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This document contains proofs and supplementary details for the paper “Communication-Avoiding Op-
timization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation”. All section,
equation, table, and figure numbers in this supplementary document are preceded by the letter “S” (all
section, equation, table, and figure numbers without an “S” refer to the main paper).

S.1 PSEUDOCODE FOR Obs

The pseudocode for the Obs variant of HP-CONCORD, omitted from the main paper due to space con-
straints, is presented below in Algorithm S.1. The main differences from Algorithm 1 in the main paper are
highlighted in blue.

Algorithm S.1 The Obs variant of HP-CONCORD, for computing a sparse inverse covariance matrix estimate.

Input: data matrix X ∈ Rn×p; tuning parameters λ1, λ2 ≥ 0; optimization tolerance ε > 0

Output: estimate Ω̂ ∈ Rp×p of the underlying inverse covariance matrix Ω0

1: Ω(0) ← I
2: Compute Y (0) ← Ω(0)XT . Compute via a distributed sparse-dense matrix multiplication
3: for k = 0, 1, 2, . . .
4: Compute Z(k) ← Y (k)X . Compute via a distributed dense-dense matrix multiplication
5: Form (Z(k))T . Form via a distributed matrix transpose

6: G(k) ← −(Ω
(k)
D )−1 + 1

2
((Z(k))T + Z(k)) + λ2Ω(k) . Use Z(k), (Z(k))T

7: g(Ω(k))← −2
∑
i log(Ω

(k)
ii ) + 1

n
‖Y (k)‖2F + λ2

2
‖Ω(k)‖2F . Use Y (k); see text for details

8: for τ = 1, 1
2
, 1
4
, . . .

9: Ω(k+1) ← Sτλ1(Ω(k) − τG(k)) . Apply the soft-thresholding operator, Sτλ1

10: Compute Y (k+1) ← Ω(k+1)XT . Compute via a distributed sparse-dense matrix multiplication

11: g(Ω(k+1))← −2
∑
i log(Ω

(k+1)
ii ) + 1

n
‖Y (k+1)‖2F + λ2

2
‖Ω(k+1)‖2F . Use Y (k+1); see text for details

12: until g(Ω(k+1)) ≤ g(Ω(k))− tr((Ω(k) − Ω(k+1))TG(k)) + 1
2τ
‖Ω(k) − Ω(k+1)‖2F . See text for details

13: until a stopping criterion is satisfied, using ε

14: return the estimate Ω̂← Ω(k)

∗ Now at Google Brain.
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S.2 COMPUTATIONAL COST COMPARISON FOR Cov VS. Obs

Cov is preferred over Obs when the flop count for Cov is less than that for Obs (from Lemma 3.1 in the
main paper), i.e.,

2np2 + 2dp2(st+ 1) < 2np2s+ 2dnp(st+ 1)

2dp(st+ 1)(p− n) < 2np2(s− 1)

d(st+ 1)(p− n) < np(s− 1). (S.1)

We relax the comparison a little by plugging in st < st+ 1 and s > s− 1:

dst(p− n) < nps

d

p
<

n

p− n
· 1

t
. (S.2)

Let robs = n/p be the ratio of the number of observations to the number of features and let rnnz = dp/p2 =
d/p be the average percent nonzeroes of Ω throughout all iterations, 0 < robs, rnnz ≤ 1, we can reformulate
(S.2) as

rnnz <
robs

1− robs
· 1

t
.

Above, robs/(1− robs) is an increasing function. The closer n is to p, the higher rnnz can be for Cov to still
require less flops than Obs. For example, assume t = 10 (we observed 5-15 line search iterations per one
proximal gradient iteration in practice). Substituting robs = 0.01, 0.1, and 0.25 give rnnz < 0.001, 0.011,
and 0.033, respectively. Applications with average percent nonzeroes of Ω (throughout all iterations) less
than 0.1%, 1.1%, and 3.3% should benefit from Cov in these cases.

