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Abstract

We consider the problem of minimizing a con-
vex function over the intersection of finitely
many simple sets which are easy to project
onto. This is an important problem arising
in various domains such as machine learning.
The main difficulty lies in finding the projec-
tion of a point in the intersection of many
sets. Existing approaches yield an infeasible
point with an iteration-complexity of O(1/ε2)
for nonsmooth problems with no guarantees
on the in-feasibility. By reformulating the
problem through exact penalty functions, we
derive first-order algorithms which not only
guarantees that the distance to the intersec-
tion is small but also improve the complexity
to O(1/ε) and O(1/

√
ε) for smooth functions.

For composite and smooth problems, this is
achieved through a saddle-point reformulation
where the proximal operators required by the
primal-dual algorithms can be computed in
closed form. We illustrate the benefits of our
approach on a graph transduction problem
and on graph matching.

1 Introduction

We call a closed convex set simple if there is an oracle
available for computing Euclidean projection onto the
set. In this paper we consider the problem of minimiz-
ing a convex function f over a convex set C where C is
given as the intersection of finitely many simple closed
convex sets C1, . . . ,Cm (m ≥ 2). Specifically, we focus
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on optimization problems of the following form:

f∗ = min
x ∈ X

[
f(x) +

m∑
i=1

1Ci(x)
]
, (1)

where 1Ci is the indicator function for set Ci and X

(C ⊂ X) represents the domain of f .

Optimization problems of the form (1) arise in many
machine learning tasks such as learning over doubly
stochastic matrices, matrix completion [1], graph trans-
duction [2]; sparse principal component analysis can be
posed as optimization over the intersection of the set
of positive semidefinite (PSD) matrices with unit trace
and an `1-norm ball [3]; in learning correlation matrices,
the feasible set is the intersection of the PSD cone and
the set of symmetric matrices with diagonal elements
equal to one [4]. Another area of computer science
where problems of type (1) occur is in convex relax-
ations of various combinatorial optimization problems
such as correlation clustering [5], graph-matching [6],
etc.

Over the last few decades a large number of first-order
algorithms have been proposed to solve (1) efficiently
assuming C to be simple [7, 8, 9]. But, in many practical
problems such as those mentioned above, projection
onto the feasible set C = ∩mi=1Ci is difficult to compute
whereas oracles for projecting onto each of C1, . . . ,Cm
are readily available. Note that many sets C where
Frank-Wolfe algorithms can sometimes be used [10], i.e.,
when maximizing linear functions on C is supposed to
be efficient, can often be decomposed as the intersection
of sets with projection oracles (a classical example being
the set of doubly stochastic matrices, as done in our
experiments).

This calls for developing efficient first-order algorithms
which access C only through the projection oracles of
the individual sets C1, . . . ,Cm. We mention here that
such algorithms have been well-studied in the context
of two specific problems: (a) the convex feasibility prob-
lem (corresponding to f = 0), which aims at finding
a point in C = ∩mi=1Ci [11, 12] and (b) the problem of
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computing Euclidean projections onto ∩mi=1Ci [13, 14].
Existing algorithms for (a) and (b) ensure a feasible
solution only in the asymptotic sense and in general
produce only an infeasible approximate solution when
terminated after a finite number of iterations. There-
fore, aiming for feasible approximate solution without
access to projection oracle for C seems too big a goal to
achieve for problems of the form (1). Hence, we relax
the feasibility requirement and introduce the following
notion of approximate solution:

Definition 1 For a given ε > 0, we call xε ∈ X to be
an ε-optimal ε-feasible solution of (1) if f(xε)− f∗ ≤ ε
and dC(xε) ≤ ε/Lf , where dC(xε), infx∈C ‖x − xε‖
and Lf is a Lipschitz constant of f .

Note that f(xε) ≥ f∗ holds if xε is feasible. Since
xε is allowed to be infeasible as per the above defini-
tion, f(xε) might be well below f∗. The bound on the
distance to feasible set dC(xε) ≤ ε/Lf not only charac-
terizes that feasibility violation of xε is small but also
ensures f(xε)− f∗ ≥ −ε. With the notion of approx-
imate solution in place, the key question now is the
following: given access to projection oracles of the Ci’s
how many oracle calls does a first-order method need
in order to produce an ε-optimal ε-feasible solution
of (1)? In this paper we aim to address this question.
We summarize our contributions below.

Contributions. To the best of our knowledge, we
are the first one to derive general complexity results
for problems of the form (1) where f is given by a first-
order oracle and the feasible set C = ∩mi=1Ci can be
accessed only through projections onto Cis. Note that
our complexity estimates not only guarantee closeness
of the approximate solution to the optimal objective
value but also provide guarantees on the distance of
such infeasible solutions from the feasible set. More
precisely (see summary in Table 1):

• Utilizing a standard constraint qualification as-
sumption on problem (1), we present in Proposi-
tion 2 an exact penalty based reformulation whose
ε-optimal feasible solutions are in fact the desired
ε-accurate ε-feasible solution of (1).

