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Abstract

We consider maximum likelihood estimation
(MLE) of heteroscedastic regression models
based on a new “parametrization” of the like-
lihood in terms of the Sharpe ratio function,
or the ratio of the mean and volatility func-
tions. While with a standard parametriza-
tion the MLE problem is not convex and
hence hard to solve globally, our parametriza-
tion leads to a functional that is jointly con-
vex in the Sharpe ratio and inverse volatility
functions. The major difficulty with the re-
sulting infinite-dimensional convex program
is the shape constraint on the inverse volatil-
ity function. We propose to solve the problem
by solving a sequence of finite-dimensional
convex programs with increasing dimensions,
which can be done globally and efficiently.
We demonstrate that, when the goal is to
estimate the Sharpe ratio function directly,
the finite-sample performance of the pro-
posed estimation method is superior to ex-
isting methods that estimate the mean and
variance functions separately. When applied
to a financial dataset, our method captures a
well-known covariate-dependent effect on the
Shape ratio.

1 Introduction

We consider a regression model of the form

yi = µ(xi) + σ(xi)zi, i = 1, . . . , n, (1)

where z1, . . . , zn are independent and identically dis-
tributed (iid) Gaussian random variables with zero
mean and unit variance. This model states that
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the conditional distribution of y given x is Gaussian
with mean E(y |x) = µ(x) and variance V(y |x) =
σ(x)2. The conditional variance depends on x, so the
model (1) is called a heteroscedastic regression model.
This model has been widely used in financial econo-
metrics, since it allows us to take into account nonlin-
earity and conditional heteroscedasticity in financial
time series. In particular, this model arises as the
discretized version of the continuous-time stochastic
diffusion model which is commonly used in financial
derivative pricing.

We are interested in estimating the ratio between the
mean and volatility (standard deviation) functions, or
the Sharpe ratio function f(x) = µ(x)/σ(x), from
the observed data points (x1, y1), . . . , (xn, yn). In fi-
nance, the Sharpe ratio is the most popular measure
of risk-adjusted return, and often used as a gold stan-
dard to compare different assets or trading strategies.
Covariate-dependent Sharpe ratio (Sharpe ratio func-
tion) has been motivated in many different contexts of
financial literature. Since static Sharpe ratio does not
reflect the asset dynamics, it may oversimplify risk,
be distorted by serial correlation, or affected by the
phases of business cycle (Lo, 2002). Diffusion process
modeling (Leung et al., 2013) thus uses time-varying
Sharpe ratio in order to outperform a (time-varying)
benchmark. In this regard, Tang and Whitelaw (2011)
points out that, “if [market Sharpe ratio] shows sub-
stantial predictable variation, then this variation needs
to be accounted for when using the market as a per-
formance benchmark.” Also, “time-variation in the
Sharpe ratio might provide clues to the fundamental
economics underlying the economy and asset pricing”
(Tang and Whitelaw, 2011), and “proxies for the net
change in the investment opportunity set” (Maio and
Santa-Clara, 2012). In the latter work, the Sharpe
ratio is modeled as a linear function of time-varying
market variables such as credit spreads and yields.

The literature on estimating heteroscedastic regression
models, and the related diffusion process models, is
vast; see Härdle and Tsybakov (1997), Hall and Car-
roll (1989), and Cai and Wang (2008), to name a few.
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However, the existing literature is limited to the es-
timation of the mean and variance functions, not the
Sharpe ratio function itself. With existing methods,
the mean and variance functions are estimated sep-
arately using, e.g., the local polynomial estimation
procedure (Fan and Gijbels, 1996), and combine them
to construct an estimate of the Sharpe ratio function.
This approach is less efficient than estimating the tar-
get function directly.

In this paper, we propose a direct estimation method
for the Sharpe ratio function, assuming that this func-
tion is smooth. To do this, we reparametrize the
regression model (1) with the Sharpe ratio function
f(x) = µ(x)/σ(x) and the inverse volatility function
g(x) = 1

/
σ(x). In heteroscedastic settings, separat-

ing the scale from the target function is, in our view,
more appealing. We then show that the maximum
likelihood estimation problem in (f, g) is convex (in
an infinite-dimensional space), and that f(x) and g(x)
can be expanded as series of basis functions under rea-
sonable assumptions on their smoothness and shape.
The major obstacle is the shape constraint that the in-
verse volatility function g should be nonnegative. We
resolve this by solving a sequence of finite-dimensional
convex optimization problems, each of which can be
solved globally and efficiently.