S.3 ADDITIONAL DETAILS ON OUR 1.5D MATRIX MULTIPLICATION
ALGORITHM

This subsection details how Algorithm 3 in the main paper computes C = AB. Our algorithm partitions
all matrices in a 1D layout. We pick one operand to move around (A or B) and fixing the other operand
and C stationary. We will call the rotating matrix R and the other fixed operand F . The notation we use
is summarized in the table below. Our indexing is one-based and cyclic.

Notation Meaning

P Total number of processors
R Matrix operand being rotated (A or B)
F Matrix operand being fixed (B or A)
cR Replication factor of R
cF Replication factor of F and C
GR Logical grid of processors of size P/cR teams by cR layers
GF Logical grid of processors of size P/cF teams by cF layers

S.3.1 Data layout

We partition R in 1D into P/cR equal parts: R(1), . . . , R(P/cR) and let processors GR(i, :) own R(i).
There are cR processors in each team GR(i, :) so each R(i) is stored cR times across all processors, hence
why we call cR the replication factor of R. Likewise, we partition F and C in 1D into P/cF equal parts:
F (1), . . . , F (P/cF ) and C(1), . . . , C(P/cF ). We let processors GF (j, :) own F (j) and C(j).
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S.3.2 Multiplication

Team GF (j, :) is responsible for computing C(j) together. Each team member computes appropriate mul-
tiplication between the fixed matrix F (j) with different parts of R. For convenience, we reproduce the
pseudocode for Algorithm 3 from the main paper below.

Algorithm S.2 Our 1.5D matrix multiplication algorithm.

1: for each GR(i, `R) = GF (j, `F ), in parallel, do
2: δ ← min(`F , `R) ·max(1, cF /cR)
3: Shift R by δ.
4: for p

cF cR
rounds do

5: Calculate local C = AB
6: Shift R by cF
7: end for
8: SumReduce/Allgather C between GF (j, :)
9: end for

Line 2 calculates an offset δ that each member would shift R initially to all get different parts of R. Line 3
performs the initial shift. Then we alternate between multiplying the local matrices and shifting R by cF
to get a new part of R. There are P/cR different parts of R and each team calculates cF parts at once (one
part per each team member). The algorithm needs to run for P/(cRcF ) rounds.

Figure S.1 shows an example when we partition A in 1D block row layout, B and C in 1D block column
layout, and rotate A, on 16 processors. Figure S.1a shows the situation when cA ≤ cB . The first row shows
the original layout of A and B. Written on each matrix part are the processor ranks. cA = 4 and cB = 2.
The second row shows Round 0, where each processor performs an initial shift so that GB(j, :) as a whole
would multiply A(jcB/cA) to A(jcB/cA + cB) with B(j). The next round the team moves to the next cB
blocks of A and finish the rest of the multiplications. Figure S.1b shows what happens when cA > cB .
Figure S.2 illustrates how the algorithm works when we shift B instead of A.

S.3.3 Communication costs

Let nnz(·) denote the number of nonzereos of a matrix, sparse or dense. There are p/(cRcF ) rounds, each
round each processor sends a message. The message size is nnz(R)/(P/cR) = cR nnz(R)/P . The total
number of messages and words are

L1.5D =
P

cRcF
messages,

W1.5D =
P

cRcF
· cR nnz(R)

P
=

nnz(R)

cF
words.

S.3.4 Transposing the resulting matrix C

Normal 1D partitioning without replication requires all P processors to talk to all other processors in a
transpose. Replication helps us limit the number of processors each processor has to exchange matrices
with. For example, in Figure S.1a, processor 0 has to exchange sub-matrices with processors 2, 8, and 10 to
do a transpose, not all processors anymore. For each team GF (j, :), there are P/cR block rows of C(j) to
calculate, so each processor GF (j, `F ) calculates P/(cRcF ) submatrices of C(j). When being transposed,
each submatrix will span max(cR/cF , cF /cR) submatrices from other teams. The number of processors each
processor has to communicate to in a transpose is