• We show in Proposition 3 that an adaptation of the
standard subgradient method achieves the O(1/ε2)
iteration complexity for obtaining an ε-optimal ε-
feasible solution of (1) where f belongs to the class
of general nonsmooth convex functions given by a
first-order oracle. Specifically, an iteration of the
proposed algorithm asks for one call to the first-
order oracle of f and one call each to the projection
oracles of C1, . . . ,Cm. Additionally, assuming f to
be strongly convex we show in Proposition 4 that

Table 1: Complexity of the proposed first-order algo-
rithms for obtaining an ε-optimal ε-feasible solution of
(1) under 4 different classes of functions f .

Class of functions f Nonsmooth Smooth
Convex O(1/ε2) O(1/ε)
Strongly convex O(1/ε) O(1/

√
ε)

the same subgradient based algorithm achieves
the O(1/ε) iteration complexity for obtaining an
ε-optimal ε-feasible solution of (1). We mention
that existing approaches [15] with O(1/ε2) com-
plexity produce only an infeasible solution without
any guarantee on the distance of the infeasible
solutions from the feasible set. For the strongly
convex case O(1/ε) complexity was reported [14]
but applicable only to a limited class of functions f
where gradients of Fenchel conjugate of f can be
computed easily. In contrast, our method relies
on the availability of only subgradient of f .

• Through a novel saddle-point reformulation and
employing existing primal-dual methods we show
that the resulting approach achieves O(1/ε) it-
eration complexity (with per iteration cost sim-
ilar to the subgradient approach) for obtaining
an ε-optimal ε-feasible solution of (1) when f
belongs to the class of smooth convex functions
given by a first-order oracle. Further, assuming
f to be strongly convex the same primal-dual ap-
proach achieves O(1/

√
ε) iteration complexity for

obtaining an ε-optimal ε-feasible solution of (1).
Moreover, for nonsmooth convex functions with
specific structure, for example, when the mini-
mization problem has a smooth convex-concave
saddle-point representation, we show that an adap-
tation of the mirror-prox technique achieves an
iteration complexity of O(1/ε) to produce an ε-
optimal ε-feasible solution of (1). For the same
class of functions, existing approaches [16] using
mirror-prox reported O( 1

ε log 1
ε ) complexity.

Notation. Through out this paper ‖·‖ denotes the
standard Euclidean norm. Let A ⊂ Rn be a nonempty
closed convex set and x ∈ Rn. The Euclidean
projection of x onto A is PA(x), argmina∈A ‖x −
a‖. The distance of x from A is given by
dA(x), mina∈A ‖x − a‖. The support function of A
is defined as σA(x), supa∈A 〈x,a〉. Proximal oper-
ator of a convex function ψ : A → R is defined as
Proxγψ(x), argmina∈A

[
ψ(a) + 1

2γ ‖x− a‖2
]
, γ > 0.

Whenever 0
0 appears we will treat it to be 0. Proofs of

all Propositions & Lemmas and details of the proposed
algorithms are given in the supplementary material.
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2 Problem Set-up & Related Work

In this paper we focus on developing efficient first-order
algorithms for solving problems of the form (1). For the
rest of this paper, we make the following assumptions
on (1):

A1. X,C1, . . . , Cm are simple closed convex sets in Rn
such that X ⊃ C,

⋂m
i=1 Ci and X is bounded,

A2. f : X→ R is convex and Lipschitz continuous with
Lipschitz constant Lf > 0,

A3. the family of sets {C1, . . . , Cm} satisfies the stan-
dard constraint qualification condition [12]:

∃ x̄ ∈
⋂m
i=1 ri(Ci), (2)

where ri(Ci) denotes the relative interior of Ci. If
Ci is polyhedral then ri(Ci) in the above condition
can be replaced by Ci.

Note that we have access to oracles for computing
Euclidean projections onto each of the following sets:
X,C1, . . . , Cm as these sets have been assumed to be
simple. Typically, the domain X is equal to one of
the Ci’s. The standard constraint qualification condi-
tion (2) enables us to avoid pathological cases. It is
automatically satisfied in the following cases: (a) the
feasible set C has a nonempty interior; (b) all Ci’s are
polyhedral and C 6= ∅. By virtue of assumptions [A1-
A3], the set of optimal solutions of (1) is nonempty
as f is continuous over the nonempty compact set C.
Our goal in this paper is to develop efficient algorithms
which can produce for any given ε > 0 an ε-optimal
ε-feasible solution of (1) with access to only projection
oracles of X,C1, . . . ,Cm and a first-order oracle which
returns a subgradient of f . Below we provide a brief
survey of the existing literature.

2.1 Related work

Many algorithms with O(1/ε2) complexity have been
suggested in the stochastic setting [17, 18, 19]. But
these randomized approaches do not provide any insight
on how to obtain an approximate solution with a deter-
ministic guarantee on the distance to the feasible set.
In [15] an incremental subgradient approach was pro-
posed for solving general convex optimization problems
of the form (1) through an exact penalty reformulation.
Though their approach produces an ε-optimal solution
of the penalized problem in O(1/ε2) iterations, such so-
lutions need not be ε-optimal ε-feasible solutions of the
original problem (1) as they come with no guarantee
on their distance to the feasible set.

