the direction of ξ ∈
TU(0)Gr(r, d) is given in a closed form as [38]

U(t) = [U(0)V W]

[
cos tΣ
sin tΣ

]
VT ,

where ξ = WΣVT is the singular value decomposition (SVD) of ξ with rank r. The sin(·) and cos(·) operations
are performed only on the diagonal entries. The parallel translation of ζ ∈ TU(0)Gr(r, d) on the Grassmann

manifold along γ(t) with γ̇(0) = WΣVT is given in a closed form by

ζ(t) =

(
[U(0)V W]

[
− sin tΣ
cos tΣ

]
WT + (I−WWT )

)
ζ.
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The logarithm map of U(t) at U(0) on the Grassmann manifold is given by

LogU(0)(U(t)) = W arctan(Σ)VT ,

where WΣVT is the SVD of (U(t) − U(0)U(0)TU(t))(U(0)TU(t))−1 with rank r. Furthermore, a popular
retraction is

RU(0)(ξ) = qf(U(0) + tξ) (= U(t)),

which extracts the orthonormal factor based on the QR decomposition, and a popular vector transport uses an
orthogonal projection of ξ to the horizontal space at U(t), i.e., (I−U(t)U(t)T )ξ [1].

B Two-loop Hessian inverse update algorithm

This section summarizes the Riemannian two-loop Hessian inverse updating algorithm in Algorithm A.1. This
is a straightforward extension of that in the Euclidean space explained in [27, Section 7.2].

Algorithm A.1 Hessian inverse update

Require: Memory depth τ , correction pairs {sku, yku}k−1
u=k−τ , gradient p.

1: p0 = p.

2: H0
k = χkid =

⟨skk−1,y
k
k−1⟩

⟨yk
k−1,y

k
k−1⟩

id.

3: for u = 0, 1, 2, . . . , τ − 1 do
4: ρk−u = 1/⟨skk−u−1, y

k
k−u−1⟩.

5: αu = ρk−u−1⟨skk−u−1, pu⟩.
6: pu+1 = pu − αuykk−u−1.
7: end for
8: q0 = H0

kpτ .
9: for u = 0, 1, 2, . . . , τ − 1 do

10: βu = ρk−τ+u⟨ykk−τ+u, qu⟩.
11: qu+1 = qu + (ατ−u−1 − βu)skk−τ+u.
12: end for
13: q = qτ .

C Proofs of convergence analysis on non-convex functions

This section presents proofs of the global convergence analysis on non-convex functions. In this supplement,
only sketches of some proofs are provided, or some proofs are omitted. Hereinafter, we use E[·] to express
expectation with respect to the joint distribution of all random variables. For example, wt (= wk

t ) is determined
by the realizations of the independent random variables {i00, i01, . . . , i0m0−1, . . . , i

k
0 , i

k
1 , . . . , i

k
t−1}, and the total

expectation of f(wt) for any t ∈ N can be taken as E[f(wt)] = Ei00
Ei01

· · ·Eikt−1
[f(wt)]. We also use Eit [·] to

denote an expected value taken with respect to the distribution of the random variable it. Moreover, we omit
the subscript w̃k for a Riemannian metric ⟨·, ·⟩w̃k when the tangent space to be considered is clear.

C.1 Eigenvalue bounds of Hk
t on non-convex functions

We present an essential proposition that bounds the eigenvalues of Hk
t at wt, i.e., Hk

t := T wt

w̃k ◦ H̃k ◦ (T wt

w̃k )−1. To

this end, we use the Hessian approximation operator B̃k = (H̃k)−1 instead of H̃k. As mentioned in the algorithm
description, we consider curvature information for H̃k at w̃k, i.e., every outer epoch, and reuse this H̃k in the
calculation of the second-order modified stochastic gradient Hk

t ξt at wt. Thus, the proof consists of two steps as
follows:

1. We first address the bounds of H̃k at w̃k. The main task of the proof is to bound the Hessian operator
B̃k = (H̃k)−1.
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2. We bound Hk
t at wt based on the bounds of H̃k at w̃k.

It should be noted that in this subsection, the curvature pair {skj , ykj }
k−1
j=k−L ∈ Tw̃kM is simply denoted by

{sj , yj}k−1
j=k−L.