P

cRcF
max

(
cR
cF
,
cF
cR

)
= max

(
P

c2F
,
P

c2R

)
.
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Figure S.1: Processors GB(j, :) compute C(j) together. The numbers on the matrix parts are the ranks of
the processors that it resides on. Here, p = 16 and (cA, cB) is (2, 4) in (a) and (4, 2) in (b). The first line
shows the original layouts of A and B. The second line (Round 0) shifts A by δ to compute the first cB
blocks of C(j). The third line (Round 1) shifts A by cB and computes the rest of C.
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Figure S.2: Processors GA(i, :) compute C(i) together. The numbers on the matrix parts are the ranks of
the processors that it resides on. Here, p = 16 and (cA, cB) is (4, 2) in (a) and (2, 4) in (b). The Original
column shows the original layouts of A and B. Round 0 shifts B by δ to compute the first cA blocks of
C(i, :). Round 1 shifts B by cA and computes the rest of C.
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Each processor holds nnz(C)/(P/cF ) words of C, split into P/cR blocks. Therefore, the number of words
each block to be transposed has is

nnz(C) · cRcF
P 2

.

An all-to-all communication between P processors where everyone sends and receives w words from everyone
takes O(logP ) messages and O(wP logP ) words. Therefore, the costs of transposing the resulting matrix
C from Algorithm 3 are

Lxpose = O

(
log max

(
P

c2F
,
P

c2R

))
messages,

Wxpose = O

(
nnz(C)cRcF

P 2
max

(
P

c2F
,
P

c2R

)
log max

(
P

c2F
,
P

c2R

))
words.

S.4 ADDITIONAL DETAILS, FIGURES, AND TABLES FOR THE fMRI
EXPERIMENTS

S.4.1 Further details on the fMRI data

Here, we present further details on the fMRI data, and in particular the sample covariance matrix, we use.
The sample covariance matrix we use was generated in the following way (c.f. Figure 2 of [11]). First, 1,200
subjects were put into a state-of-the-art fMRI machine and measurements were taken without stimulating
the subjects, every 0.7 seconds for an hour, at 2 millimeter × 2 millimeter × 2 millimeter cubes/voxels spread
evenly throughout the cerebral cortex. Next, as fMRI data is typically very noisy, a significant amount of
post-processing was done to denoise the data, ultimately leading to a data matrix X with dimensions
n ≈ 6,171,400, p = 91,282. To further reduce the level of noise, the columns of the data matrix were then
averaged over the 1,200 subjects, leading to a data matrix with dimensions n ≈ 5,142, p = 91,282, from
which the sample covariance matrix was finally computed.

S.4.2 Related work

We mention some work that is related to our approach, noting that most other works (i) do not use the latest
available fMRI data, (ii) are not particularly scalable, and/or (iii) use nonconvex estimators, which can lead
to interpretability issues. The work of [10] applies the “SPACE” estimator of [7], except augmented with an
additional squared `2-norm penalty, to low-dimensional fMRI data; while certainly related to our approach,
this method unfortunately suffers from all three of the aforementioned issues. The work of [6] applies the
graphical lasso algorithm of [5] to older fMRI data, except with an `0-“norm” penalty instead of the usual
`1-norm penalty, making the corresponding optimization problem nonconvex. The work of [2] applies a
pseudolikelihood-based estimator with a deep neural network as the predictive primitive (instead of, say,
a lasso regression) to fMRI data obtained from subjects with autism instead of the broader population.
Lastly, the works of [8, 9] focus on scalable methods for structure recovery from fMRI data, rather than for
the broader problem of sparse inverse covariance estimation.

S.4.3 Further details on the sparsity patterns of the HP-CONCORD estimates

It is interesting to analyze the sparsity patterns of the HP-CONCORD and sample covariance matrix
estimates yielding the best clusterings; these are presented in the left-most column of Table 2. Three
features here are striking: (i) the HP-CONCORD estimates possess a block diagonal structure, where the
blocks turn out to correspond to the left and right hemispheres; (ii) furthermore, the sparsity patterns of the
blocks themselves turn out to correspond to the (spatially) closest voxels (the supplement provides details);
(iii) although the sparsity patterns of the HP-CONCORD and sample covariance matrix estimates appear
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vaguely similar, the subtle differences between them drive the (significant) differences in the clusterings.
We emphasize that these features arise naturally, without being hard-coded into our method.