We organize this paper as follows. Section 2 reviews
existing approaches for the estimation problems in the
heteroscedastic regression model (1), in the context
of Sharpe ratio function estimation. In Section 3, we
introduce our proposal for the Sharpe ratio function
estimation based on the reparametrization (f, g), the
function space we consider, and the associated con-
vex optimization procedure. In Section 4, we carry
out extensive simulation studies to investigate the per-
formance of the proposed method in estimating the
Sharpe ratio function, and compare this to existing
methods. In Section 5, we apply our procedure to
a three-month US Treasury Bill interest rate dataset,
and make a connection to continuous-time diffusion
process models in finance. We conclude the paper in
Section 6 with discussion on extensions of the proposed
method, e.g., to non-Gaussian data.

2 Related methods

Many methods have been proposed to estimate the
mean and/or variance functions in the heterogeneous
regression model (1). Estimation of the smooth mean
function has been studied for many decades; meth-
ods include smoothing splines (Wahba, 1990), kernel
regression (Wand and Jones, 1994), and local polyno-
mial regression (Fan and Gijbels, 1996). For the esti-
mation of the variance function, there are two major

approaches: residual-based and difference-based.

Residual-based methods estimate the mean function
µ(x) first and then estimate the variance function by
estimating the mean of the squared residual r(x) =
(y − µ(x))2 using the fact E(r(x)) = σ2(x). For the
estimation of the mean function, The squared residuals
are evaluated at the “data points” (xi, r̂i), where r̂i =
(yi − µ̂(xi))

2 for i = 1, . . . , n. Local linear regression
estimator is one of the most popular methods, which
estimate the mean of the squared residuals by solving
for each i

(
α̂i, β̂i

)
= arg min

α,β

n∑
i=1

(
r̂i−α−β

(
xi−x

))2
W

(
xi − x
h

)
,

where W (·) is a kernel on R and h > 0 is the band-
width. Then the residual-based variance function es-
timator is defined as σ̂2(xi) = α̂i. Fan and Yao
(1998) propose a two-stage method based on the op-
timal bandwidth selection procedure for local poly-
nomial regression (Fan and Gijbels, 1996). In case
the distribution of εi is known, a smoothing spline
estimator of the variance function is considered by
Liu et al. (2007), using the reparametrization σ(x) =
exp(g̃(x)/2) with g̃ ∈ W2,2 to remove the nonnega-
tivity constraint. We note that this reparametrization
is somewhat restrictive as far as the nonnegativity is
concerned. With any method, if the Sharpe ratio func-
tion is of interest, it should be estimated indirectly as

f̂(x) = µ̂(x)/(σ̂2(x))1/2.

Difference-based methods possess an advantage that
they do not require the estimate of the mean function.
We should remark that if the Sharpe ratio function is
the object of concern, the mean function has to be esti-
mated separately using the aforementioned methods,
e.g., Fan and Gijbels (1996). These methods utilize
that fact that in the homoscedastic case, when the
data points are sorted so that x1 ≤ x2 ≤ · · · ≤ xn, the
pseudo-residual

σ̂2(xi) =
(∑r

j=−r wjyi+j

)2
,

where r > 0 is a fixed constant and coefficients {wj}
satisfies

∑r
j=−r wj = 0 and

∑r
j=−r w

2
j = 1, forms

an unbiased estimator of the variance σ2(x) ≡ σ2.
For example, if r = 1, w1 = 1/

√
2, w0 = −w1,

and w−1 = 0, and wj = 0, the estimator becomes

σ̂2(xi) = (yi+1 − yi)2/2. In the heteroscedastic case,
Brown and Levine (2007) consider applying local lin-
ear regression to the pseudo-residuals to estimate the
variance function σ2(x); see Tong et al. (2013) and Dai
et al. (2015) for theoretical analysis of many difference-
based estimators and their extension to repeatedly
measured data. The effects of the mean function esti-
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mator on the estimation of the variance function are
reviewed in Wang et al. (2008).