We first state a lemma for the bound of ⟨yk,yk⟩
⟨sk,yk⟩ .

Lemma C.1. Suppose Assumption 1 holds. There exists a constant Υnc > 0 such that for all k

⟨yk, yk⟩
⟨sk, yk⟩

≤ Υnc.

Proof. We directly obtain ∥sk∥2

⟨yk,sk⟩ ≤ 1
ϵ from (4) in the cautious update. Then, we obtain the upper bound of

⟨yk,yk⟩
⟨sk,yk⟩ as below taking also into account the fact ∥yk∥ ≤ c1∥sk∥ (Lemma 3.9 in [21]), where c1 > 0 is a contant,

⟨yk, yk⟩
⟨sk, yk⟩

=
∥sk∥2

⟨sk, yk⟩
· ∥yk∥

2

∥sk∥2
≤ c21

ϵ
(= Υnc).

Denoting c21/ϵ as Υnc, this completes the proof.

Next, we bound trace( ˆ̃B) to bound the eigenvalues of H̃k, where a hat denotes the coordinate expression of the
operator. The basic structure of the proof follows those of stochastic L-BFGS methods in the Euclidean space,
e.g., [25, 16, 15]. Nevertheless, some special treatment is required in light of the Riemannian setting. It should

be noted that trace( ˆ̃B) does not depend on the chosen basis.

Lemma C.2 (Bounds of trace of B̃k). Consider the recursion of B̃k
u as

B̃k
u+1 = B̌k

u − B̌k
usk−τ+u(B̌k

usk−τ+u)♭

(B̌k
usk−τ+u)♭sk−τ+u

+
yk−τ+ty♭k−τ+u

y♭k−τ+usk−τ+u
, (A.1)

where B̌k
u = T w̃k

w̃k−1 ◦ B̃k
u ◦ (T w̃k

w̃k−1)−1 for u = 0, . . . , τ − 1. The Hessian approximation at the k-th outer epoch is

B̃k = B̃k
τ when u = τ − 1. Then, consider the Hessian approximation B̃k = B̃k

τ in (A.1) with B̃k
0 = ⟨yk,yk⟩

⟨sk,yk⟩ id. If

Assumption 1 holds, trace( ˆ̃Bk) in a coordinate expression of B̃k is uniformly upper bounded for all k ≥ 1 as

trace( ˆ̃Bk) ≤ (M + τ)Υnc,

where M is the dimension of M. Here, a hat expression represents the coordinate expression of an operator.

Proof. The bound of trace( ˆ̃Bk) is first obtained from Lemma C.1. Then, calculating recursively the obtained

relation, we can bound trace( ˆ̃Bk) by the initial value of trace( ˆ̃Bk). Finally, bounding the initial value of trace( ˆ̃Bk)
by MΥnc, we obtain the claim. Since the proof can be completed in parallel to the Euclidean case [17] and the
Riemannian case [29], we omit the complete proof.

We further provide the bounds of H̃k.

Lemma C.3 (Bounds of H̃k on non-convex functions). If Assumption 1 holds, the eigenvalues of H̃k is bounded
by some positive constants γnc and Γnc for all k ≥ 1 as

γncid ≼ H̃k ≼ Γncid.

Proof. The proof first provides the bound of the sum of the eigenvalues of ˆ̃Bk from Lemma C.2. Then, the bound
of H̃k is given. The proof for the lower bound is obtained in parallel to the Euclidean case [25]. Moreover, the
upper bound is given by extending the proof of [15]. We omit the complete proof.

Finally, we present the proposition for the bounds of Hk
t on non-convex functions.
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Proposition C.4 (Bounds of Hk
t on non-convex functions). Consider the operator Hk

t := T wt

w̃k ◦H̃k ◦(T wt

w̃k )−1. If
Assumption 1 holds, the range of eigenvalues of Hk

t is bounded below by γnc and above by Γnc for all k ≥ 1, t ≥ 1,
i.e.,

γncid ≼ Hk
t ≼ Γncid, (A.2)

where γnc and Γnc are some positive constants.

