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Abstract

Stochastic variance reduction algorithms
have recently become popular for minimizing
the average value of a large but finite num-
ber of loss functions. This paper proposes
a Riemannian stochastic quasi-Newton algo-
rithm with variance reduction (R-SQN-VR).
We present convergence analyses of the R-
SQN-VR on both non-convex and retraction
strongly convex functions with retraction and
vector transport. The proposed algorithm is
tested on the Riemannian centroid computa-
tion on the symmetric positive-definite man-
ifold and the low-rank matrix completion on
the Grassmann manifold. In all cases, the
proposed algorithm outperforms the state-of-
the-art Riemannian batch and stochastic gra-
dient algorithms.

1 Introduction

Let f be a smooth real-valued function on a Rieman-
nian manifold M [1]. The problem considered in this
paper is that for a given model variable w ∈ M as

min
w∈M

{
f(w) :=

1

n

n∑

i=1

fi(w)

}
, (1)

where n is the total number of the elements. This
problem has many applications that include principal
component analysis (PCA) and the subspace tracking
problem [2] on the Grassmann manifold. The low-
rank matrix/tensor completion problem is a promising
example of the manifold of fixed-rank matrices/tensors
[3, 4]. The linear regression problem is also defined on
the manifold of fixed-rank matrices [5].
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A popular approach to problem (1) is Riemannian gra-
dient descent method, which computes the Rieman-
nian full gradient, i.e., gradf(w) = 1

n

∑n
i=1 gradfi(w),

for every iteration, where gradfi is the Riemannian
stochastic gradient of fi on the Riemannian manifold
M for the n-th sample. This estimation is computa-
tionally heavy when n is extremely large. A popular
alternative is Riemannian stochastic gradient descent
(R-SGD) method that extends stochastic gradient de-
scent (SGD) method in the Euclidean space [6]. Be-
cause R-SGD calculates only one gradfi(w), its com-
plexity per iteration is independent of n. However,
like SGD [7], R-SGD suffers from slow convergence
due to a decaying step size sequence. Variance re-
duction (VR) methods have recently been proposed to
accelerate the convergence of SGD in the Euclidean
space [8, 9, 10, 11, 12]. It involves calculating the
full gradient estimation periodically and re-using it
to reduce the variance of noisy stochastic gradients.
However, because all previously described algorithms
are first-order algorithms, their convergence speeds
can be slow because of poor curvature approxima-
tions in ill-conditioned problems, as seen in Section
5. One promising approach involves second-order al-
gorithms, such as stochastic quasi-Newton (QN) meth-
ods using Hessian evaluations [13, 14, 15, 16]. They
achieve faster convergence by exploiting the curvature
information of the objective function f . Furthermore,
in addressing these two acceleration techniques, [17]
and [18] proposed hybrid algorithms of stochastic QN
methods accompanied by VR methods.

In examining Riemannian manifolds again, many chal-
lenges to the QN method have been addressed in deter-
ministic settings [19, 20, 21]. The VR methods in the
Euclidean space have also been extended to Rieman-
nian manifolds, as the so-called R-SVRG [22, 23]. Nev-
ertheless, the second-order stochastic algorithm using
the VR method has not been explored thoroughly for
problem (1). A similar algorithm to that proposed
here was recently developed [24]. However, it is inex-
act in terms of geometry because it uses tangent vec-
tors belonging to different tangent spaces to calculate
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Hessian approximations. It also considers only expo-
nential mapping and parallel translation. To resolve
these issues, we propose a Riemannian stochastic QN
method based on the limited BFGS (L-BFGS) and VR
methods. Our contributions are four-fold:

• We propose a Riemannian limited-memory QN al-
gorithm with a VR method. To the best of our
knowledge, this is the first algorithm of its kind
in the literature.

• Our convergence analysis deals with both retrac-
tion strongly convex functions (Definitions 3.7 and
3.8) and non-convex functions. To this end, we
separately derive different bounds of the inverse
Hessian approximation for these two functions.

• The proposed algorithm and its analyses are con-
sidered with computationally efficient retraction
and vector transport, instead of the more restric-
tive exponential mapping and parallel translation.
This gives us a significant advantage in terms in
addition to computational efficiency, i.e., wider
scope of applicable manifolds. For example, while
[23] cannot be applied to the Stiefel and fixed-rank
manifolds because they do not have closed-form
expressions for parallel translation, our analyses
and algorithm can be directly applied to them.

The specific features of the algorithms are two-fold:

• We update the curvature pair of the QN method
at every outer loop by exploiting full gradient es-
timations in the VR method, and thereby cap-
ture more precise and stabler curvature-related
information. This avoids the need for addi-
tional sweeping of samples required in the Eu-
clidean stochastic QN [16], additional gradient es-
timations required in the Euclidean online BFGS
(oBFGS) [14, 13, 25], and additional sub-sampling
of the Hessian [16, 17].