Another line of research considers problem (1) with Ci’s
given by functional constraints: Ci = {x ∈ Rn | gi(x) ≤

0} for some convex function gi. In such setting, the con-
vergence analysis of existing algorithms [20, 21, 22, 23]
crucially depends on the assumption ∃x̄ ∈ Rn such that
gi(x̄) < 0. Hence, these methods can not be applied for
abstract set constraints by taking the distance function
dCi as gi. Also their dependence on the existence of a
strictly feasible point makes them inapplicable in the
presence of affine equality constraints. Another short-
coming of their approach is its sub-optimal performance
when the objective function has smoothness structure.
Hence, in this paper we explore alternative approaches
without assuming any functional representation for the
constraint sets. Using the standard constraint quali-
fication (2) for problem (1) we derive in Section 6 a
primal-dual formulation and an improved convergence
guarantee of O(1/ε) under additional smoothness /
structural assumptions on f . In [24] a smooth penalty
based approach was proposed for minimizing convex
function over intersections of convex sets; however,
their approach does not provide any guarantee on the
feasibility violation of the approximate solutions. In
addition, their method requires the penalty constant to
approach infinity, which our method does not require.

A special case of (1) where C is given by the inverse
image of a convex cone under affine transformation
was studied in [25]. Although any convex set C can
be expressed as inverse image of a convex cone under
an affine transformation, this representation may not
result in tractable algorithm unless projecting onto
the cone is easy. This makes the approach of [25]
unsuitable for the the general case. [2] proposed an
inexact proximal method to solve a graph transduction
problem which is cast as an instance of (1) with m = 2.
They substituted the projection step in the standard
subgradient method with an approximate projection
which is computed through an iterative algorithm. Due
to the use of repeated projections onto Ci’s to compute
one approximate projection onto C their method can
be shown to require O(1/ε3) projections onto each of
the Cis for producing an ε-optimal ε-feasible solution
of (1).

When the objective f is strongly convex the fast dual
proximal gradient (FDPG) method of [14] can be ap-
plied to (1); they showed that the primal iterates (and
corresponding primal objective function values) gener-
ated by the FDPG method converge to the optimal so-
lution (optimal primal objective value) at O(1/T )-rate,
where T is the number of iterations. But every iteration
of the FDPG method requires solving a subproblem for
computing the gradient of the Fenchel-conjugate of f .
This makes the FDPG method unsuitable for a general
strongly convex objective f where f is accessed only
through a first-order oracle.

We note that our problem (1) can be posed in the
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following form suitable for applying splitting methods
such as the alternating direction method of multipliers
(ADMM) [26] or proximal method of multipliers [27]:

min
x∈X,Z

f(x) +
m∑
i=1

1Ci(zi) s.t. Ax = Z , (3)

where Z, (z1, . . . , zm), A denotes the mapping x 7→
(x, . . . ,x) ∈ ⊗mi=1Rn. Note that splitting based ap-
proach requires solving a subproblem of the following
form at every iteration: argminx∈X f(x)+ ρ

2‖Ax−Z‖2

for a fixed ρ > 0 and Z. Hence, these methods are
suitable only when solving the above mentioned sub-
problem is easy. Therefore, in this paper we aim at
developing algorithms which deals with the general
case and make no assumption on availability of efficient
oracles for solving such subproblems. We mention here
that (3) is a special case of semi-separable problem
considered in [16]. For that they proposed a first-order
algorithm with O( 1

ε log 1
ε ) complexity when f possesses

a special saddle-point structure. Specifically, their al-
gorithm proceeds in stages with each stage solving
a saddle-point formulation through composite mirror-
prox [16] technique. Our exact penalty based approach
enables us to achieve improved complexity of O( 1

ε )
through a similar mirror-prox based algorithm; notably
our approach does not need several stages unlike that
of [16].

Finally, we mention the connection to the literature on
error bounds [28]. For convex feasibility problem (the
case when f = 0) there is a rich history of using the
distance to the individual sets C1, . . . ,Cm as a proxy
for minimizing the distance to the intersection [12].
However, we explore the use of the same in the context
of optimization problems (f 6= 0). Notably, utilizing
distance to the individual sets we construct an exact
penalty based formulation whose approximate solutions
have guarantees on their distance to the intersection of
the sets. Note that error bound properties (characteri-
zations of the distance to the set of optimal solutions)
in constrained convex optimization have been shown
to hold only for a limited set of problems [29]. As-
suming certain error bound conditions there have been
attempt to establish better convergence rate guarantees
[23]. However, in this paper we deal with the general
case with out assuming any error bound property for
problem (1).