Proof. Noting that Hk
t := T wt

w̃k ◦ H̃k ◦ (T wt

w̃k )−1, where η̃t = R−1
w̃k(wt), and that T wt

w̃k is a linear transformation

operator, we can conclude that the eigenvalues of Hk
t and H̃k are identical. In fact, let hat expressions be

representation matrices with some bases of TwtM and Tw̃kM. We then have the relation det(µI − Ĥk
t ) =

det(µI− ˆ̃Hk). Consequently, Lemma C.3 directly yields the claim. This completes the proof.

C.2 Proof of global convergence analysis (Theorem 4.1)

Proof. The proof is provided by extending that of [22] with careful treatment of Hk
t . We also refer to that of

[39] in the Euclidean space. We omit the complete proof.

C.3 Proof of global convergence rate analysis (Theorem 4.2)

The global convergence rate analysis on non-convex functions in the Euclidean SVRG has been proposed in [12].
Its further extensions to the stochastic L-BFGS setting and the Riemannian setting have been proposed in [15]
and [23], respectively. The proof in this subsection mainly follows that in [12] by integrating its two extensions
in [15, 23]. Moreover, retraction and vector transport are carefully treated in the proof. Finally, it should be
noted that, since this section discusses the k-th epoch, we omit the superscript ‘k’. Moreover, we also omit the
subscript wt for a Riemannian metric ⟨·, ·⟩wt when its point is apparent.

C.3.1 Essential propositions

This subsection first presents an essential lemma concerning the bound of Eit [∥ξt∥2], where the vector transport
is carefully handled. Proposition C.6 is then presented by extending [12, 15, 23]. It should be noted that we
carefully treat the difference between the exponential mapping and retraction for Proposition C.6.

We first present an essential lemma.

Lemma C.5. Suppose Assumption 1, which guarantees Lemmas 3.9, 3.10, and 3.11 for w̄ = w∗. Let Ll > 0 be
a constant such that

∥P (γ)wz (gradfi(z))− gradfi(w)∥w ≤ Lldist(z, w), w, z ∈ Θ, i = 1, 2, . . . , n.

The existence of such an Ll is guaranteed by Lemma 3.11. Then, the upper bound of the variance of Eit [∥ξt∥2]
is given by

Eit [∥ξt∥2] ≤ 4(L2
l + τ22C

2θ2)(dist(wt, w̃))
2 + 2∥gradf(wt)∥2.

Proof. The proof is similar to that of Lemma 5.8 in [22]. We omit the detail of the proof.

Proposition C.6. Let M be a Riemannian manifold and w∗ ∈ M be a non-degenerate local minimizer of f
(i.e., gradf(w∗) = 0, and the Hessian Hessf(w∗) of f at w∗ is positive definite). Suppose Assumption 1 holds.
Let the constants θ be in (5), τ1 and τ2 be in (6), Ll be in (7), γnc and Γnc be in (8), and L be in Lemma 3.4.
For ct, ct+1, νt > 0, we set

ct = ct+1

(
1 + αtνt + 4ζα2

t (L
2
l + τ22C

2θ2)
Γ2
nc

τ21

)
+ 2α2

tL(L
2
l + τ22C

2θ2)Γ2
nc. (A.3)

We also define

∆t := αt

(
γnc −

ct+1Γ2
nc

νtτ21
− αtLΓ

2
nc − 2ct+1ζαt

Γ2
nc

τ21

)
. (A.4)
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Let αt, νt, and ct+1 be defined such that it holds ∆t > 0. It then follows that for any sequence {w̃t} generated
by Algorithm 1 with Option I-B and with a fixed step size αt := α and mk := m converging to w∗, the expected
squared norm of the Riemannian gradient, gradf(wt), satisfies the bound as

E[∥gradf(wt)∥2] ≤ Vt − Vt+1

∆t
, (A.5)

where Vt := E[f(wt) + ct(dist(w̃, wt))2] for 0 ≤ k ≤ K − 1.

Proof. The sketch of the proof is as follows: We first obtain the relation between E[f(wt+1)] and f(wt) from
Lemma 3.4. We then bound the expected squared distance between w̃ and wt+1, i.e., E[(dist(w̃, wt+1))2], from
Lemma 6 in [40] by considering (6) in Lemma 3.10 and Proposition C.4. We also use Eit [Htξt] = Htgradf(wt).
Next, we introduce a function defined as Vt := E[f(wt) + ct(dist(w̃, wt))2], which measures how far the given
parameter wt is from w̃ and the objective function value. Finally, calculating Vt+1 from Lemma C.5, we obtain
the claim.