• Compared with a simple Riemannian extension of
the stochastic QN method, a noteworthy advan-
tage of its combination with the VR method is
that the number of computations for transports of
curvature information can be drastically reduced.
Specifically, the calculations of curvature informa-
tion and the second-order modified Riemannian
stochastic gradient are performed uniformly on
the tangent space of the outer iterates.

The remainder of this paper is organized as follows:
Section 2 presents details of R-SQN-VR. Section 3
presents the preliminaries and Section 4 provides con-
vergence analyses. In Section 5, numerical compar-
isons on two problems are provided using the R-SGD

and R-SVRG, where the results verified the supe-
rior performance of the R-SQN-VR. The proposed R-
SQN-VR was implemented in the MATLAB toolbox
Manopt [26]. Proof sketches and additional experi-
ments are provided as supplementary material.

2 R-SQN-VR

We assume that the manifold M is endowed with
a Riemannian metric structure, i.e., a smooth inner
product ⟨·, ·⟩w of tangent vectors is associated with
the tangent space TwM for all w ∈ M [1]. The norm
∥ · ∥w of a tangent vector is the norm associated with
the Riemannian metric. The metric structure allows
a framework for optimization over manifolds. Con-
ceptually, the constrained optimization problem (1) is
translated into an unconstrained problem over M.

2.1 R-SGD and R-SVRG

R-SGD: Given a starting point w0 ∈ M, R-SGD pro-
duces a sequence {wt} in M that converges to a first-
order critical point of problem (1). It updates w as

wt+1 = Rwt(−αtgradfit(wt)),

where αt is a step size and gradfit(wt) is a Rie-
mannian stochastic gradient for randomly selected it-
th sample, which is a tangent vector at wt ∈ M.
gradfit(wt) represents an unbiased estimator of the
Riemannian full gradient gradf(wt), and the expecta-
tion of gradfit(wt) over the all samples is gradf(wt),
i.e., Eit [gradfit(wt)] = gradf(wt). The update moves
from wt along the direction −gradfit(wt) with a step
size αt while remaining on M. This mapping, denoted
by Rw : TwM → M : η '→ Rw(η), is called retraction
at w, and maps a tangent vector in TwM onto M with
a local rigidity condition that preserves the gradients
at w. Exponential mapping, denoted by Exp, is an
instance of the retraction.

R-SVRG: R-SVRG has double loops, where the k-
th outer loop, called epoch, has mk inner iterations.
R-SVRG keeps w̃k ∈ M after mk−1 inner iterations
of the (k− 1)-th epoch, and computes the full Rie-
mannian gradient gradf(w̃k) only for this stored w̃k.
It also computes the Riemannian stochastic gradient
gradfit(w̃

k) for the it-th sample. Then, by choosing
the it-th sample for each t-th inner iteration of the
k-th epoch at wt, it calculates ξt, i.e., by modifying
gradfit(wt) using both gradf(w̃k) and gradfit(w̃

k).
Here, we omit the superscript k of wk

t for simpliity.
Similarly, in what follows, we use the notation wt in-
stead of wk

t if k is clear from the context. Because
they belong to different tangent spaces, a simple ad-
dition is not well-defined since Riemannian manifolds
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Algorithm 1 Riemannian stochastic quasi-Newton with variance reduction (R-SQN-VR).

Require: Update frequency mk, step size αk
t > 0, memory size L, number of epochs K, and cautious update

threshold ϵ.
1: Initialize w̃0, and calculate the Riemannian full gradient gradf(w̃0). Initialize index set J := ∅.
2: for k = 0, 1, . . . ,K − 1 do
3: Store w0 = w̃k.
4: for t = 0, 1, . . . ,mk − 1 do
5: Choose it ∈ {1, 2, . . . , n} uniformly at random.
6: Calculate the tangent vector η̃t from w̃k to wt by η̃t = R−1

w̃k(wt).
7: if k > 1 then
8: Transport the stochastic gradient gradfit(wt) to Tw̃kM by (T wt

w̃k )−1gradfit(wt).

9: Calculate ξ̃t as ξ̃t = (T wt

w̃k )−1gradfit(wt)− (gradfit(w̃
k)− gradf(w̃k)).

10: Calculate H̃k ξ̃t, transport H̃k ξ̃t back to TwtM by T wt

w̃k as T wt

w̃k H̃k ξ̃t.

11: Update wt+1 from wt as wt+1 = Rwt(−αk
t T

wt

w̃k H̃k ξ̃t).
12: else
13: Calculate ξt as ξt = gradfit(wt)− T wt

w̃k (gradfit(w̃
k)− gradf(w̃k)).

14: Update wt+1 from wt as wt+1 = Rwt(−αk
t ξt).

15: end if
16: end for
17: Option I-A: w̃k+1 = gmk(w1, w2, . . . , wmk) (or w̃

k+1 = wt for randomly chosen t ∈ {1, 2, . . . ,mk}).
18: Option I-B: w̃k+1 = wmk .
19: Calculate the Riemannian full gradient gradf(w̃k+1).
20: Calculate the tangent vector ηk from w̃k to w̃k+1 by ηk = R−1

w̃k(w̃k+1).