The sparsity patterns of the diagonal blocks of the HP-CONCORD estimates turn out to correspond to
the (spatially) closest voxels on the left and right hemispheres; here we provide some further details. In
Figure S.3, we present the sparsity pattern of the HP-CONCORD estimate attaining the best clustering,
for the left hemisphere, in the left column of Table 2 in the main paper; in Figure S.3, we also present
the sparsity pattern of a matrix we constructed, where the (i, j)th entry of the matrix is the great-circle
distance between the voxels i and j, after retaining only 0.1% of closest voxels. The sparsity patterns of
the distance matrix and HP-CONCORD estimates indeed look visually similar, suggesting that the best
HP-CONCORD estimate has recovered some of the spatial signal in the data, without being “told” to do
so. Inspecting the right hemisphere conveys the same message.

Figure S.3: Left: the sparsity pattern of the HP-CONCORD estimate attaining the best clustering in the
left column of Table 2 in the main paper, where we have only plotted the 29,696 coordinates belonging to
the left hemisphere. Right: the sparsity pattern of a (91, 282 × 91, 282)-dimensional (symmetric) matrix
we constructed, whose (i, j)th entry is the great-circle distance between the voxels i and j, where we have
(again) only plotted the 29,696 coordinates belonging to the left hemisphere, and additionally retained just
the 0.1% of closest voxels. In both plots, black indicates a nonzero entry.

S.4.4 Details on persistent homology-based clustering algorithm

We map the degree of a vertex in the inverse covariance graph, described by matrix Ωp×p, onto the surface
of a brain. We thus obtain a function f : S → Z, where S is the triangulation of the cortical surface. We
apply the watershed algorithm [3] to f by sweeping the vertices from the highest value to the lowest. We
start a new label if the vertex has no labeled neighbors in S. If it does, we propagate the label with the
maximum starting value.

The resulting parcellation is usually too fine: every local maximum of f produces a new label. We use the
theory of persistent homology [4] to coarsen the parcellation. During the sweep, we build the dual graph G
of the labels. When we start a new label l at a vertex u, we add l to the graph and assign to it the value
f(u). When two labels, l1 and l2, that fall in different components of G, meet at a vertex v during the
sweep, we add an edge (l1, l2) to G. We find the maximum values, a1 and a2, assigned to any vertex in the
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components of l1 and l2 in G, and assign to the new edge the value min{a1, a2}− f(v). (It’s not difficult to
verify that this is exactly the persistence of the vertex v.)

Once we construct the dual graph G, given a simplification threshold ε, we treat the connected components
of the subgraph of G induced by the edges with values at most ε as the new parcels. As we increase ε, the
parcels merge, and the parcellation gets coarser.

S.4.5 The (modified) Jaccard score

To quantitatively compare clusterings, we consider a variation of the standard Jaccard score,

Sim(C1, C2) =
1

max(k, `)
·
∑

(i,j)∈E

Wij , (S.3)

where C1 = {A1, . . . , Ak} and C2 = {B1, . . . , B`} are two clusterings; above, E ⊆ {1, . . . , k} × {1, . . . , `}
is a maximum weighted edge covering in a (weighted) bipartite graph, where the vertices on a side of the
graph correspond to the clusters in a clustering, and the edge weights Wij , i = 1, . . . ,m, j = 1, . . . , `, are

the usual Jaccard scores given by
|Ai∩Bj |
|Ai∪Bj | . The use of the edge covering here resolves various complications

that arise when comparing clusterings of different sizes; the 1
max(k,`) term in (S.3) can be thought of as a

normalizing constant Finally, to compute the edge covering, we use the algorithm of [1].