The following proposition is very similar to Theorem 2 in [12].

Proposition C.7 (Theorem 2 in [12]). Let M be a Riemannian manifold and w∗ ∈ M be a non-degenerate
local minimizer of f . Consider Algorithm 1 with Option I-B and II-A, and suppose Assumption 1 holds. Let
the constants θ be in (5), τ1 and τ2 be in (6), and Ll be in (7). γnc and Γnc are the constants in (8). Let
cm = 0, αt = α > 0, νt = ν > 0, and ct is defined as (A.3) such that ∆t defined in (A.4) satisfies ∆t > 0 for
0 ≤ t ≤ m− 1. Define δt := mint∆t. Let T be mK. It then follows that for the output wsol of Algorithm 1,

E[∥gradf(wsol)∥2wsol
] ≤ f(w0)− f(w∗)

T δt
. (A.6)

Proof. Because the proof is identical to those in [12, 15, 23], we omit the detail. The complete proof is there.
A sketch of the proof is as follows: We first telescope the sum of (A.5) from t = 0 to t = m − 1 by introducing
δt, and estimate its upper bound from the difference between V s

0 and V m
0 . After showing that this difference is

equivalent to the expected difference between f(w̃k) and f(w̃k+1), summing up from k = 0 to k = K − 1, we
obtain the desired claim.

C.3.2 Main proof of Theorem 4.2

Proof. The proof is based on the extensions of results in [12, 15, 23]. We omit the complete proof. A sketch
of the proof is as follows: From (A.4) in Proposition C.6, we need to consider the upper bound of ct defined in
(A.3). To this end, the upper bound of c0 is first derived. For this particular purpose, denoting, for simplicity,

ϕ = αν+4ζα2(L2
l + τ22C

2θ2)Γ
2
nc

τ2
1

and ω = τ2Cθ, we first give the bound of ϕ as ϕ ∈
(

µ0ζ
1−2a2

n3a1/2 , 5µ0ζ
1−2a2

n3a1/2

)
. Then,

considering the recurrence relation ct = ct+1(1 + ϕ) + 2α2L(L2
l + ω2)Γ2

nc, we obtain the bound of c0. Next, we
attempt to estimate the lower bound of δt, i.e., mint∆t, where the bound of c0 is used. Finally, substituting the
lower bound of δt into (A.6) in Proposition C.7 completes the proof.

D Proof of local convergence analysis on retraction strongly convex
functions

This section presents a local convergence rate analysis in a neighborhood of a local minimum for retraction
strongly convex functions. This local setting is very common and standard in manifold optimization.

D.1 Eigenvalue bounds of Hk
t on retraction strongly convex functions

We first bound trace( ˆ̃B) and det( ˆ̃B) to bound the eigenvalues of H̃k, where a hat denotes the coordinate expression

of the operator. The bound of trace( ˆ̃B) is identical to that of the non-convex case in Lemma C.2. Therefore, we

concentrate on the bound of det( ˆ̃B). As in Lemma C.2, the proof follows that of stochastic L-BFGS methods in
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the Euclidean space, e.g., [25, 16, 17]. Similarly to Section C.1, it should be noted that trace( ˆ̃B) and det( ˆ̃B) do
not depend on the chosen basis.

Lemma D.1 (Bounds of trace and determinant of B̃k). Consider the recursion of B̃k
u defined in (A.1). If

Assumptions 1 and 3 hold, trace( ˆ̃Bk) in a coordinate expression of B̃k is uniformly upper bounded for all k ≥ 1,

trace( ˆ̃Bk) ≤ (M + τ)Υc,

where M is the dimension of M. Similarly, if Assumptions 1 and 3 hold, det( ˆ̃Bk) in a coordinate expression of
B̃k is uniformly lower bounded for all k as

det( ˆ̃Bk) ≥ υM

[
µ

(M + τ)Υc

]τ
.

Here, a hat expression represents the coordinate expression of an operator.

Proof. The proof follows that of the Euclidean case [25, 16, 17]. We omit the proof here.