21: Compute sk+1
k = T w̃k+1

w̃k ηk, and yk+1
k =β−1

k gradf(w̃k+1)−T w̃k+1

w̃k gradf(w̃k), where βk = ∥ηk∥w̃k/∥T R
ηk
ηk∥w̃k .

22: if ⟨yk+1
k , sk+1

k ⟩w̃k+1 ≥ ϵ∥sk+1
k ∥2w̃k+1 then

23: Discard pair (skminJ , ykminJ ) and set J := J −minJ when |J | = L.

24: Store pair (sk+1
k , yk+1

k ) and set J := J ∪ {k}.
25: end if
26: Transport {(skj , ykj )}j∈J ∈ Tw̃kM to {(sk+1

j , yk+1
j )}j∈J ∈ Tw̃k+1M by Tηk .

27: end for
28: Option II-A: Output wsol = w̃K

29: Option II-B: Output wsol = wt (= wk
t ) for randomly chosen t ∈ {1, 2, . . . ,mk} and k ∈ {1, 2, . . . ,K}.

are not vector spaces. Therefore, once gradfit(w̃
k) and

gradf(w̃k) are transported to TwtM by T wt

w̃k , the final
update is performed as wt+1 = Rwt(−αk

t ξt), where
ξt is set as ξt = gradfit(wt) − T wt

w̃k (gradfit(w̃
k) −

gradf(w̃k)), and where T wt

w̃k or Tη̃t represents vector
transport from w̃k to wt with η̃t ∈ Tw̃kM that satis-
fies Rw̃k(η̃t) = wt. The vector transport T : TM ⊕
TM → TM, (η, ξ) '→ Tηξ is associated with R and all
η, ξ ∈ TwM [1]. It holds that (i) Tηξ ∈ TRw(η)M, (ii)
T0wξ = ξ, and (iii) Tη is a linear map. Parallel transla-
tion is a special instance of vector transport. When γ
is a curve γ(t) = Rw(tη) from z to w defined by R with
η ∈ TwM, where γ(0) = w and γ(1) = z, the parallel

translation along γ is denoted by P (γ)wz or P γ(1)
γ(0) .

2.2 Proposed R-SQN-VR

We propose a Riemannian stochastic QN method ac-
companied by a VR method (R-SQN-VR). A straight-
forward extension involves updating the modified

stochastic gradient ξt by premultiplying a linear in-
verse Hessian approximation operator Hk

t at wt as

wt+1 = Rwt(−αk
t T

wt

w̃k H̃k
t ξ̃t).

This formula is mathematically equivalent to

wt+1 = Rwt(−αk
tHk

t ξt),

where Hk
t := T wt

w̃k ◦ H̃k ◦ (T wt

w̃k )−1 and ξt := T wt

w̃k ξt
by denoting the inverse Hessian approximation at w̃k

simply as H̃k. T is an isometric vector transport ex-
plained in Section 4 and T −1 is its inverse. We note
that explicit formulas for T −1 are available for some
manifolds, e.g., the SPD manifold in Section A.1, even
if T is not the parallel translation. Hk

t should be pos-
itive definite, i.e., Hk

t ≻ 0, and is close to the Hessian
of f , i.e., Hessf(wt). It is noteworthy that H̃k is cal-
culated at only every outer epoch, and remains to be
used for Hk

t throughout the k-th epoch.

Curvature pair (sk+1
k , yk+1

k ): This paper addresses
the operator H̃k used in L-BFGS intended for large-
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scale data. Thus, let sk+1
k and yk+1

k be the variable
variation and the gradient variation at Tw̃k+1M, re-
spectively, where the superscript expresses explicitly
that they belong to Tw̃k+1M. It should be noted that
the curvature pair (sk+1

k , yk+1
k ) is calculated at the new

Tw̃k+1M just after the k-th epoch finishes. Further-
more, once the epoch index k is incremented, the cur-
vature pair must be used only at Tw̃kM because the
calculation of H̃k is performed only at Tw̃kM.

The variable variation sk+1
k is calculated using the dif-

ference between w̃k+1 and w̃k. This is represented
by the tangent vector ηk from w̃k to w̃k+1, which
is calculated using the inverse of the retraction as
R−1

w̃k(w̃k+1). As ηk belongs to Tw̃kM, transporting this
onto Tw̃k+1M yields

sk+1
k = T w̃k+1

w̃k ηk (= T w̃k+1

w̃k R−1
w̃k(w̃

k+1)). (2)

The gradient variation yk+1
k is calculated from the dif-

ference between the new full gradient gradf(w̃k+1) ∈
Tw̃k+1M and the previous one, but transported as
T w̃k+1

w̃k gradf(w̃k) ∈ Tw̃kM [21], i.e.,

yk+1
k = β−1

k gradf(w̃k+1)− T w̃k+1

w̃k gradf(w̃k), (3)

where βk > 0 is explained in Section 4.