3 Exact Penalty-based Reformulation

In this section we show that standard constraint qualifi-
cation (2) allows us to find a suitable penalty function-
based reformulation of (1). Towards that we first recall
the concept of linear regularity of a collection of convex
sets:

Definition 2 The collection of closed convex sets
{C1, . . . , Cm} is linearly regular if ∃Υ > 0 such that

∀x ∈ Rn : dC(x) ≤ Υ max
1≤i≤m

dCi(x). (4)

A sufficient condition for {C1, . . . ,Cm} to be linearly
regular is that C =

⋂m
i=1 Ci is bounded and the stan-

dard constraint qualification (2) holds [30]. Thus, for
problem (1) we have linear regularity of {C1, . . . , Cm}
as a consequence of the assumptions [A1-A3]. In this
context we mention that [17, 18, 19] assumed linear
regularity property of the sets for designing stochas-
tic algorithms for problem (1). For the rest of the
paper Υ will denote the linear regularity constant of
{C1, . . . , Cm}. Let R, r > 0 be such that C = ∩mi=1Ci
contains a ball of radius r and C is contained in a ball
of radius R; then the ratio R/r can be taken as the
regularity constant Υ [31]. Please refer to [11] for de-
tails about linear regularity and how to estimate the
corresponding constant. In the supplementary material
we discuss an algorithmic strategy based on a “dou-
bling trick” to deal with the case when the regularity
constant Υ is not available.

We now discuss the availability of suitable penalty
functions for C =

⋂m
i=1 Ci such that we can solve the

penalty-based reformulation efficiently using existing
first-order methods without requiring projection onto C;
however, the method can make use of the oracles for
projecting onto each of the Cis. Below we characterize
a class of such penalty functions through the notion of
absolute norm [32].

Definition 3 A norm P on Rm is called an absolute
norm if ∀u ∈ Rm we have P (u) = P (|u|), where |u|
denotes the vector obtained by taking element-wise mod-
ulus of u.

Proposition 1 Let P be an absolute norm on Rm and
hP : Rn → R+ be defined as

hP (x) = P (dC1(x), . . . , dCm(x)), x ∈ Rn. (5)

Then (a) hP is a convex function, (b) hP (x) = 0 if
and only if x ∈ C, (c) ∃ a regularity constant ΥP > 0
such that

∀x ∈ Rn : dC(x) ≤ ΥP hP (x). (6)

With hP as defined in (5), we consider the following
penalized version of problem (1):

fλ∗ = inf
x∈X

[
fλ(x) ≡ f(x) + λhP (x)

]
, λ > 0. (7)

An exact penalty function of the form
∑m
i=1 γidCi(·),

where the constants γi are chosen solely based on the
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Lipschitz constant Lf (without taking linear regular-
ity of the sets into account) was proposed in [15]. In
Appendix we provide a counter example to show that
choosing γi’s as per their prescription does not always
work (in fact our example shows that Proposition 11 in
[15] does not hold in absence of the standard constraint
qualification). Secondly, the penalty-based reformula-
tion suggested in [15] does not provide any guarantee on
the feasibility violation (distance from the feasible set)
of the approximate solutions. In this paper, making use
of the standard constraint qualification condition (2)
we propose the penalty-based reformulation (7) which
we will show to be an exact reformulation of the orig-
inal problem (1) with the added property that the
approximate solutions of (7) are also the approximate
solutions of (1) with the desired in-feasibility guarantee.
We now show that the use of linear regularity property
(6) allows us to relate the solution set of (7) to that
of (1) and the constant λ can be set independent of
the desired accuracy of the solution (but big enough)
unlike other penalty methods [24] where λ → ∞ is
needed.

Proposition 2 Consider problem (1) and the corre-
sponding penalty-based formulation (7) with penalty
function hP as in (5). Then we have:

a. If λ ≥ ΥPLf then fλ∗ = f∗ and every optimal
solution of (1) is an optimal solution of (7).

b. If λ > ΥPLf then every optimal solution of (7) is
an optimal solution of (1).

c. Let λ ≥ 2ΥpLf and xε be an ε-optimal solution of
(7) for a given ε > 0. Then xε is an ε-optimal ε-
feasible solution of (1), that is, f(xε)−f∗ ≤ ε and
dC(xε) ≤ ε

Lf
. Moreover, PC(xε) is an ε-optimal

feasible solution of (1).

4 Nonsmooth Objective Functions

In this section we propose an adaptation of the standard
subgradient method for efficiently solving nonsmooth
convex optimization problems over intersections of sim-
ple convex sets. Specifically, we consider problem (1)
with f represented by a black-box oracle of first-order,
that is, the oracle returns a subgradient f ′(x) of f at
x ∈ X. Without loss of generality we assume that the
subgradients returned by the oracle are bounded by
the Lipschitz constant Lf . Note that direct applica-
tion of the subgradient method to solve (1) requires
projection onto the feasible set C which may be hard
to compute even when C is given by the intersection
of finitely many simple sets. Our adaptation of the
subgradient method, which we call the “split-projection
subgradient” (SPS) algorithm, overcomes this difficulty

by requiring projections only onto each Ci. We achieve
this by applying the standard subgradient algorithm
to problem (7) instead of (1). In order to apply subgra-
dient method to (7) we present the following Lemma:

Lemma 1 Let hP be as defined in (5). Then hP is
Lipschitz-continuous on Rn with Lipschitz constant
P (1) where 1 ∈ Rm is the vector of all ones. Moreover,
a subgradient of hP at x ∈ Rn is given by

h′P (x) =
m∑
i=1

u∗i
di

[x− PCi(x)],

where u∗ := argmaxu∈Rm{
∑m
i=1 uidi |P∗(u) ≤ 1},

di = ‖x− PCi(x)‖ and P∗ denotes the dual norm of P .