3 Sharpe ratio function estimation

3.1 Main problem

Under model (1), the negative log-likelihood of the
data is given by

l(µ, σ) =

n∑
i=1

{
1

2

(
yi − µ(xi)

σ(xi)

)2

+ log σ(xi)

}
, (2)

ignoring additive constants. Of course, it is required
that the standard deviation function σ(x) (or the vari-
ance function σ2(x)) to be positive. As our inter-
est is to estimate the Sharpe ratio function f(x) =
µ(x)/σ(x), we reparametrize (2) with f and addition-
ally with g(x) = 1/σ(x) so that

l(f, g) =

n∑
i=1

{
1

2
(g(xi)yi − f(xi)

)2 − log g(xi)

}
. (3)

We want to estimate functions f and g from appropri-
ate vector spaces of functions, under some reasonable
assumptions on their shape. As our primary interest
is in f , function g can be considered as a nuisance
parameter.

In the homoscedastic case, i.e., g is a constant func-
tion, estimating f is equivalent to estimating µ, and it
is customary to find f over the second-order Sobolev
space that consists of twice differentiable functions on
[0, 1] (without loss of generality) equipped with the
norm

‖f‖2,2 =

(
2∑
i=0

∫ 1

0

(f (i)(x))2 dx

)1/2

,

where f (i) is the ith derivative of f . Throughout, this
space is denoted by W2,2([0, 1]) or simply W2,2. It is
also customary to penalize the roughness of f , where it
is measured by the size of its second derivative, in order
to have a smooth estimate. The resulting optimization
problem is thus

minimize 1
2

∑n
i=1(yi − f(xi))

2

subject to f ∈ W2,2,
∫ 1

0
(f (2)(x))2 dx ≤ B (4)

for some roughness bound B > 0. It is well known that
the solution of this problem is given by the natural cu-
bic spline with knots at the data points x1, x2, . . . , xn
(Wahba, 1990; Schölkopf et al., 2001). That is, the
solution f to (4) has the form

f?(x) =

n∑
j=1

α?jNj(x), (5)

where {N1(x), . . . , Nn(x)} is the set of basis functions
for representing the family of natural cubic splines hav-
ing knots at x1, x2, . . . , xn. The optimal coefficient
vector α? = (α?1, . . . , α

?
n) is obtained by solving the fol-

lowing (quadratically constrained) quadratic program
(QP)

minimize 1
2α

TPα− qT y
subject to αTΩα ≤ B,

where P = (Pjk) with Pjk =
∑n
i=1Nj(xi)Nk(xi); q =

(q1, . . . , qn) with qi =
∑n
j=1Nj(xi); Ω = (Ωjk) with

Ωjk =
∫ 1

0
N

(2)
j (x)N

(2)
k (x) dx; and y = (y1, . . . , yn).

Equivalently, we can minimize the Lagrangian form
of the above QP

(1/2)αTPα− qT y + (λ/2)αTΩα, (6)

for the regularization parameter λ > 0 corresponding
to B. Problem (6) is the conventional (linearly con-
strained) QP, which is easier for numerical optimiza-
tion.

In the heteroscedastic case, it is natural to also seek g
in W2,2, yielding the following formulation

minimize
∑n
i=1

{
1
2 (g(xi)yi − f(xi))

2 − log g(xi)
}

subject to f ∈ W2,2,
∫ 1

0
(f (2)(x))2 dx ≤ Bf ,

g ∈ W2,2, g ∈ P,
∫ 1

0
(g(2)(x))2 dx ≤ Bg,

(7)
where P = {g : g(x) ≥ 0,∀x ∈ [0, 1]} is the collection
of all positive functions. Problem (7) is jointly con-
vex in (f, g) ∈ W2,2 × W2,2, because P is a convex
cone and the L2 norm constraints are convex. Un-
like (4), however, the infinite number of constraints in
P prevent us from obtaining an easy-to-solve, finite-
dimensional convex program as (6). Nevertheless, (7)
can be efficiently solved by solving a sequence of finite-
dimensional convex programs. This is the main sub-
ject of the next subsection.

Note that, if we are to find µ and σ (or σ2) ∈ P jointly
over W2,2 × W2,2, then the objective of (7) shall be
replaced by (2), and the constraints be retained with f
and g substituted respectively by µ and σ. While the
constraint set is convex, the objective in this situation
is not convex in general.

3.2 Solution procedure

We first show that the optimal f for problem (7) at-
tains the form (5). That is, the optimal f is a natural
cubic spline having knots on the data points.

Proposition 1. Let (f?, g?) be a solution of (7).
Then, f?(x) has the form (5).