Inverse Hessian approximation operator H̃k:
H̃k is calculated using the past curvature pairs as
H̃k+1 = (V̌k+1

k )♭ȞkV̌k+1
k +ρks

k+1
k (sk+1

k )♭, where Ȟk =

T w̃k+1

w̃k ◦ H̃k ◦ (T w̃k+1

w̃k )−1, ρk = 1/⟨yk+1
k , sk+1

k ⟩w̃k+1 , and

V̌k
j = id− ρjykj (s

k
j )

♭ with identity mapping id [21]. a♭

denotes the adjoint of a ∈ TwM, i.e., a♭ : TwM →
R : v '→ ⟨a, v⟩w. Thus, H̃k depends on H̃k−1 and
(sk−1, yk−1) and, similarly, H̃k−1 depends on H̃k−2

and (sk−2, yk−2). Proceeding recursively, H̃k is a func-
tion of the initial H̃0 and all previous k curvature pairs
{(sj , yj)}k−1

j=0 . L-BFGS restricts use to the most recent

L pairs {(sj , yj)}k−1
j=k−L as (sj , yj) with j < k − L are

likely to have scant curvature information. Based on
this idea, L-BFGS performs L updates using the initial
H̃0. We use the k pairs {(sj , yj)}k−1

j=0 when k < L.

Now, we consider the final calculation of H̃k used for
Hk

t in the inner iterations of the k-th outer epoch us-
ing the L most recent curvature pairs. As this calcu-
lation is executed at Tw̃kM and a Riemannian man-
ifold is in general not a vector space, all L curvature
pairs must be located at Tw̃kM. To this end, once the
curvature pair is calculated in (2) and (3), the past
(L− 1) pairs of {(skj , ykj )}

k−1
j=k−L+1 ∈ Tw̃kM are trans-

ported into Tw̃k+1M as {(sk+1
j , yk+1

j )}k−1
j=k−L+1 by the

same vector transport Tηk used when calculating sk+1
k

and yk+1
k . It should be emphasized that this trans-

port is necessary only for every outer epoch instead

of every inner loop, and results in a drastic reduction
in computational complexity in comparison with the
straightforward extension of the Euclidean stochastic
L-BFGS [25] into the manifold setting. Consequently,
the update is defined as [21]

H̃k = ((V̌k
k−1)

♭ · · · (V̌k
k−L)

♭)Ȟk
0(V̌k

k−L · · · V̌k
k−1) + · · ·

+ ρk−2(V̌k
k−1)

♭skk−2(s
k
k−2)

♭(V̌k
k−1) + ρk−1s

k
k−1(s

k
k−1)

♭,

where Ȟk
0 is the initial inverse Hessian approximation.

Because Ȟk
0 is not necessarily equal to Ȟk−L, and be-

cause it can be any positive definite self-adjoint op-
erator, we use Ȟk

0 = ⟨skk−1, y
k
k−1⟩w̃k/⟨ykk−1, y

k
k−1⟩w̃k id

as in the Euclidean case. The practical update of H̃k

uses a two-loop recursion algorithm [27] in Algorithm
A.1 of the supplementary material.

Cautious update: The Euclidean L-BFGS fails on
non-convex problems because the Hessian approxima-
tion has eigenvalues that are away from zero and not
uniformly bounded from above. To circumvent this
issue, cautious update has been proposed in the Eu-
clidean space [28]. Similarly, we skip the update of
the curvature pair when the following condition is not
satisfied:

⟨yk+1
k , sk+1

k ⟩w̃k+1 ≥ ϵ∥sk+1
k ∥2w̃k+1 , (4)

where ϵ > 0 is a predefined constant parameter. Ac-
cording to this update, the positive definiteness of H̃k

is guaranteed as long as H̃k−1 is positive definite.

Second-order modified stochastic gradient Hk
t ξt:

R-SVRG transports gradf(w̃k) and gradfit(w̃
k) at

Tw̃kM into TwtM to add them to gradfit(wt) at
TwtM. If we follow the same strategy, we must also
transport L pairs of {(skj , ykj )}

k−1
j=k−L ∈ Tw̃kM into

the given Twk
t
M at every inner iteration. Address-

ing this problem, and given that both the full gra-
dient and the curvature pairs belong to the same
tangent space Tw̃kM, we transport gradfit(wt) from
Twk

t
M into Tw̃kM, and complete all calculations on

Tw̃kM. Specifically, after transporting gradfit(wt)
as (T wt

w̃k )−1gradfit(wt) from wt to w̃k using η̃t(=

R−1
w̃k(wt)), the modified stochastic gradient ξ̃t ∈ Tw̃kM

is computed as

ξ̃t = (T wt

w̃k )
−1gradfit(wt)− (gradfit(w̃

k)−gradf(w̃k)).