The above lemma shows that we can compute a sub-
gradient of the penalty term hP utilizing the projection
oracles of C1, . . . ,Cm and a linear optimization ora-
cle for the unit ball of P∗. Moreover, the Lipschtiz
continuity of hP ensures that such subgradients are
bounded by the constant P (1). Also, recall from the
previous section that solving (7) is equivalent to (1)
under λ > ΥPLf . Therefore, we can apply subgradient
method to (7) with λ ≥ 2ΥPLf . This results in the
SPS algorithm for solving (1). The key recursion in
SPS algorithm is the following:

x(t+1) := PX
(

x(t) − γt[f ′(x(t)) + λh′P (x(t))]
)
, t ≥ 1.

Algorithmic details are given in the supplementary
material. Now, the following proposition states the
convergence behavior of the proposed SPS algorithm:

Proposition 3 Consider the SPS algorithm applied to
problem (1) with λ ≥ 2ΥPLf . Then, for a given ε > 0,
SPS algorithm produces an ε-optimal ε-feasible solution
of (1) in no more than O(1/ε2) iterations where each
iteration involves computation of a subgradient of f
and projections onto each of X,C1, . . . ,Cm.

Now, we present an improved complexity estimate for
the class of strongly convex functions.

Proposition 4 Consider the SPS algorithm applied
to problem (1) where f is strongly convex with strong
convexity parameter µf > 0. Let λ ≥ 2ΥPLf . Then,
for a given ε > 0, SPS algorithm produces an ε-
optimal ε-feasible solution of (1) in no more than
O(1/ε) iterations where each iteration involves compu-
tation of a subgradient of f and projections onto each
of X,C1, . . . ,Cm.

5 Smooth Objective Functions

In this section we consider solving problem (1) under
the additional assumption that f is smooth. Specif-
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ically, we assume through out this section that the
gradient of f , denoted as ∇f , is Lipschitz-continuous
on X with Lipschitz constant Mf . Recall that we have
access to only a first-order oracle which returns the
gradient ∇f(x) of f at x ∈ X and projection ora-
cles for computing projections onto the simple sets
X,C1, . . . ,Cm. If we had access to projection oracle for
C then applying accelerated gradient methods we can
obtain an ε-optimal solution of (1) in O(1/

√
ε) itera-

tions. But, in the absence of projection oracle for C,
problem (1) is essentially an instance of nonsmooth
optimization as the nonsmooth part

∑m
i=1 1Ci does not

possess a tractable proximal operator. Therefore, exist-
ing first-order methods for smooth/composite convex
minimization can not be applied directly to (1).

One of the main contributions of the paper is to show
that we can use first-order methods through an adap-
tation of the primal-dual framework of [33]. To apply
the primal-dual framework we first propose a saddle-
point reformulation of (7) by exploiting the structure
of the nonsmooth penalty function hP . Before going
into the details, we introduce the following notation:
Y, (y1, . . . ,ym) ∈ ⊗mi=1Rn. We have:

Lemma 2 Let hP be as defined in (5). Then the fol-
lowing holds for all x ∈ Rn:

hP (x) = max
Y∈YP

m∑
i=1

[
x>yi − σCi(yi)

]
, (8)

where YP , {Y ∈ ⊗mi=1Rn |P∗(‖y1‖, . . . , ‖ym‖) ≤ 1},
P∗ denotes the dual norm of P and σCi denotes the
support function of set Ci.

Exploiting the above structure of hP we have the fol-
lowing saddle-point reformulation of (7) for any λ > 0:

min
x∈X

max
Y∈Yλ

P

[
L(x,Y) ≡ f(x) +

m∑
i=1

x>yi − g(Y)
]
, (9)

where YλP , {Y ∈ ⊗mi=1Rn |P∗(‖y1‖, . . . , ‖ym‖) ≤ λ},

g(Y) ,
m∑
i=1

σCi(yi) + 1Yλ
P

(Y), Y ∈ ⊗mi=1Rn. (10)

We now connect the saddle-point formulation (9) with
the original problem (1).

Lemma 3 Consider the saddle-point formulation (9)
with λ ≥ 2ΥPLf . Fix ε > 0. Let (xε,Yε) ∈ X× YλP be
an ε-optimal solution of (9) in the following sense:

sup
x∈X,Y∈Yλ

P

[ L(xε,Y)− L(x,Yε) ] ≤ ε. (11)

Then xε is an ε-optimal ε-feasible solution of (1).

In order to solve (9) efficiently, the following lemma
shows that the proximal operator of the nonsmooth
convex function g can be evaluated in closed form
through projections onto each of the sets C1, . . . ,Cm
and a projection onto a dual norm ball of P .