Proof. Fix g ∈ W2,2 ∩ P such that
∫ 1

0
(g(2)(x))2 dx ≤

Bg. Then (7) is equivalent to finding fg minimiz-
ing (1/2)

∑n
i=1(ygi − f(xi))

2 subject to f ∈ W2,2
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and
∫ 1

0
(f (2)(x))2 dx ≤ Bf , where ygi = g(xi)yi, i =

1, . . . , n. This subproblem is precisely the smoothing
spline problem (4) with “data” {(xi, ygi )}ni=1 and thus
the minimizing fg must have the form (5). The opti-
mal f? is among those fg for all g satisfying the con-
straints.

If there were no nonnegativity constraint g ∈ P, then
the optimal g could have also been characterized in
the same fashion as Proposition 1, and (7) should have
been reduced to a finite-dimensional convex program
on the spline coefficients. With g ∈ P, however, no
such simple characterization of the optimal g is avail-
able. While Utreras (1985) provides an optimality con-
dition for the solution to smoothing splines with non-
negativity, monotonicity, or convexity (i.e., (4) with an
additional constraint such as f ∈ P), no constructive
algorithm, especially for the nonnegativity constraint,
has yet to be devised. To circumvent this difficulty, one
could think of restricting the class of functions, e.g., to
a nonnegative combination of nonnegative basis func-
tions or a log-linear parametrization (Ramsay, 1998),
or starting from the unconstrained solution to (7) and
adaptively adding local constraints until the desired
shape is obtained (Turlach, 2005). In any case, the
search space is much smaller than the allowedW2,2∩P.

Here we adopt the method proposed by Papp and Al-
izadeh (2014), which explores the cone K =W2,2 ∩ P
sequentially by sieves. In other words, we form a se-
quence of subsets {Km} of K such that ∪∞m=1Km is
dense in K. Then for each m, we solve an approxi-
mate version of (7) in which K is replaced by Km. We
design the sieve {Km} so that the tolerated roughness
of the functions increases with m so that an appropri-
ate value of m can be determined by cross-validation.
Specifically, we let Km = Sm ∩ P where Sm is the
space of cubic splines with km knots at tm1 < · · · <
tmkm . (Hence Sm is finite-dimensional with dimension
km + 4.) If the length maxi=0,...,km |tm,i+1 − tmi| of
the longest interval between adjacent knots (tm0 = 0
and tm,km+1 = 1) approaches zero as m → ∞, then
∪∞m=1Sm is dense in W2,2 (Schumaker, 1981). Con-
sequently, ∪∞m=1Km is dense in W2,2 ∩ P. With this
choice of a sieve (together with Proposition 1) and
for each Km, g is restricted to have the form g(x) =
βTψ(x), where ψ(x) = (ψ(0)(x), . . . , ψ(km)(x))T , β =
(β(0), . . . , β(km))T ∈ R4km with

ψ(j)(x) = I{tj≤x≤tj+1}(1,
x−tj

tj+1−tj ,
(x−tj)2

(tj+1−tj)2 ,
(x−tj)3

(tj+1−tj)3 ),

β(j) = (β
(j)
0 , β

(j)
1 , β

(j)
2 , β

(j)
3 ),

Additional constraints on β to ensure continuity of
derivatives

β
(j)
0 + β

(j)
1 + β

(j)
2 + β

(j)
3 = β

(j+1)
0

β
(j)
1 + 2β

(j)
2 + 3β

(j)
3 = β

(j+1)
1

2β
(j)
2 + 6β

(j)
3 = 2β

(j+1)
2 (8)

are necessary to be imposed for j = 0, . . . , km − 1.
Then, the approximate version of (7) corresponding
to each Km is the following convex program:

minimize

n∑
i=1

(
1

2
(αTai − βT bi)2 − log(βT ci)

)
subject to αTΩα ≤ Bf , (9)

βTψ(x) ≥ 0, ∀x ∈ [0, 1],

3∑
l=0

β
(j)
l = β

(j+1)
0 , j = 0, . . . , km − 1,

3∑
l=1

lβ
(j)
l = β

(j+1)
1 , j = 0, . . . , km − 1,

β
(j)
2 + 3β

(j)
3 = β

(j+1)
2 , j = 0, . . . , km − 1,

‖β‖2 ≤ Bm,

where α ∈ Rn and β ∈ R4km are the optimization vari-
ables; ai = (N1(xi), . . . , Nn(xi))

T , bi = yiψ(xi), and
ci = ψ(xi). The norm constraint on the last line is due
to the equivalence of all norms in a finite-dimensional
space. Increasing the bound Bm slowly with m regu-
larizes the roughness of g(x) = βTψ(x). The third line
of (9) still involves infinite number of constraints. In
the sequel, we describe how these constraints can be
represented by a small number of second-order cone
constraints on β and auxiliary variables. Thus (9) re-
duces to a finite-dimensional convex program.