S.4.6 Expanded set of results

Here, we provide an expanded set of figures and tables from the experiments with (i) various penalty
values of HP-CONCORD (i.e., λ1 and λ2), (ii) two parts of the brain (left and right hemisphere), (iii)
two clustering methods, taking in the partial correlation graph from HP-CONCORD as inputs (persistent
homology and Louvain methods), and (iv) two clustering coarseness levels (more clusters and fewer clusters).
For convenience, we outline where to find each of our results in the table below.

Method
Left hemisphere Right hemisphere

Clusterings Jaccard scores Clusterings Jaccard scores

Persistent homology

with ε = 3
(fewer clusters)

See Table S.1 See Table S.9 See Table S.2 See Table S.10

with ε = 0
(more clusters)

See Table S.3 See Table S.11 See Table S.4 See Table S.12

Louvain

with k = 0
(fewer clusters)

See Table S.5 See Table S.13 See Table S.6 See Table S.14

with k = max. #
clusters from Louvain

See Table S.7 See Table S.15 See Table S.8 See Table S.16



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722 —

Table S.1: The clusterings, for the left hemisphere, generated by HP-CONCORD followed by the persistent
homology method, at the tuning parameter values: ε = 3 (generally corresponding to fewer clusters) as well as
all the λ1, λ2 values we describe in Section 5. Table S.9 presents the Jaccard scores (S.3) for these clusterings.
“—”, if present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722 —

Table S.2: The clusterings, for the right hemisphere, generated by HP-CONCORD followed by the persistent
homology method, at the tuning parameter values: ε = 3 (generally corresponding to fewer clusters) as well as
all the λ1, λ2 values we describe in Section 5. Table S.10 presents the Jaccard scores (S.3) for these clusterings.
“—”, if present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table S.3: The clusterings, for the left hemisphere, generated by HP-CONCORD followed by the persistent
homology method, at the tuning parameter values: ε = 3 (generally corresponding to more clusters) as well as
all the λ1, λ2 values we describe in Section 5. Table S.11 presents the Jaccard scores (S.3) for these clusterings.
“—”, if present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table S.4: The clusterings, for the right hemisphere, generated by HP-CONCORD followed by the persistent
homology method, at the tuning parameter values: ε = 0 (generally corresponding to more clusters) as well as
all the λ1, λ2 values we describe in Section 5. Table S.12 presents the Jaccard scores (S.3) for these clusterings.
“—”, if present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table S.5: The clusterings, for the left hemisphere, generated by HP-CONCORD followed by the Louvain
method, at the tuning parameter values: k = 0 (generally corresponding to fewer clusters) as well as all the
λ1, λ2 values we describe in Section 5. Table S.13 presents the Jaccard scores (S.3) for these clusterings. “—”,
if present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel
into its own cluster.



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table S.6: The clusterings, for the right hemisphere, generated by HP-CONCORD followed by the Louvain
method, at the tuning parameter values: k = 0 (generally corresponding to fewer clusters) as well as all the
λ1, λ2 values we describe in Section 5. Table S.14 presents the Jaccard scores (S.3) for these clusterings. “—”,
if present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel
into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table S.7: The clusterings, for the left hemisphere, generated by HP-CONCORD followed by the Louvain
method, at the tuning parameter values: the largest value of k considered by Louvain (generally corresponding
to more clusters) as well as all the λ1, λ2 values we describe in Section 5. Table S.15 presents the Jaccard
scores (S.3) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either all the
voxels into a single cluster or each voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table S.8: The clusterings, for the right hemisphere, generated by HP-CONCORD followed by the Louvain
method, at the tuning parameter values: the largest value of k considered by Louvain (generally corresponding
to more clusters) as well as all the λ1, λ2 values we describe in Section 5. Table S.16 presents the Jaccard
scores (S.3) for these clusterings. “—”, if present, indicates a degenerate clustering that puts either all the
voxels into a single cluster or each voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.2043 0.2199 0.2242 0.2326 0.2277 0.2422 0.2447 0.23
0.5 0.2112 0.224 0.2315 0.2329 0.2343 0.2283 0.2197 0.2185