We next prove a lemma for the bound of H̃k.

Lemma D.2 (Bound of H̃k on retraction strongly convex functions). If Assumptions 1 and 3 hold, the eigen-
values of H̃k are bounded by γc and Γc with 0 < γc < Γc < ∞ uniformly for all k ≥ 1 as

γcid ≼ H̃k ≼ Γcid.

Proof. The proof is given by exploiting Lemma D.1. The complete proof follows that of the Euclidean case
[25, 16, 17] and we omit the detail of it.

Finally, we give the bounds of Hk
t on retraction strongly convex functions.

Proposition D.3 (Bounds of Hk
t for retraction strongly convex functions). Consider the operator Ȟk := T wt

w̃k ◦
H̃k ◦ (T wt

w̃k )−1. If Assumptions 1 and 3 hold, the range of eigenvalues of Hk
t is bounded by some positive constants

γc and Γc with γc < Γc uniformly for all k ≥ 1, t ≥ 1, i.e.,

γcid ≼ Hk
t ≼ Γcid.

Proof. Like Proposition C.4, we can give the proof by exploiting Lemma D.2. Since the proof is identical to that
of Proposition C.4, the complete proof is omitted.

D.2 Proof of local convergence rate analysis (Theorem 4.3)

Proof. The sketch of the proof is as follows: From Lemma 3.4, we first obtain the relation betweenf(wt+1) and
f(wt). Taking expectation of the relation with regard to it, we obtain the bound of Eit [f(wt+1)]− f(wt) using
the fact that Eit [Hk

t ξt] = Hk
t gradf(wt) and Proposition D.3. Next, by exploiting the property of the retraction

strongly convex, we obtain the new bound of Eit [f(wt+1)]− f(wt) with the constant µ of the retraction strongly
convex. Plugging the bound of Eit [∥ξkk∥2] (Lemma 5.12 in [22]) into this bound, the bound of Eit [f(wt+1)]−f(wt)
is furthere obtained. Here, using Lemma 3.5 with gradf(w∗) = 0 and Lemma 3.10, we obtain the lower bounds
of f(wt)−f(w∗) and f(w̃k)−f(w∗). Therefore, plugging these into the bound of Eit [f(wt+1)]−f(wt), we obtain
the new bound. Finally, taking expectations over all random variables and further summing over t = 0, . . . ,m−1
of the inner loop on the k-th epoch, we obtain the upper bound of E[f(w̃k+1) − f(w∗)]. Thus, we obtain the
claim.
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E Additional numerical experiments

In this section, we show additional numerical experiments which do not appear in the main text.

E.1 Matrix completion problem on synthetic datasets

E.1.1 Additional results

This section shows the results of six problem instances. We show only the loss on a test set Φ, which is different
from the training set Ω. The loss on the test set demonstrates the convergence speed to a satisfactory prediction
accuracy of missing entries.

Case MC-S1: We first show the results of the comparison when the number of samples n = 5000, the dimension
d = 200, the memory size L = 10, the oversampling ratio (OS) is 8, and the condition number (CN) is 50. We
also add Gaussian noise σ = 10−10. Figures A.1 show the results of four runs excluding the result shown in the
main text, which corresponds to ”run 1.” They show superior performance to other algorithms.

Case MC-S2: influence on low sampling. We look into problem instances from scarcely sampled data,
e.g. OS is 4. Other conditions are the same as in Case MC-S1. From Figures A.2, we see that the proposed
algorithm gives much better and stabler performance against other algorithms.

Case MC-S3: influence on ill conditioning. We consider the problem instances with higher condition
number (CN) 100. The other conditions are the same as in Case MC-S1. Figures A.3 show the superior
performances of the proposed algorithm against other algorithms.

Case MC-S4: influence on higher noise. We consider noisy problem instances, where σ = 10−6. The other
conditions are the same as in Case MC-S1. Figures A.4 show that the convergent MSE values are much higher
than the other cases. Then, we can see the superior performance of the proposed R-SQN-VR against other
algorithms.