3.3 Nonnegative splines

Papp and Alizadeh (2014) utilize the fact that a nec-
essary and sufficient condition for a univariate poly-
nomial to be nonnegative over an interval can be ex-
pressed as a set of semidefinite constraints. Focusing
on cubic splines, this fact can be written:

Proposition 2 (Papp and Alizadeh (2014)). Let

p(j)(x) =
∑3
l=0 β

(j)
l

(
x−tj

tj+1−tj

)l
. Then p(j)(x) ≥ 0 for

all x ∈ [tj , tj+1] if and only if

U (j) =

[
u
(j)
0 u

(j)
1

u
(j)
1 u

(j)
2

]
, V (j) =

[
v
(j)
0 v

(j)
1

v
(j)
1 v

(j)
2

]
∈ S2+, (10)

where Sd+ is the set of symmetric, positive semidefinite
matrices in Rd×d, and

β
(j)
0 = v

(j)
0

β
(j)
1 = 2v

(j)
1 + u

(j)
0 − v

(j)
0

β
(j)
2 = v

(j)
2 + 2u

(j)
1 − 2v

(j)
1

β
(j)
3 = u

(j)
2 − v

(j)
2 . (11)
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It is obvious that βTψ(x) ≥ 0 for all x ∈ [0, 1] if and
only if p(j)(x) ≥ 0 for x ∈ [tj , tj+1], j = 0, . . . , km. Be-
cause the 2×2 semidefinite constraints (10) are equiv-
alent to the second-order cone constraints

‖(u(j)0 − u
(j)
2 , 2u

(j)
1 )T ‖2 ≤ u(j)0 + u

(j)
2 ,

‖(v(j)0 − v
(j)
2 , 2v

(j)
1 )T ‖2 ≤ v(j)0 + v

(j)
2 (12)

(see, e.g., Lobo et al. (1998)), the third line in (9)
can be replaced by (11) and (12), with additional vari-

ables u(j) = (u
(j)
0 , u

(j)
1 , u

(j)
2 ) and v(j) = (v

(j)
0 , v

(j)
1 , v

(j)
2 ),

j = 0, . . . , km. Then problem (9) can be efficiently
solved using existing interior-point solvers. Modern
optimization software such as SDPT3 (Toh et al., 1999)
and Knitro (Byrd et al., 2006) can handle second-
order cone constraints (which subsumes linear con-
straints) with a convex objective.

Alternatively, we may use nonnegative piecewise cu-
bic polynomials that span Sm and combine them
with nonnegative coefficients (i.e., conic combina-
tion) to represent g(x). In this case, the con-
straint βTψ(x) ≥ 0 in (7) is replaced simply
by β ≥ 0, with the dimensions of β and ψ(x),
and the components of ψ(x) appropriately modified.
The continuity constraints (8) should also be mod-
ified accordingly, while preserving linearity. Possi-
ble choices of ψ(x) = (ψ(0)(x), . . . , ψ(rm−1)(x)) in-
clude the cubic B-spline basis (rm = km + 4), and
the piecewise cubic Bernstein polynomials ψ(j)(x) =

I{tj≤x≤tj+1}(ψ
(j)
0 (x), ψ

(j)
1 (x), ψ

(j)
2 (x), ψ

(j)
3 (x)), where

ψ
(j)
l (x) =

(
x−tj

tj+1−tj

)l (
1− x−tj

tj+1−tj

)3−l
, l = 0, . . . , 3.

(rm = km). While the set of functions, say, Pm rep-
resented by conic combination of these functions is a
subset of Km, it can be shown that {Pm} forms a
sieve under an additional assumption on the sequence
of knots (Papp and Alizadeh, 2014, Thorem 1). The
key advantage of this approach is that it makes the
constraint set in (9) polyhedral. If the objective in (7)
is quadratic, then we need to solve a sequence of QPs,
which are in general solved more efficiently than the
problems involving the second-order cone constraints
(12). In our problem, however, the objective also con-
tains non-quadratic convex functions, and we do not
see a merit over the formulation in the previous para-
graph, which can handle the full Km.