0.5208 0.1964 0.1895 0.2264 0.2385 0.2317 0.2282 0.2348 0.2358
0.5425 0.1905 0.1972 0.1951 0.2181 0.2268 0.2295 0.2289 0.2255
0.5651 0.1833 0.197 0.1973 0.1981 0.2125 0.2268 0.2242 0.2213
0.5887 0.1838 0.1845 0.1992 0.2067 0.1953 0.2057 0.2078 0.2155
0.6132 0.1702 0.1752 0.198 0.1995 0.2121 0.2014 0.2036 0.1891
0.6388 0.1698 0.1693 0.1864 0.1837 0.1859 0.191 0.1831 0.1785
0.6654 0.1538 0.1854 0.1759 0.1701 0.1748 0.1844 0.1805 0.1467
0.6931 0.1652 0.1689 0.1664 0.1686 0.1722 0.162 0.1472 0.0516
0.722 0.1382 0.1536 0.1556 0.1536 0.1442 0.1394 0.0758 —

Table S.9: The Jaccard scores (S.3) for the clusterings of the left hemisphere in Table S.1, generated by HP-
CONCORD followed by the persistent homology method, at the tuning parameter values: ε = 3 (generally
corresponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if present,
indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel into its
own cluster.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.2258 0.2315 0.2461 0.2279 0.2451 0.2436 0.2311 0.2431
0.5 0.2036 0.2245 0.2328 0.2326 0.2427 0.2314 0.2654 0.2528

0.5208 0.2255 0.2166 0.2317 0.2311 0.2427 0.2399 0.2381 0.2417
0.5425 0.21 0.2172 0.232 0.2355 0.2279 0.2299 0.245 0.2349
0.5651 0.2233 0.2182 0.2236 0.2341 0.2367 0.231 0.2286 0.2413
0.5887 0.2055 0.2187 0.2179 0.2369 0.2261 0.2321 0.2279 0.2067
0.6132 0.1843 0.2002 0.2245 0.2224 0.2113 0.219 0.2256 0.21
0.6388 0.1817 0.1843 0.2024 0.204 0.2154 0.2161 0.1981 0.1826
0.6654 0.1786 0.1678 0.1824 0.1891 0.1952 0.1749 0.1851 0.1273
0.6931 0.1652 0.1714 0.1686 0.1736 0.1714 0.1702 0.1284 0.061
0.722 0.1372 0.1562 0.162 0.1563 0.1364 0.1264 0.0875 —

Table S.10: The Jaccard scores (S.3) for the clusterings of the right hemisphere, generated by HP-
CONCORD followed by the persistent homology method, at the tuning parameter values: ε = 3 (generally
corresponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if present,
indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel into its
own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.0507 0.051 0.0527 0.0532 0.0511 0.0503 0.051 0.0518
0.5 0.053 0.0518 0.052 0.0519 0.0526 0.0531 0.0517 0.0516

0.5208 0.0517 0.0519 0.0527 0.0517 0.0524 0.0526 0.0522 0.0536
0.5425 0.0522 0.0519 0.0509 0.0516 0.0516 0.0514 0.0532 0.0533
0.5651 0.0514 0.0524 0.0512 0.0528 0.0529 0.0518 0.0518 0.0533
0.5887 0.0498 0.0524 0.0534 0.0521 0.0522 0.0521 0.0526 0.0532
0.6132 0.0504 0.0501 0.0531 0.052 0.0523 0.0529 0.0523 0.0505
0.6388 0.053 0.052 0.0494 0.0502 0.0517 0.0502 0.0516 0.0543
0.6654 0.0526 0.0529 0.0536 0.0533 0.0537 0.0506 0.0535 0.0558
0.6931 0.0529 0.054 0.0518 0.052 0.0532 0.0543 0.0566 0.0815
0.722 0.0549 0.0528 0.0525 0.0534 0.056 0.0561 0.0718 0.0884