Lemma 4 Let g be defined in (10). Then for any γ >
0 and Y ∈ ⊗mi=1Rn the proximal operator of g is given
by Proxγg(Y) = (r1ŷ1/‖ŷ1‖, . . . , rmŷm/‖ŷm‖), where
ŷi,yi−γPCi(γ−1yi) and (r1, . . . , rm) is the projection
of (‖ŷ1‖, . . . , ‖ŷm‖) onto {u ∈ Rm |P∗(u) ≤ λ}.

With the proximal operator of g being computable and
f being smooth, we define a primal-dual iteration of
the following form:

Iteration: (x+,Y+) = PDτ,γ(x,Y, x̃, Ỹ){
x+ := PX(x− τ [∇f(x) +

∑m
i=1 ỹi]) ,

Y+ := Proxγg(Y + γAx̃) , (12)

where A denotes the map x 7→ (x, . . . ,x) ∈ ⊗mi=1Rn.
With this we can now apply primal-dual algorithms of
[33] to problem (9) with primal-dual iteration defined
by (12). Since X and YλP are compact sets, we can
obtain an ε-optimal solution of (9) in the sense of (11)
by applying O(1/ε) iterations of the non-linear primal-
dual algorithm of [33]. Moreover, when f is smooth as
well as strongly convex we can apply the accelerated
primal-dual algorithm of [33] which needs only O(1/

√
ε)

iterations of the form (12). Note that Lemma 3 guar-
antees that such solutions are enough to output an
ε-optimal ε-feasible solution of (1). Therefore, com-
plexity of obtaining an ε-optimal ε-feasible solution
of (1) is O(1/

√
ε) when f is smooth and O(1/

√
ε) for

smooth and strongly convex f . Thus, utilizing existing
primal-dual machinery to a saddle-point reformulation
of the exact penalty based equivalent problem (7), we
achieve better complexity for problems of the form (1)
under a smoothness assumption on f . We call this
approach exact penalty primal-dual (EPPD) method.

6 Nonsmooth Objective Functions
with Structure

In many machine learning problems such as kernel
learning [34], learning optimal embedding for graph
transduction [2], etc., the objective function f is defined
as the optimal value of a maximization problem. In
most of these cases, in spite of f being non-smooth, the
problem of minimizing f can be cast as a smooth saddle-
point problem. It is well-known that by exploiting such
structure in the problem, first-order algorithms with
improved convergence rate of O(1/ε) can be obtained
even for non-smooth problems [8]. Hence, in the context
of problem (1) we would like to address the following
question: by exploiting structure in f is it possible to
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design first-order algorithms with O(1/ε) complexity
for (1)? For this we make the following additional
assumptions on problem (1). Through out this section
we will assume that the objective function f possesses
the following structure:

f(x) = max
z ∈ Z

Φ(x, z), x ∈ X, (13)

where Z is a simple compact convex set and Φ : X ×
Z→ R is a convex-concave function with gradient ∇Φ
being Lipschitz continuous on X× Z. We also assume
availability of a first-order oracle for computing ∇Φ at
any (x, z) ∈ X× Z.

Recall that only projections onto X,C1, . . . ,Cm are
available and algorithms can not ask for projections
onto C. This makes the existing mirror-prox algo-
rithm [8] unsuitable for problem (1) even when f has
the above structure. We overcome this difficulty by
considering the penalty based formulation (7) where
λ ≥ 2ΥPLf , f as in (13) and hP given by (8). This re-
sults in the following saddle-point formulation like (9):

min
x∈X

max
z∈Z,Y∈Yλ

P

[ Φ(x, z) +
m∑
i=1

x>yi − g(Y) ]. (14)

We see that the objective above has a nonsmooth term
g and the remaining part has Lipschitz continuous
gradient. Also, as given in Lemma 4, the proximal
operator of g can be computed through projections
onto Ci’s. Hence, the mirror-prox-“a” (MPa) algorithm
[8] can be applied to problem (14). The resulting
approach we call split-mirror prox (SMP), with the
following complexity estimate:

Proposition 5 Given ε > 0, SMP algorithm requires
no more than O(1/ε) calls to the first order oracle of
Φ and O(1/ε) projections onto each of X,Z,C1, . . . ,Cm
to produce an ε-optimal ε-feasible solution of (1) where
f is of the form (13).

7 Experimental Results

In this section we illustrate the benefits of the proposed
algorithms on two problems: a graph transduction
problem where the objective function is non-smooth but
can be cast in the form (13) and on a graph matching
problem where the objective is a smooth function with
Lipschitz continuous gradient. We performed all the
experiments on a CPU with Intel Core i7 processor and
8GB memory. In the implementation of the proposed
methods we choose the norm P to be the standard
`1-norm.