4 Simulation results

In this section we carry out extensive simulations to
compare our Sharpe ratio estimation method with ex-
isting methods of separately estimating mean and vari-
ance functions. The focus of this study is estima-
tion accuracy of the Sharpe ratio function, which our

method estimates directly and globally, while the other
methods do indirectly via the mean and variance func-
tions. We use two simulated models previously studied
in the literature.

Example 1 We simulated 100 random samples of
size n = 200 from the model considered by Fan and
Yao (1998)

Yi = a(Xi+2 exp(−16X2
i ))+(0.4 exp(−2X2

i )+0.2)εi,

where Xi
iid∼ Unif[−2, 2] and εi

iid∼ N (0, 1). Thus the
Sharpe ratio function is given by

f(x) = a(x+ 2 exp(−16x2))/(0.4 exp(−2x2) + 0.2).

Four different values of a = 0.5, 1, 2, and 4 were used
in the simulation. For each simulated sample, the esti-
mation accuracy of an estimator was evaluated by the
mean absolute deviation

EMAD = (1/ngrid)

ngrid∑
j=1

|f̂(xj)− f(xj)|,

where xj , j = 1, . . . , ngrid are uniform grid points on
(−2, 2) with ngrid = 99. We compared our estimator
with a residual-based one (Fan and Yao, 1998) and a
difference-based one (Brown and Levine, 2007, r = 1).

For the former, f̂ was estimated by solving (7) with the
regularization parameters chosen by a leave-one-out
cross-validation over a grid of parameters. For the lat-

ter two, f̂ was determined by f̂(x) = µ̂(x)/(σ̂2(x))1/2,

where µ̂ and σ̂2 were estimated separately using lo-
cal polynomial fitting with the Epanechnikov kernel,
where the bandwidth was selected by the method of
Fan and Gijbels (1996). We used CVX (Grant and
Boyd, 2014) with SDPT3 as the backend to solve (9)
and R package locpol for the other two methods. The
results are summarized in Fig. 1, in which the box-
plots of EMAD are presented for each value of the four
as. (The corresponding numbers are in the supple-
ment.) The proposed method tends to have smallest
median absolute deviation for all the scenarios con-
sidered. The residual-based method comes the next,
with a larger average and dispersion but some over-
lap; the difference-based method follows with some
margin. We remark that there were some discarded
values (NaNs) in computing EMAD for the residual- and
difference-based methods; see the next paragraph for
the details.

An investigation into the case a = 0.5 gives a fur-
ther insight into our estimation method. (The situ-
ation is similar in other cases as well.) In Fig. 2,

we plot the estimated Sharpe ratio function f̂(x) and

variance function σ̂2(x) together with the true func-
tions f(x) and σ2(x). Note the lesser variability of the
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estimated Sharpe ratio functions f̂ (dotted gray) of
the proposed method compared to the others. High-
lighted for the residual- and difference-based methods

are an estimated variance function σ̂2 that has nega-
tive values and the corresponding f̂ . Both the residual-
and difference-based methods occasionally had nega-
tive variance estimates, particularly at xs close to the
boundary: the difference-based method had nine out
of 100 samples with negative variance estimates, while
the residual-based method had one. In these cases,
NaNs were generated in computing f̂(x) for xs with
negative variances. The unstable estimates of the vari-
ance function are one reason that these two methods
have a large average and dispersion of EMAD in esti-
mating f(x) = µ(x)/σ(x). This phenomenon is due
to the fact that these methods estimate σ2(x) by local
polynomial regression, where the nonnegativity con-
straint is difficult to be imposed. As the estimation
of f(x) is indirectly done using the estimated mean
and variance functions with these methods, a nega-
tive value in the variance function may cause an un-
defined behavior in the estimation of the Sharpe ratio
function. (Local constant regression does not suffer
this drawback, with less satisfactory theoretical prop-
erties; see Xu and Phillips (2011).) On the contrary, in

our joint estimation approach f̂ is estimated directly,
and the nonnegativity constraint in (7) ensures that

σ̂2(x) = 1/(ĝ(x))2 is positive (there was no exact ze-
ros). While the variance function is estimated indi-
rectly in this case, Fig. 2 demonstrates a quite accept-
able estimation result.