Table S.11: The Jaccard scores (S.3) for the clusterings of the left hemisphere, generated by HP-CONCORD
followed by the persistent homology method, at the tuning parameter values: ε = 3 (generally corresponding
to more clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if present, indicates a
degenerate clustering that puts either all the voxels into a single cluster or each voxel into its own cluster.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.0532 0.0506 0.0519 0.0516 0.0522 0.0521 0.0516 0.0508
0.5 0.0538 0.0536 0.0513 0.0512 0.0515 0.0525 0.0524 0.0506

0.5208 0.052 0.0519 0.0521 0.0509 0.0527 0.0517 0.0522 0.0509
0.5425 0.0505 0.0523 0.0528 0.0532 0.0511 0.0529 0.0526 0.0522
0.5651 0.0523 0.0501 0.0513 0.0513 0.053 0.0521 0.0512 0.0528
0.5887 0.0516 0.0528 0.0504 0.0515 0.0518 0.0515 0.0523 0.0511
0.6132 0.0505 0.0517 0.0525 0.0534 0.0511 0.0516 0.0543 0.0534
0.6388 0.0514 0.0543 0.0516 0.0522 0.0519 0.0533 0.0532 0.0544
0.6654 0.0544 0.0528 0.0514 0.0518 0.0525 0.0529 0.0565 0.061
0.6931 0.0527 0.0555 0.0525 0.0528 0.055 0.0529 0.0597 0.0845
0.722 0.0535 0.0524 0.0535 0.0527 0.0553 0.0566 0.0698 0.0918

Table S.12: The Jaccard scores (S.3) for the clusterings of the right hemisphere, generated by HP-
CONCORD followed by the persistent homology method, at the tuning parameter values: ε = 0 (generally
corresponding to more clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if present,
indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel into its
own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1069 0.1101 0.0956 0.1042 0.1015 0.0958 0.0901 0.0905
0.5 0.1123 0.1076 0.1065 0.102 0.1089 0.1053 0.1007 0.107

0.5208 0.1097 0.111 0.1092 0.1096 0.1065 0.0982 0.1001 0.105
0.5425 0.1313 0.1123 0.1148 0.1085 0.1166 0.1143 0.1065 0.117
0.5651 0.1258 0.1216 0.1134 0.1167 0.1164 0.1097 0.1151 0.12
0.5887 0.129 0.1228 0.1233 0.1091 0.1203 0.1205 0.1238 0.1188
0.6132 0.1337 0.1294 0.1298 0.1289 0.1185 0.1285 0.1231 0.1455
0.6388 0.1477 0.1368 0.1363 0.1296 0.131 0.1344 0.1473 0.1517
0.6654 0.1486 0.1486 0.1458 0.1405 0.1488 0.1534 0.1486 0.1583
0.6931 0.1469 0.1453 0.1512 0.1483 0.146 0.1627 0.1706 0.0273
0.722 0.1581 0.1608 0.1557 0.1608 0.1661 0.1779 0.0461 0.0061

Table S.13: The Jaccard scores (S.3) for the clusterings of the left hemisphere, generated by HP-CONCORD
followed by the Louvain method, at the tuning parameter values: k = 0 (generally corresponding to fewer
clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if present, indicates a degenerate
clustering that puts either all the voxels into a single cluster or each voxel into its own cluster.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1105 0.1014 0.1034 0.1042 0.0988 0.0976 0.0976 0.0935
0.5 0.1084 0.1064 0.1011 0.1105 0.1003 0.1012 0.0992 0.1022

0.5208 0.1263 0.1059 0.1195 0.1056 0.0995 0.1059 0.1 0.1051
0.5425 0.122 0.1167 0.1113 0.1111 0.0997 0.1085 0.1125 0.0997
0.5651 0.1219 0.1212 0.1144 0.1022 0.1044 0.1109 0.1029 0.1189
0.5887 0.1218 0.1205 0.1184 0.1219 0.1159 0.1202 0.1183 0.135
0.6132 0.132 0.1259 0.1339 0.1265 0.1269 0.124 0.1294 0.1361
0.6388 0.1362 0.1364 0.1289 0.1286 0.1318 0.1279 0.1357 0.158
0.6654 0.1483 0.1451 0.1428 0.142 0.1438 0.1498 0.1626 0.1675
0.6931 0.1518 0.1552 0.1451 0.1473 0.1552 0.1671 0.1736 0.027
0.722 0.1648 0.1725 0.1556 0.1607 0.1643 0.1758 0.0482 0.0061

