A Example of Weighted Vornoi Cells

Fig. 2 shows answers we get from a weak oracle to the query $\mathcal{O}_{z}(x, y)$ for points z in different regions of a 2-dimensional Euclidean space.

Figure 2: Voronoi cells with a multiplicative distance $\alpha=2$ for a two dimensional Euclidean space. This figure partition the space into three parts based on the potential answers from the oracle.

B Proof of Lemma 1

Proof. To prove this lemma, we show that any ball $B_{x}(2 R)$ could be covered by at most $k \leq c^{4}$ balls of radius R.
Lemma 3. An ϵ-net of \mathcal{A} is an ϵ-cover of \mathcal{A}.
Proof. Let $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an ϵ-net of \mathcal{A}. Suppose that there exists $x \in \mathcal{A}$ such that $x \notin \bigcup_{i=1}^{k} B_{x_{i}}(\epsilon)$. Then we know that $d\left(x, x_{i}\right)>\epsilon$ for all i. This contradicts the maximality of the ϵ-net.

Assume $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is an R-net of the ball $B_{x}(2 R)$. We know for all $i \neq j, B_{x_{i}}(R / 2) \cap B_{x_{j}}(R / 2)=\varnothing$. Therefore, we have $\mu\left(\cup_{i=1}^{k} B_{x_{i}}(R / 2)\right)=\sum_{i=1}^{k} \mu\left(B_{x_{i}}(R / 2)\right)$. Also,

$$
\mu\left(B_{x_{i}}(R / 2)\right) \geq c^{-3} \mu\left(B_{x_{i}}(4 R)\right) \geq c^{-3} \mu\left(B_{x}(2 R)\right)
$$

Also, $\cup_{i=1}^{k} B_{x_{i}}(R / 2) \subseteq B_{x}(4 R)$. To sum-up we have

$$
\mu\left(B_{x}(2 R)\right) \geq c^{-1} \mu\left(B_{x}(4 R)\right) \geq c^{-1} \mu\left(\cup_{i=1}^{k} B_{x_{i}}(R / 2)\right) \geq c^{-1} \sum_{i=1}^{k} \mu\left(B_{x_{i}}(R / 2)\right) \geq k c^{-4} \mu\left(B_{x}(2 R)\right)
$$

C Proof of Theorem 1

Proof. To prove this theorem, we show: (a) In each iteration the target t remains in the next version space. Therefore, Worcs-I always find the target t. (b) The μ-mass of the version space shrinks by a factor of at least $1-c^{-2}$ in each iteration, which results in the total number of $1+\frac{H(\mu)}{\log \left(1 /\left(1-c^{-2}\right)\right)}$ iterations. (c) The number of queries to find the next version space is upper bounded by a polynomial function of the doubling constant c.
(a) Assume c_{t} is the center of a ball which contains t, i.e., $t \in B_{c_{t}}\left(\frac{\Delta}{8(\alpha+1)}\right)$. For all $c_{j} \neq c_{t}$ such that $d\left(c_{t}, c_{j}\right)>\frac{\Delta}{8}$, we have $\mathcal{O}_{t}\left(c_{t}, c_{j}\right)=c_{t}$. This is because $d\left(c_{t}, t\right) \leq \frac{\Delta}{8(\alpha+1)}$ and $d\left(c_{j}, t\right)>\frac{\Delta}{8}-\frac{\Delta}{8(\alpha+1)}$, and thus $\alpha d\left(c_{t}, t\right)<d\left(c_{j}, t\right)$.

On the other hand, consider an i such that for all $j \neq i$ with $d\left(c_{i}, c_{j}\right)>\frac{\Delta}{8}$, we have $\mathcal{O}_{t}\left(c_{i}, c_{j}\right)=c_{i}$. We claim $t \in B_{c_{i}}\left(\frac{\Delta(\alpha+2)}{8(\alpha+1)}\right)$. Assume this in not true. Then for c_{t} we have $d\left(c_{i}, c_{t}\right)>d\left(c_{i}, t\right)-\frac{\Delta}{8(\alpha+1)} \geq \frac{\Delta}{8}$. Therefore, following the same lines of reasoning as the fist part of the proof, we should have $\mathcal{O}_{t}\left(c_{i}, c_{t}\right)=c_{t}$. This contradicts our assumption.
(b) We have $\mu\left(\mathcal{V}_{i+1}\right) \leq\left(1-c^{-2}\right) \mu\left(\mathcal{V}_{i}\right)$. To prove this, we first state the following lemma.