After calculating H̃k ξ̃t ∈ Tw̃kM using the two-loop re-
cursion algorithm, we obtain Hk

t ξt ∈ TwtM by trans-
porting H̃k ξ̃t to TwtM as T wt

w̃k H̃k ξ̃t. Finally, we up-
date wt+1 from wt as wt+1 = Rwt(−αk

tHk
t ξt). Al-

though −ξt is not generally guaranteed as a descent
direction, Eit [−ξt] = −gradf(wt) is a descent direc-
tion. Furthermore, the positive definiteness of Hk

t im-
plies that −Hk

t ξt is an average descent direction due
to Eit [−Hk

t ξt] = −Hk
t gradf(wt).
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3 Preliminaries

We first summarize some definitions from [21].

Definition 3.1 (Upper-Hessian bounded). f is said
to be upper-Hessian bounded in U ⊂ M if there exists

a constant L > 0 such that d2f(Rw(tη))
dt2 ≤ L, for all

w ∈ U and η ∈ TwM with ∥η∥w = 1, and all t such
that Rw(τη) ∈ U for all τ ∈ [0, t].

Definition 3.2 (Lower-Hessian bounded). f is said
to be lower-Hessian bounded in U ⊂ M if there exists

a constant µ > 0 such that µ ≤ d2f(Rw(tη))
dt2 , for all

w ∈ U and η ∈ TwM with ∥η∥w = 1, and all t such
that Rw(τη) ∈ U for all τ ∈ [0, t].

Definition 3.3 (ρ-totally retractive neighborhood).
Let Θw be a neighborhood of w as a set such that for
all z ∈ Θw, Θw ⊂ Rz(B(0z, ρ)), and Rz(·) is a diffeo-
morphism on B(0z, ρ), which is the ball in TwM with
center 0z and radius ρ, where 0z is the zero vector in
TzM. Then, Θw is said to be a ρ-totally retractive
neighborhood of w.

Now, we summarize some essential lemmas from [21].

Lemma 3.4. Suppose that f is upper-Hessian
bounded. Then, there exists a neighborhood U of arbi-
trary w̄ and a constant L > 0 in Definition 3.1 such
that for all w, z ∈ U

f(z) ≤ f(w) + ⟨gradf(w), ξ⟩w + 1
2L∥ξ∥

2
w,

where ξ ∈ TwM and Rw(ξ) = z.

Lemma 3.5. Suppose that f is lower-Hessian
bounded. Then, there exists a neighborhood U of arbi-
trary w̄ and a constant µ > 0 in Definition 3.2 such
that for all w, z ∈ U

f(z) ≥ f(w) + ⟨gradf(w), ξ⟩w + 1
2µ∥ξ∥

2
w,

where ξ ∈ TwM and Rw(ξ) = z.

Here, we additionally give some definitions according
to the lemmas above.

Definition 3.6 (Retraction L-smooth). f is said to
be retraction L-smooth in U ⊂ M if f satisfies the
property in Lemma 3.4.

Definition 3.7 (Retraction convex). f is said to be
retraction convex in U ⊂ M if, when for all w ∈ S
and all η ∈ TwM with ∥η∥w = 1, f(Rw(τη)) is convex
for all t satisfying f(Rw(τη)) ∈ S for all τ ∈ [0, t].

Definition 3.8 (Retraction µ-strongly convex). f is
said to be retraction µ-strongly convex in U ⊂ M if f
satisfies the property in Lemma 3.5.

We also introduce a lemma to evaluate the difference
between parallel translation and vector transport.

Lemma 3.9 (Lemma 3.5 in [21]). Let T ∈ C0 be a
vector transport associated with the same retraction R
as that of the parallel translation P ∈ C∞. Under
Assumption 1.3, there exists a neighborhood U of w̄
and a constant θ > 0 such that for all w, z ∈ U ,

∥Tηξ − Pηξ∥z ≤ θ∥ξ∥w∥η∥w, (5)

where ξ, η ∈ TwM and Rw(η) = z.

The proofs for Lemmas 3.4, 3.5, and 3.9 are in [21].
Furthermore, modifying Lemma 3 in [29] slightly, we
obtain the following lemma:

Lemma 3.10. Let M be a Riemannian manifold en-
dowed with retraction R and let w̄ ∈ M be an arbitrary
point. Then, there exist τ1 > 0, τ2 > 0, and δτ1,τ2 such
that for all w in a sufficiently small neighborhood of w̄
and all ξ ∈ TwM with ∥ξ∥w ≤ δτ1,τ2 , the following
inequalities hold:

τ1dist(w,Rw(ξ)) ≤ ∥ξ∥w ≤ τ2dist(w,Rw(ξ)). (6)

Finally, we introduce the key lemma from Lemma 3.4.

Lemma 3.11. Suppose that f is upper-Hessian
bounded. Then, there exists a neighborhood U of w̄
and a constant Ll > 0 such that for all w, z ∈ U ,

∥P (γ)wz gradf(z)− gradf(w)∥w ≤ Ll∥η∥w. (7)

Definition 3.12 (Retraction Ll-Lipschitz). f is said
to be retraction Ll-Lipschitz in U ⊂ M if f satisfies
the property in Lemma 3.11.

L and Ll are the counterparts to those of L-smooth
and Ll-Lipschitz in the Euclidean case, respectively.
However, L and Ll are not identical when γ is a re-
traction curve, and Ll = L holds when γ is a geodesic.