Example 2 We simulated 100 random samples of
size n = 200 from the model considered by Wang et al.
(2008)

Yi = (3/4) sin(bπXi) + ((Xi − 1/2)2 + 1/2)1/2εi,

where Xi
iid∼ Unif[0, 1] and εi

iid∼ N (0, 1). Thus the
Sharpe ratio function is given by

f(x) = (3/4) sin(bπx)/
√

(x− 1/2)2 + 1/2.

Four different values of b = 0, 10, 20, and 40 were
used in the simulation. For each simulated sample,
the estimation accuracy of estimator was evaluated
by the mean absolute deviation as above. We com-
pared our estimator with a residual-based (Fan and
Yao, 1998) and a difference-based ones (Brown and
Levine, 2007) in the same manner as Example 1. The
results are summarized in Fig. 3, in which the box-
plots of EMAD are presented for each value of the four
bs. (The corresponding numbers are in the supple-
ment.) Our joint optimization method performs sig-
nificantly better than the others for b = 10, 20, and 40.
For b = 0, even though the accuracy of our method is
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Figure 1: Boxplots of the mean absolute deviation
EMAD from the estimation of the Sharpe ratio function
f(x) = a(Xi + 2 exp(−16X2

i ))/(0.4 exp(−2X2
i ) + 0.2)

in Example 1.

markedly worse, the range between the first and third
quartiles of the EMAD overlaps with those of the other
two methods. Also the median MAD values are quite
small (between 0.05 and 0.1) for all the three methods.
Thus the performance does not deteriorate as it might
appear at first glance. The reason for this relatively
worse performance is likely that the cubic B-spline ba-
sis does not contain a constant function, thus requires
a precise linear combination to represent a perfectly
flat function. Unlike Example 1, the difference-based
method exhibits a better or comparable performance
than the residual-based method. This is due to that
the former is known to perform well when the true
curve is close to non-smooth (Wang et al., 2008).

5 Term structure modeling

In this section, we apply the proposed estimation
method to interest rate modeling. The analyzed
dataset consists of 1735 weekly observations of the
yields of the three-month US Treasury Bill from the
secondary market rates, taken from January 5, 1962
to March 31, 1995. These time series data are pre-
sented in the left panel of Fig. 4. The data have been
analyzed by various authors, e.g., Andersen and Lund
(1997), Gallant and Tauchen (1997), and Fan and Yao
(1998). Following Andersen and Lund (1997) and Fan
and Yao (1998), we first fitted a fifth-order autoregres-
sive model to the time series, denoted by zt, and re-
gressed the residuals, denoted by yt, against xt ≡ zt−1.
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Figure 2: Simulation results for the estimation meth-
ods in Example 1 (a = 0.5). Top: residual-based
method. Middle: difference-based method. Bottom:
proposed method. Left: estimated regression curves
(dotted gray) of the Sharp ratio function f(x) (solid
thick, blue curve). Right: estimated regression curves
(dotted gray) of the variance function σ2(x) (solid
thick, blue curve). An estimated variance function
with a negative value is highlighted in the right, and
so is the corresponding Sharpe ratio function (dashed
thick, magenta curves) in the left.

The residuals are plotted against the yields xt in the
right panel of Fig. 4. The fitted AR(5) model coeffi-
cients are (1.3252,−0.2800,−0.0263, 0.0276,−0.0472),
thus the model that we estimate is

xt+1 − 1.3252xt + 0.2800xt−1 + 0.0263xt−2

− 0.0276xt−3 + 0.0472xt−4 = yt = µ̃(xt) + σ̃(xt)εt,

in which we assume εt
iid∼ N (0, 1).

The above equation can be considered as a discrete-
time approximation to the continuous-time diffusion
process model

dXt = µ(Xt)dt+ σ(Xt)dWt, (13)

where µ is the drift function, σ is the diffusion function,
and Wt is the standard Brownian motion, which has
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Figure 3: Boxplots of the mean absolute deviation
EMAD from the estimation of the Sharpe ratio function
f(x) = 3

4 sin(bπx)/
√

(x− 1/2)2 + 1/2 in Example 2.

been widely used to model the stochastic behavior of
economic variables, such as interest rates, exchange
rates, and stock prices; see, e.g., Andersen and Lund
(1997). In this case, µ represents the instantaneous
expected rate of return, and σ the volatility.