Lemma 4. Assume $\Delta=\max _{x, y \in \mathcal{V}_{i}} d(x, y) . \forall x \in \mathcal{V}_{i}$ we have $\max _{y \in \mathcal{V}_{i}} d(x, y) \geq \frac{\Delta}{2}$.
Proof. Assume $x^{*}, y^{*}=\arg \max _{x, y \in \mathcal{V}_{i}} d(x, y)$. By using triangle inequality we have $d\left(x, x^{*}\right)+d\left(x, y^{*}\right) \geq$ $d\left(x^{*}, y^{*}\right)=\Delta$. We conclude that at least one of $d\left(x, x^{*}\right)$ or $d\left(x, y^{*}\right)$ is larger than or equal to $\frac{\Delta}{2}$. This results in $\max _{y \in \mathcal{V}_{i}} d(x, y) \geq \max \left\{d\left(x, x^{*}\right), d\left(x, y^{*}\right)\right\} \geq \frac{\Delta}{2}$.

Let's assume c_{i} is the center of $\mu\left(\mathcal{V}_{i+1}\right)$ and point c_{i}^{*} is the furthest point from c_{i}. From Lemma 4 we know that $d\left(c_{i}, c_{i}^{*}\right) \geq \frac{\Delta}{2}$. Also, it is straightforward to see $B_{c_{i}}\left(\frac{\Delta(\alpha+2)}{8(\alpha+1)}\right) \cap B_{c_{i}^{*}}\left(\frac{\Delta}{4}\right)=\emptyset$. From the definition of expansion rate we have $\mu\left(B_{c_{i}^{*}}\left(\frac{\Delta}{4}\right)\right) \geq c^{-2} \mu\left(B_{c_{i}^{*}}(\Delta)\right) \geq c^{-2} \mu\left(\mathcal{V}_{i}\right)$.
(c) Let's consider $t \in \operatorname{supp} \mathcal{M}$ as the target. Worcs-I locates the target t, provided $\mu\left(\mathcal{V}_{i}\right) \leq\left(1-c^{-2}\right)^{i} \mu\left(\mathcal{V}_{0}\right) \leq \mu(t)$ or equivalently $i \geq 1+\frac{\log \mu(t)}{\log \left(1-c^{-2}\right)} \geq\left\lceil\frac{\log (\mu(t)}{\log \left(1-c^{-2}\right)}\right\rceil$. The expected number of iterations is then upper bounded by $\sum_{t \in \operatorname{supp}(\mathcal{M})} \mu(t)\left(1+\frac{\log \mu(t)}{\log \left(1-c^{-2}\right)}\right)=1+\frac{H(\mu)}{\log \left(1 /\left(1-c^{-2}\right)\right)}$. Finally, from Lemma 1, we know that we can cover the version space \mathcal{V}_{i} with at most $c^{4\lceil\log 8(\alpha+1)\rceil}$ balls of radius $\frac{\Delta}{8(\alpha+1)}$. Note that in the worst case we should query the center of each ball versus centers of all the other balls in each iteration.

D Proof of Theorem 2

Proof. Let $S_{1} \triangleq \mathcal{V}_{i} \backslash \operatorname{Vor}\left(y, x, \mathcal{V}_{i}\right), S_{2} \triangleq \mathcal{V}_{i} \backslash \operatorname{Vor}\left(x, y, \mathcal{V}_{i}\right)$ and $S_{3} \triangleq \mathcal{V}_{i} \backslash\left(\operatorname{Vor}\left(x, y, \mathcal{V}_{i}\right) \cup \operatorname{Vor}\left(y, x, \mathcal{V}_{i}\right)\right)$. We denote the distance between x and y by $r \triangleq d(x, y)$. Assume Δ is the largest distance between any two pints in \mathcal{V}_{i}, i.e., $\Delta \triangleq \operatorname{diam}\left(\mathcal{V}_{i}\right)$. We have $\beta=\Delta / r$ for $0 \leq \beta \leq 1$. We condition on the target element $t \in \operatorname{supp}(\mathcal{M})$.
We first prove that $\mu\left(\mathcal{V}_{i}\right) \leq\left(1-c_{\text {strong }}^{-l}\right)^{i} \mu\left(\mathcal{V}_{0}\right)=\left(1-c_{\text {strong }}^{-l}\right)^{i}$. Note that we have $2^{l} \cdot \frac{r}{\alpha+1} \geq \frac{\alpha+1}{\beta} \cdot \frac{r}{\alpha+1} \geq \Delta$. The first step is to show that $\operatorname{Vor}\left(x, y, \mathcal{V}_{i}\right) \supseteq B_{x}\left(\frac{r}{\alpha+1}\right)$. For any element $v \in B_{x}\left(\frac{r}{\alpha+1}\right)$, we have $d(x, v) \leq \frac{r}{\alpha+1}$. Therefore, $\alpha d(x, v) \leq \frac{\alpha r}{\alpha+1} \leq r-d(x, v)=d(x, y)-d(x, v) \leq d(y, v)$, which yields immediately that $v \in \operatorname{Vor}\left(x, y, \mathcal{V}_{i}\right)$. As a result,