4 Convergence analysis

We first summarize basic assumptions for all analyses.

Assumption 1. We assume the following [21]:

(1.1) The objective function f and its components
f1, f2, . . . , fn are twice-continuously differentiable.

(1.2) For a sequence {wk
t } generated by Algorithm 1,

there exists a compact and connected set Θ ⊂ M such
that wk

t ∈ Θ for all k, t ≥ 0.

(1.3) For each k ≥ 1, there exists a totally retrac-
tive neighborhood Θk of w̃k such that {wk

t } stays
in Θk for any t ≥ 0 (Definition 3.3). Further-
more, suppose that there exists ι > 0 such that
infk≥1{supz∈Θk

∥R−1
w̃k(z)∥w̃k} ≥ ι.

(1.4) For all k, t ≥ 0, there exists a ρ-totally retractive
neighborhood Θ∗ of critical point w∗ such that {wk

t }
generated by Algorithm 1 continuously remains in Θ∗.



Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis

(1.5) f1, f2, . . . , fn are retraction L-smooth with re-
spect to retraction R in Θ.

(1.6) The vector transport T is isometric on M, i.e.,
it satisfies ⟨Tξη, Tξζ⟩Rw(ξ) = ⟨η, ζ⟩w for any w ∈ M
and ξ, η, ζ ∈ TwM.

(1.7) There exists a constant c0 such that T satisfies
∥Tη − T R

η ∥ ≤ c0∥η∥w, ∥T −1
η − (T R

η )−1∥ ≤ c0∥η∥w for
all w, z ∈ U , where η = R−1

w (z) and T R denotes the
differentiated retraction, i.e., T R

ζ ξ = DRw(ζ)[ξ] with
ξ, ζ ∈ TwM.

(1.8) Riemannian stochastic gradient is bounded as
Eit [∥gradfit(wt)∥2wt

] < C2 [14, 15, 16].

We now provide the two key facts for bounds of Hk
t ;

there exist 0 < γnc < Γnc such that (8) holds for
non-convex functions, and there exist 0 < γc < Γc

such that (9) holds for retraction strongly convex func-
tions.

γncid ≼ Hk
t ≼ Γncid, (8)

γcid ≼ Hk
t ≼ Γcid, (9)

where A ≼ B with A,B ∈ Rn×n means that B − A
is positive semi-definite. These are derived in Propo-
sitions C.4 and D.3, respectively.

4.1 Global convergence analysis on
non-convex functions

We first present a global convergence analysis to a crit-
ical point starting from any initialization point, which
is common in a non-convex setting with additional but
mild assumptions.

Assumption 2. We assume that f is bounded be-
low by a scalar finf , and a decaying step size sequence
{αk

t } satisfies
∑

αk
t = ∞ and

∑
(αk

t )
2 < ∞. Further-

more, since K is compact, all continuous functions
on Θ can be bounded. Therefore, there exists S > 0
such that for all w ∈ Θ and i ∈ {1, 2, . . . , n}, we have
∥gradf(w)∥w ≤ S and ∥gradfi(w)∥w ≤ S.

Theorem 4.1. Let M be a Riemannian manifold and
w∗ ∈ M be a non-degenerate local minimizer of f .
Consider Algorithm 1 and suppose that Assumptions
1 and 2 hold, and that the largest eigenvlue of the Rie-
mannian Hessian of the mapping w '→ ∥gradf(w)∥2w
for all w ∈ M is upper-bounded by a uniform positive
real number. Then, limk→∞ E[∥gradf(wt)∥2wt

] = 0.

4.2 Global convergence rate analysis
on non-convex functions

We now present a global convergence rate analysis.
This requires a strict selection of a fixed step size sat-
isfying the condition below.

Theorem 4.2. Let M be a Riemannian manifold and
w∗ ∈ M be a non-degenerate local minimizer of f .
Consider Algorithm 1 with Options I-B and II-B, and
suppose Assumption 1. Let the constants θ be in (5),
τ1 and τ2 be in (6), and Ll be in (7). L is the con-
stant in Lemma 3.4. γnc and Γnc are the constants

in (8), respectively. Set ν =
√

L2
l +τ2

2C
2θ2ζ1−a2Γnc

na1/2

and αk
t = α = µ0√

L2
l +τ2

2C
2θ2na1ζa2Γnc

, where 0 <

a1 < 1, and 0 < a2 < 2. Given sufficiently small
µ0 ∈ (0, 1), suppose that ϱ > 0 is chosen such that√

L2
l +τ2

2C
2θ2

LΓnc
γnc

(
1− ϱΓnc

µ0γnc

)
≥ 2µ0(e−1)

ζ2−a2τ2
1

+ µ0

na1ζa2
+

4µ2
0(e−1)

n3a1/2ζa2τ2
1
holds. Set m = ⌊ n3a1/2

5µ0ζ1−2a2
⌋ and T = mK.