We are particularly interested in nonparametric esti-
mation of the Sharpe ratio function f(x) = µ(x)/σ(x)
directly by solving (7). As Examples 1 and 2, we
compare the results with those using a residual-based
method (Fan and Yao, 1998) and a difference-based
one (Brown and Levine, 2007, r = 1). Shown in Fig.
5 are the estimated Sharpe ratio functions (left col-
umn, thick blue curves) and the squared volatility,
or conditional variance functions (right column, thick
blue curves), together with the 95% two-sided point-
wise confidence band obtained by using the regression
bootstrap (dotted curves). These functions are scaled
versions of µ(x)/σ(x) and σ2(x) in (13). It appears
that the proposed method captures the well-known low
price effect of the Sharpe ratio (Gilbertson et al., 1982;
Branch and Chang, 1990), that low-priced assets out-
perform high-priced ones, more accurately than the
others. Specifically, only the estimate by the proposed
method shows that the Sharpe ratio function f(x) in-
creases as the price x gets close to 0, whereas the those
by the other two methods are flat around x = 0. The
estimated f̂(x) also suggests some resemblance to the
famous Cox-Ingersoll-Ross model (Cox et al., 1985) for
interest rate term structure, whose Sharpe ratio func-
tion has the form f(x) = ax−1/2 + bx1/2.

Recall that for the proposed method f(x) is estimated
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Figure 4: 3-month US Treasury Bill data. Left: time
series plot of the yields (zt). Right: scatter plot of
residuals after an AR(5) model fit (yt) vs xt = zt−1.

directly, while for the other methods, σ2(x) is esti-
mated directly. As observed in Example 1, the two ex-
isting methods compared may result in negative vari-
ance, as indicated by the bootstrap confidence bands
in the right panels of Fig. 5, yielding NaNs in some val-
ues of estimated f(x) (discarded in the computation
of the confidence interval).
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Figure 5: Estimation of the Sharpe ratio function from
the 3-month US Treasury Bill data. Top: residual-
based method. Middle: difference-based method. Bot-
tom: proposed method. Left: estimated regression
curve of the Sharp ratio function f(x) (solid blue
curve). Right: estimated regression curve of the vari-
ance function σ2(x) (solid blue curve).

6 Conclusions

We have described a method for estimating the Sharpe
ratio function in heteroscedastic regression model (1)
using a scale-separating “reparametrization.” The re-
sulting maximum likelihood estimation problem is con-
vex in an appropriate function space; we have devised
a method that solves this problem efficiently by using
splines. The simulation results show that this method
is suitable in estimating the Sharpe ratio function di-
rectly, rather than indirectly by combining separate
estimates of the mean and variance functions. The re-
sults from the interest rate data analysis suggest that
it is possible to apply our nonparametric technique to
identify the underlying stochastic process in terms of
the Sharpe ratio, capturing well-known empirical evi-
dences.

A variety of extensions of the estimation method de-
scribed in this paper can be considered. First, our
method can be immediately extended to non-Gaussian
cases (i.e., zi in (1) are iid but not Gaussian) as long
as the employed loss function is jointly convex in f
and g; squared loss of the standardized error (i.e., (3)
without the logarithm terms) and the Huber loss are
two such examples. For the squared standardized error
loss, in particular, the alternative method using non-
negative combinations of nonnegative polynomials of
Section 3 has a computational advantage, as the prob-
lem reduces to a sequence of QPs. Second, we can
easily add shape constraints such as monotonicity and
convexity. For example, if we believe that the diffu-
sion function is monotonically increasing, a constraint
g(1)(x) ≤ 0 can be included; this constraint is linear
for each Sm. Indeed, shape-constrained function esti-
mation is gaining interest in the statistics and machine
learning communities as a way to bridge statistical es-
timation and deterministic optimization (Hannah and
Dunson, 2013; Balázs, 2016; Mazumder et al., 2017;
Guntuboyina and Sen, 2017). Third, in the above
model, xi could be multivariate. In this case, we can
change the search space in (7) to a product space of
reproducing kernel Hilbert spaces and replace the L2

norms by appropriate ones. Proposition 1 should still
hold by the representer theorem, while the nonnega-
tivity constraint remains a subject of future research.

We hope that this paper spurs interest in shape-
constrained estimation and related theoretical issues.
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