$$
\mu\left(\operatorname{Vor}\left(x, y, \mathcal{V}_{i}\right)\right) \geq \mu\left(B_{x}\left(\frac{r}{\alpha+1}\right)\right) \geq c_{\text {strong }}^{-l} \mu\left(B_{x}\left(2^{l} \cdot \frac{r}{\alpha+1}\right)\right) \geq c_{\text {strong }}^{-l} \mu\left(B_{x}(D)\right) \geq c_{\text {strong }}^{-l} \mu\left(\mathcal{V}_{i}\right) .
$$

We deduce that $\mu\left(S_{2}\right)=\mu\left(\mathcal{V}_{i}\right)-\mu\left(\operatorname{Vor}\left(x, y, \mathcal{V}_{i}\right)\right) \leq\left(1-c_{\text {strong }}^{-l}\right) \mu\left(\mathcal{V}_{i}\right)$. Similarly, we have $\mu\left(\operatorname{Vor}\left(y, x, \mathcal{V}_{i}\right)\right) \geq$ $c_{\text {strong }}^{-l} \mu\left(\mathcal{V}_{i}\right)$ and $\mu\left(S_{1}\right) \leq\left(1-c_{\text {strong }}^{-l}\right) \mu\left(\mathcal{V}_{i}\right)$. In addition, $\mu\left(S_{3}\right) \leq\left(1-c_{\text {strong }}^{-l}\right) \mu\left(\mathcal{V}_{i}\right)$. To sum up, we have $\max _{1 \leq j \leq 3} \mu\left(S_{j}\right) \leq\left(1-c_{\text {strong }}^{-l}\right) \mu\left(\mathcal{V}_{i}\right)$.
The search process ends after at most i iterations provided $\mu\left(\mathcal{V}_{i}\right) \leq\left(1-c_{\text {strong }}^{-l}\right)^{i} \mathcal{V}_{1} \leq \mu(t)$, or equivalently $i \geq 1+\frac{\log \mu(t)}{\log \left(1-c_{\text {strong }}^{\text {- }}\right)}$. The average number of iterations is then bounded from above by

$$
\sum_{t \in \operatorname{supp}(\mathcal{M})} \mu(t)\left(1+\frac{\log \mu(t)}{\log \left(1-c_{\text {strong }}^{-l}\right)}\right) \leq 1+\frac{H(\mu)}{\log \left(1 /\left(1-c_{\text {strong }}^{-l}\right)\right)} .
$$

Also, in each iteration we need to query only one pair of objects.

E Proof of Lemma 2

Proof. We first prove that we can always find at least one point with this property. Define $x^{*}=\arg \max _{z \in \mathcal{V}_{i}} d(x, z)$. From Lemma 4 , we know that $d\left(x, x^{*}\right) \geq \frac{\Delta}{2}$. We claim there is no $z \neq x^{*}$ such that $x \in \operatorname{Vor}\left(x^{*}, z, \mathcal{V}_{i}\right)$. Assume
there is a z. This means $\alpha d\left(x, x^{*}\right) \leq d(x, z)$, where it contradicts with the choice of x^{*}. This means that the set of points with this property is not empty. If $y=z^{*}$ then we are done with the proof, because $d\left(x, x^{*}\right) \geq \frac{\Delta}{2} \geq \frac{\Delta}{2 \alpha}$. Next, we prove that for any $y \neq x^{*}$ with this property, we have $d(x, y) \geq \frac{\Delta}{2 \alpha}$. Assume $y \neq x^{*}$. We know $x \notin \operatorname{Vor}\left(y, x^{*}, \mathcal{V}_{i}\right)$. Therefore, we have $\alpha d(x, y) \geq d\left(x, x^{*}\right) \geq \frac{\Delta}{2}$ and $d(x, y) \geq \frac{\Delta}{2 \alpha}$.