Then,

E[∥gradf(wsol)∥2wsol
] ≤

√
L2

l +τ2
2C

2θ2na1ζa2 [f(w0)−f(w∗)]

Tϱ .

4.3 Local convergence rate analysis on
retraction strongly convex
functions

Finally, we present a local convergence rate in a neigh-
borhood of a local minimum by introducing a local as-
sumption for retraction strong convexity. This is also
standard in manifold optimization. It should be noted
that if we extend this local assumption to the entire
manifold, as in R-SVRG [23], our rate directly results
in a global rate. However, such a global assumption
is fairly restrictive in terms of the cost functions and
manifolds that can be considered and, hence, the stan-
dard literature mostly focuses on local rate analysis.

Assumption 3. We assume that the objective func-
tion f1, f2, . . . , fn are retraction strongly convex with
respect to R in Θ (Definition 3.8). Moreover, T
satisfies the locking condition [21] defined as Tηξ =

βT R
η ξ, where β = ∥ξ∥w

∥T R
η ξ∥Rw(η)

, for all η, ξ ∈ TwM and

all w ∈ M.

Theorem 4.3. Let M be a Riemannian manifold and
w∗ ∈ M be a non-degenerate local minimizer of f .
Suppose Assumption 1 and 3 hold. Let the constants θ
be in (5), τ1 and τ2 be in (6), and Ll be in (7). L and µ
are the constants in Lemmas 3.4 and 3.5, respectively.
γc and Γc are the constants in (9). Let α be a positive
number satisfying γcµ2τ21 > 14αL(L2

l + τ22C
2θ2)Γ2

c. It
then follows that for any sequence {w̃k} generated by
Algorithm 1 with Option I-A under a fixed step size
αk
t := α and mk := m converging to w∗, there exists

0 < Kth < K such that for all k > Kth,

E[f(w̃k+1)− f(w∗)]

≤ µτ2
1+16mα2L(L2

l +τ2
2C

2θ2)Γ2
c

2mα(γcµ2τ2
1−14αLΓ2

c(L
2
l+τ

2
2C

2θ2))
E[f(w̃k)− f(w∗)].

The proof structure is different from that of R-SVRG
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[22, 23] due to the bound of E[∥ξt∥2wt
] and the ex-

istence of Hk
t . We note the rate degradation from

[22, 23]. Although the adaptive sampling in SQN-VR
improves this degradation [30], it is still worse than
that of SVRG. To the best of our knowledge, no theo-
retical rate result better than or equal to that of SVRG
[8] has been given in the Euclidean SQN-VR [17]. This
issue is a common subject of research in both the Eu-
clidean and the Riemannian settings to improve the
theoretical rate. However, it should be emphasized
that R-SQN-VR shows empirically much better perfor-
mances than R-SVRG, especially on an ill-conditioned
problem, as shown in Figure 1.

5 Numerical comparisons

This section details a comparison of R-SQN-VR with
R-SGD using a decaying step size sequence, and with
R-SVRG on a fixed step size. The decaying step size
sequence was αk = α(1 + ας(k − 1))−1. We also
compared them with two Riemannian batch methods,
i.e., R-SD, which is the steepest descent algorithm on
Riemannian manifolds with backtracking line search
[1], and R-L-BFGS, which is the Riemannian L-BFGS
with the strong Wolfe condition [20, 31]. All experi-
ments were executed in MATLAB on a 4.0 GHz In-
tel Core i7 PC with 16 GB RAM, and were stopped
when the gradient norm was below 10−8 or when they
reached a predefined maximum number of iterations.
All results except for those of R-SD and R-L-BFGS
were the best tuned results from multiple choices of
step sizes α and a fixed ς = 10−3. This paper ad-
dresses the Riemannian centroid computation problem
of the symmetric positive-definite (SPD) manifold and
the low-rank matrix completion problem on the Grass-
mann manifold.

5.1 Riemannian centroid problem

The Riemannian centroid was introduced as the no-
tion of mean on Riemannian manifolds by Karcher
[32]. It generalizes the notion of an “average” on
a manifold. Given n points on Sd

++ with ma-
trix representations Q1, . . . ,Qn, the Riemannian cen-
troid is defined as the solution to the problem
minX∈Sd

++

1
2n

∑n
i=1(dist(X,Qi))

2, where dist(p, q) =

∥ log(p−1/2qp−1/2)∥F represents the distance along
the corresponding geodesic between elements on
Sd
++ with respect to the affine-invariant metric.

The gradient of the loss function is computed as
1
n

∑n
i=1 −log(QiX

−1)X. The first comparison is the
Riemannian centroid problem on SPD matrices [31].
All experiments used a batch size fixed at 1 and L = 4,
were initialized randomly, and were stopped when the
number of iterations reached 10 for R-SVRG, and

R-SQN-VR, and 60 for others. α was tuned from
{10−5, 10−4, . . . , 10−1}. mk and the batch size were
3n and 1, respectively. Figures 1(a) and (b) show the
results in terms of the optimality gap when n = 500
with d = 3 (Case RC-1) and with n = 1500 (Case
RC-2), respectively. These results reveal that R-SQN-
VR yielded the best performance.