Table S.14: The Jaccard scores (S.3) for the clusterings of the right hemisphere, generated by HP-
CONCORD followed by the Louvain method, at the tuning parameter values: k = 0 (generally corre-
sponding to fewer clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if present,
indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel into its
own cluster.



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1678 0.1666 0.154 0.14 0.1297 0.135 0.1311 0.1284
0.5 0.1632 0.1778 0.1595 0.1515 0.1537 0.1454 0.128 0.1422

0.5208 0.1578 0.1719 0.1589 0.1663 0.1604 0.1572 0.145 0.1609
0.5425 0.1538 0.1572 0.166 0.1542 0.1702 0.1689 0.1684 0.1569
0.5651 0.1503 0.1602 0.1541 0.1473 0.1561 0.1587 0.1502 0.155
0.5887 0.1526 0.158 0.1537 0.1622 0.1564 0.1547 0.149 0.1338
0.6132 0.1438 0.1425 0.154 0.1487 0.151 0.1489 0.1327 0.1191
0.6388 0.1414 0.1453 0.134 0.1431 0.1393 0.1357 0.1238 0.0967
0.6654 0.1252 0.1263 0.1403 0.1301 0.1279 0.1196 0.0987 0.0653
0.6931 0.1137 0.1159 0.1161 0.1163 0.109 0.0937 0.0701 0.0216
0.722 0.1008 0.1005 0.1015 0.0961 0.0891 0.0679 0.0298 0.0061

Table S.15: The Jaccard scores (S.3) for the clusterings of the left hemisphere, generated by HP-CONCORD
followed by the Louvain method, at the tuning parameter values: the largest value of k considered by Louvain
(generally corresponding to more clusters) as well as all the λ1, λ2 values we describe in Section 5. “—”, if
present, indicates a degenerate clustering that puts either all the voxels into a single cluster or each voxel
into its own cluster.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1719 0.1697 0.1633 0.1763 0.1499 0.1475 0.1442 0.1365
0.5 0.1689 0.1675 0.167 0.17 0.1661 0.1587 0.1411 0.1729

0.5208 0.1651 0.1581 0.1808 0.1694 0.1655 0.1528 0.153 0.1512
0.5425 0.1697 0.1556 0.1634 0.1637 0.1591 0.1581 0.1857 0.1598
0.5651 0.1651 0.1663 0.1509 0.1554 0.1567 0.1542 0.151 0.1416
0.5887 0.1492 0.1602 0.1635 0.1541 0.1512 0.1586 0.1506 0.1536
0.6132 0.1474 0.1596 0.1586 0.1593 0.1649 0.1548 0.1436 0.1168
0.6388 0.1321 0.1337 0.1495 0.1502 0.1458 0.1272 0.1188 0.0938
0.6654 0.119 0.1203 0.1233 0.1221 0.1185 0.1125 0.0973 0.0635
0.6931 0.112 0.1136 0.1128 0.111 0.107 0.0932 0.0694 0.0213
0.722 0.0943 0.098 0.0994 0.0937 0.0832 0.0672 0.0299 0.0061

Table S.16: The Jaccard scores (S.3) for the clusterings of the right hemisphere, generated by HP-
CONCORD followed by the Louvain method, at the tuning parameter values: the largest value of k
considered by Louvain (generally corresponding to more clusters) as well as all the λ1, λ2 values we de-
scribe in Section 5. “—”, if present, indicates a degenerate clustering that puts either all the voxels into a
single cluster or each voxel into its own cluster.
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