Case MC-S5: influence on higher rank. We consider problem instances with higher rank, where r = 10.
The other conditions are the same as in Case MC-S1. From Figures A.5, the proposed R-SQN-VR still shows
superior performance to other algorithms. Grouse indicates a faster decrease in the MSE at the begging of the
iterations. However, the convergent MSE values are much higher than those of the other methods.
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Figure A.1: Performance evaluations on low-rank MC problem (Case MC-S1: baseline.).
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Figure A.2: Performance evaluations on low-rank MC problem (Case MC-S2: low sampling.).
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Figure A.3: Performance evaluations on low-rank MC problem (Case MC-S3: ill-conditioning.).
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Figure A.4: Performance evaluations on low-rank MC problem (Case MC-S4: noisy data.).
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Figure A.5: Performance evaluations on low-rank MC problem (Case MC-S5: higher rank.).
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E.1.2 Processing time experiments

The results in terms of the processing time are presented.

Case MC-S7: Comparison in terms of processing time. Because one major concern of second-order
algorithms is, in general, higher computational processing load than first-order algorithms, we additionally show
the results in terms of processing times. This evaluation addresses only R-SGD, R-SVRG, and R-SQN-VR
because their code structures are similar, whereas the batch-based algorithms, i.e., R-SD and R-L-BFGS, have
completely different implementations. Figures A.6 (a)-(e) show the results of the relationship between test MSE
and processing time [sec]. From the figures, as expected, R-SGD was much faster in terms of iterations than
other algorithms. However, it should be noted that R-SGD suffered from the problem whereby it heavily reduced
convergence speed around the solution as reported in the literature. Comparing R-SQN-VR with R-SVRG, R-
SQN-VR still yielded better performance, although R-SQN-VR required an additional vector transport of a
gradient in each inner iteration and L vector transports of the curvature pairs at every outer epoch than R-
SVRG. Overall, R-SQN-VR outperformed R-SGD and R-SVRG in terms of processing time. Consequently, we
also confirmed the effectiveness of the proposed R-SQN-VR from the perspective of processing time.
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(a) Case MC-S1:

baseline.
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(b) Case MC-S2:

low sampling.
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(c) Case MC-S3:

ill-conditioning.
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(d) Case MC-S4:

noisy data.
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(e) Case MC-S5:

higher rank.

Figure A.6: Performance evaluations on low-rank MC problem (Case MC-S7).
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Finally, Figure A.7 shows the results when the memory size of L was changed in R-SQN-VR. Comparing the
results with those in Figure 1 (h), cases of smaller sizes improved very slightly, but we did not observe a significant
advantage in terms of processing load. From these results in terms of the convergence speed and processing load,
we cannot determine the best size of L. This is a subject for future research.
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Figure A.7: Performance evaluations on low-rank MC problem (processing time) (Case MC-S6: different
memory sizes).

E.2 Matrix completion problem on MovieLens 1M dataset

Figures A.8 and A.9 show the results of the cases where r = 10 (MC-R1: lower rank) and r = 20 (MC-R2:
higher rank), respectively. They show the convergence plots of the training error on Ω and the test error on Φ
for all five runs when rank r = 10 and r = 20, respectively. The proposed R-SQN-VR yielded good performance
in all runs.
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(a-4) run 4

0 100 200 300 400
#grad/N

0.9

1

1.1

1.2

1.3

1.4

1.5

M
ea

ns
 s

qu
ar

e 
er

ro
r o

n 
tr

ai
n 

se
t R-SD

R-L-BFGS
R-SGD
R-SVRG
R-SQN-VR

(a-5) run 5

(a) MSE on train set Ω
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(b-1) run 1

0 100 200 300 400
#grad/N

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

M
ea

ns
 s

qu
ar

e 
er

ro
r o

n 
te

st
 s

et
 R-SD

R-L-BFGS
R-SGD
R-SVRG
R-SQN-VR

(b-2) run2

0 100 200 300 400
#grad/N

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14
M

ea
ns

 s
qu

ar
e 

er
ro

r o
n 

te
st

 s
et

 R-SD
R-L-BFGS
R-SGD
R-SVRG
R-SQN-VR

(b-3) run 3
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(b-4) run 4
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(b-5) run 5

(b) MSE on test set Φ

Figure A.8: Performance evaluations on low-rank MC problem (MC-R1: lower rank).
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Figure A.9: Performance evaluations on low-rank MC problem (MC-R2: higher rank).