7.1 Learning orthonormal embedding for
graph-transduction

Consider a simple graph G = (V,E), with vertex
set V = {1, . . . , N} and edge set E ⊂ V × V . If
S ⊆ V is labelled with binary values denoted by
yS ∈ {−1, 1}|S| the problem of graph transduction
can be posed as learning the labels of the remaining
vertices. Recently the following formulation was posed
in [2] for learning the optimal orthonormal embedding
of the graph for a graph transduction problem:

minK∈K(G) [ωC(K,yS) + β λmax(K) ] , (15)
ωC(K,yS) = maxα∈A

∑
i∈S

αi − 1
2
∑
i,j∈S

αiαjyiyjKij ,

A = {α ∈ RN | 0 ≤ αi ≤ C ∀i ∈ S, αj = 0 ∀j /∈ S},

where C > 0 and the set K(G) consists of positive
semidefinite (PSD) kernel matrices arising due to an
orthonormal embedding characterization. Specifically,
K(G) :=

{
K ∈ RN×N |K is PSD, Kii = 1 ∀i,Kij =

0∀(i, j) /∈ E
}
. The setK(G) is an elliptope lying in the

intersection of PSD cone with affine constraints. The
objective function consists of two nonsmooth functions,
ωC(K,yS) and λmax(K), the largest eigenvalue of K
where β > 0 is user defined. In [2] an inexact infeasible
proximal method (IIPM) was proposed which does not
provide any feasibility guarantee on the approximate
solutions. To illustrate the effect of infeasibility we
compare the proposed SMP method with IIPM on
solving (15).

We experimented on a subset of the MNIST dataset [35]
where corresponding to each pair of digit classes we
constructed a graph with n = 1000 nodes as follows: (a)
first randomly select 500 samples from each digit; (b)
for each pair of samples put an edge in the graph if the
cosine distance between samples is less than a thresh-
old value (we set 0.4 as the threshold). For IIPM the
number of inner-iteration (S) to compute approximate
projection was set to 5. The regularization parameters
β and C were selected through 5-fold cross-validation.
Table 2 summarizes the results, averaged over 5 ran-
dom training/test partitioning. Labels for 10 percent
of the nodes were used for training. Entries in the
table represent classification accuracy (mean ± stan-
dard deviation) which we calculate as the percentage
of un-labelled nodes classified correctly. To compare
the effect of in-feasibility of the iterates generated by
the two methods we report in Table 3 the objective
function value reached for one particular training/test
partitioning of the data. Under the infeasible column
we present the objective value at the infeasible solutions
returned by SMP/ IIPM whereas in the feasible case
we project the output from both the algorithms to the
feasible set before computing the objective value. We
observe that IIPM misleadingly reports smaller objec-
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Table 2: Comparison of classification accuracy (mean
± standard deviation) on MNIST digit recognition
dataset.

Dataset SMP IIPM
1 vs 2 96.9 ± 0.4 96.2 ± 1.2
1 vs 7 97.6 ± 0.5 95.0 ± 3.0
3 vs 8 89.7 ± 1.3 86.8 ± 2.7
4 vs 9 83.0 ± 1.9 77.5 ± 2.1
6 vs 8 97.6 ± 0.3 93.8 ± 2.0

Table 3: Comparison of objective function value on
MNIST digit recognition dataset.

Dataset Infeasible Feasible
SMP IIPM SMP IIPM

1 vs 2 5.77 3.97 5.77 5.80
1 vs 7 5.31 3.30 5.32 5.33
3 vs 8 6.46 4.33 6.46 6.54
4 vs 9 6.13 4.19 6.14 6.18
6 vs 8 6.35 4.38 6.35 6.38

tive values; this is result of the iterates being far from
the feasible set. As the new SMP algorithm ensures
that iterates are not far from the feasible set; also, ob-
jective function values do not change much even after
projecting the infeasible solution onto the feasible set.
Also, we see better predictive performance for SMP in
Table 2.

7.2 Graph matching
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Figure 1: Convergence plot of Frank-Wolfe, Exact
Penalty Primal-Dual (EPPD) and Composite Mirror-
Prox (CMP) method on the Graph Matching problem.

We consider a graph matching problem, where two
adjacency matrices A and B in Rn×n are given, and

we aim to minimize ‖AΠ − ΠB‖2
F with respect to Π

over the set of doubly stochastic matrices. This can
be seen as a natural convex relaxation of optimizing
on the set of permutation matrices [6]. The set of
doubly stochastic matrices is defined as the intersec-
tion of two products of n simplices in dimension n
(which are indeed simple sets with efficient projection
oracles). We compare the proposed Exact Penalty
based Primal-Dual (EPPD) approach to the Frank-
Wolfe algorithm, for which the linear maximization
oracle is an assignment problem, which can be solved
in O(n3). Note that both algorithms have the same
convergence rate in terms of number t of iterations,
as O(1/t). We also include in comparison the Com-
posite Mirror-Prox (CMP) based approach for solving
semi-separable problems [16]. We present experimental
results on randomly generated undirected graphs with
number nodes = 200. In Figure 1 we compare the
convergence behavior of the methods. Although all
the algorithms have very similar convergence rate, our
EPPD method takes considerably lesser time. This is
due to the fact the EPPD method just need projection
onto simplices where as Frank-Wolfe needs to solve
a linear maximization problem over the set of dou-
bly stochastic matrices which is computationally more
demanding. As the composite Mirror-Prox method
requires two gradient computations and 2 proximal
evaluations per iteration, every iteration of CMP is at
least twice as costly as our primal-dual iteration; more-
over, their formulation introduces m more variables;
this makes CMP approach slower than EPPD.