5.2 Matrix completion problem

The matrix completion problem amounts to complet-
ing an incomplete matrix X, say of size d × n, from
a small number of entries by assuming a low-rank
structure. If Ω is the set of known indices in X, the
rank-r matrix completion problem amounts to solving
minU,A ∥PΩ(UA) − PΩ(X)∥2F , where U ∈ Rd×r,A ∈
Rr×n, and the operator PΩ acts as PΩ(Xpq) = Xpq if
(p, q) ∈ Ω, and PΩ(Xpq) = 0 otherwise. Partitioning
X = [x1, . . . ,xn], the previous problem is equivalent
to minU∈Rd×r, ai∈Rr

1
n

∑n
i=1 ∥PΩi(Uai) − PΩi(xi)∥22,

where xi ∈ Rd, and the operator PΩi is the sampling
operator for the i-th column. Given U, ai admits a
closed-form solution. Consequently, the problem de-
pends only on the column space of U, and is on the
Grassmann manifold [33].

We first considered a synthetic dataset. The pro-
posed algorithm was also compared with Grouse [2],
a state-of-the-art stochastic gradient algorithm on the
Grassmann manifold. The algorithms were initialized
randomly as in [34]. α was tuned from {10−3, 5 ×
10−3, 10−2, 5 × 10−2, 10−1} for R-SGD, R-SVRG and
R-SQN-VR, and {1, 10, 100} for Grouse. We set ex-
plicitly the condition number, denoted by CN, of the
matrix, representing the ratio of the maximal to the
minimal singular values of the matrix. We also set the
over-sampling ratio (OS) for the number of known en-
tries. Gaussian noise was added at noise level σ as sug-
gested in [34]. mk and the batch size were set to 5n and
50, respectively. The maximum number of the outer it-
erations to stop was 100 for R-SVRG and R-SQN-VR,
and 100(mk + 1) for the others. It should be noted
that this experiment evaluated the projection-based
vector transport and the QR-decomposition-based re-
traction, which do not satisfy the locking condition,
but are computationally efficient. The motivation is
to show that our algorithm also empirically performs
well without using the specific vector transport. The
baseline problem (MC-S1) is a case where n=5000,
d = 200, rank r = 5, L = 10, OS = 8, σ = 10−10,
and CN = 50. Moreover, changing some parameters
from those in MC-S1, we evaluated the case of lower
sampling with OS = 4 (MC-S2), the ill-conditioned
case with CN = 100 (MC-S3), the case involving
higher noise with σ = 10−6 (MC-S4), and that in-
volving higher rank with r = 10 (MC-S5). The re-
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(a) Case RC-1: small size instance.
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(b) Case RC-2: large size instance.
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(c) Case MC-S1: baseline.

0 100 200 300 400 500 600
#grad/N

10-15

10-10

10-5

100

M
ea

ns
 s

qu
ar

e 
er

ro
r o

n 
te

st
 s

et
 

R-SD
R-L-BFGS
Grouse
R-SGD
R-SVRG
R-SQN-VR

(d) Case MC-S2: low sampling.
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(e) Case MC-S3: ill conditioning.
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(f) Case MC-S4: noisy data.
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(g) Case MC-S5: higher rank.
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(h) Case MC-S6: memory sizes.
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(i) Case MC-R: MovieLens-1M.

Figure 1: Performance evaluations on Riemannian centroid problem and low-rank matrix completion problem.

sults of the MSE on test set Φ, which was different
from the training set Ω, are shown in Figures 1(c)–
(h). This gives the prediction accuracy of the miss-
ing elements. From the figures, we confirm the supe-
rior performance of R-SQN-VR. MC-S6 for different
memory sizes L reveals that a larger size does not al-
ways lead to better results, which has also been noted
in [15]. Finally, we experimented with a real-world
dataset, the MovieLens-1M (http://grouplens.org/
datasets/movielens/), which contains one million
ratings for n = 3952 movies of d = 6040 users. We
randomly split this set into 80/10/10 percent data as
train/validation/test partitions. α was chosen from
{10−5, 5×10−5, . . . , 10−2, 5×10−2}, the batch size was
50, r = 10, and L = 10. The algorithms were also ter-
minated when the MSE on the validation set started to
increase or the number of the outer iterations reached
100. Figure 1(i) shows the results excluding Grouse,
which encountered issues with convergence on this set

(MC-R). R-SQN-VR showed faster convergence than
all the other methods.

6 Conclusions

In this paper, we proposed a Riemannian stochas-
tic quasi-Newton algorithm with variance reduction
(R-SQN-VR) that is well suited to finite-sum mini-
mization problems. We presented a rigorous conver-
gence analysis for taking the Hessian approximation
into a variance reduction stochastic setting on a man-
ifold. Our proposed algorithm makes the explicit use
of retraction and vector transport on manifolds, which
makes it appealing for larger numbers of manifolds.
Numerical comparisons showed the benefits of our pro-
posed algorithm on a number of applications.
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