8 Conclusions

In this paper, we presented algorithms to minimize
convex functions over intersections of simple convex
sets, with explicit convergence guarantees for feasibilty
and optimality of function values. Our work not only
bounds the level of in-feasibility, currently missing in
existing literature but also improves the convergence
rate. This is mostly based on a new saddle-point formu-
lation with an explicit proximity operator, and led to
improved experimental behavior in two situations. Our
work opens up several avenues for future work: (a) we
can imagine letting the number m of sets grow large
or even to infinity and using a stochastic oracle [17]
with efficient stochastic gradient techniques [36], (b) we
could consider other geometries than the Euclidean one
by considering mirror descent extensions.
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9 Appendix

Before going into the proofs of the propositions and
lemmas stated in the paper, we state the following
proposition:

Proposition 6 Let A be a nonempty closed convex set
in Rn. The distance function dA given by

dA(x), inf
a∈A
‖x− a‖, x ∈ Rn, (16)

has the following properties:

1. dA is convex and Lipschitz continuous on Rn with
Lipschitz constant 1.

2. dA has the following representation:

dA(x) = sup
y∈Rn:‖y‖≤1

[x>y−σA(y)], x ∈ Rn, (17)

where σA denotes the support function of A.

3. x−PA(x)
‖x−PA(x)‖ is a subgradient of dA at x ∈ Rn.

Proof: The convexity of dA is clear from (16) as
(x,a) 7→ ‖x− a‖ is jointly convex in x and a.

Let x,x′ ∈ R and a ∈ A. By triangle inequality of the
Euclidean norm, we have:

‖x− a‖ ≤ ‖x− x′‖+ ‖x′ − a‖.

By taking minimum on both sides over a ∈ A we get

dA(x) ≤ ‖x− x′‖+ dA(x′)

Now, interchange the role of x and x′ to arrive at the
following:

∀x,x′ ∈ Rn : |dA(x)− dA(x′)| ≤ ‖x− x′‖. (18)

This shows that dA is Lipschitz continuous with Lips-
chitz constraint 1.

To prove the 2nd part we have for any x ∈ Rn :

dA(x) = min
a∈A
‖x− a‖

= min
a∈A

max
y∈Rn:‖y‖≤1

y>(x− a) (19)

= max
y∈Rn:‖y‖≤1

min
a∈A

y>(x− a)

= max
y∈Rn:‖y‖≤1

[y>x−max
a∈A

y>a]

= max
y∈Rn:‖y‖≤1

[x>y− σA(y)], (20)

where the 3rd equality follows from Min-Max Theorem
[37] as {y ∈ Rn : ‖y‖ ≤ 1} is compact.

Let PA(x) denote the Euclidean projection of x onto A.
Then we have dA(x) = ‖x − PA(x)‖ = (x − a∗)>y∗,
where a∗ = PA(x) and y∗ = x−PA(x)

‖x−PA(x)‖ . Therefore,
(a∗,y∗) is a saddle-point of (19). So, y∗ is an optimal
solution of (20). Now, note that any maximizer y of
(20) is a subgradient of dA at x. This completes the
proof of the 3rd part of the proposition.

9.1 Proof of Proposition 1

Since, P is an absolute norm, it is non-decreasing in
the absolute values of its components [32]. Therefore,
(a) follows from the convexity of the distance functions
dCi (part 1 of Proposition 6) and monotonicity of the
norm P .

To prove part (b) we note that x ∈ C iff dCi(x) = 0∀i.
Also, hP (x) is zero iff dCi(x) = 0∀i as P is a norm.

Recall that (C1, . . . ,Cm) is linearly regular with con-
stant Υ. Therefore, as a consequence of (4), we have
(6) with ΥP = Υ max{‖u‖∞ : P (u) = 1}, where ‖ · ‖∞
denotes the standard `∞-norm on Rm.

9.2 Counter Examples for Proposition 11 of
[15]

Here we present counter examples to falsify the claims
made by [15] in their Proposition 11. We first show
that their proof of Proposition 11 does not hold always.
Then we present another counter example to prove that
their Proposition 11 is not true in general, specifically,
when standard constraint qualification condition (2) is
violated.

Let X1, . . . , Xm be closed convex subsets of Y ⊂ Rn
with nonempty intersection and f : Y → R be Lipschitz
continuous with Lipschitz constant Lf . We now state
the incorrect claims of [15] supported by our counter
examples.

Claim 1: The construction given in proof of Proposi-
tion 11 in [15] claims that the set of minima of f over
∩mi=1Xi coincides with the set of minima of

F (x) , f(x) + γ

m∑
i=1

dXi(x) (21)

over Y if

γ0 = 0, ∀k ≥ 1 : γk > Lf +
k−1∑
i=1

γi, and γ ≥ γm. (22)

Counter Example 1: We present the follow-
ing counter example to show that the above claim
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of [15] is not always true. Consider the following set-up:

n = 2, Y = R2, m = 2,

X1 = {(x, y) ∈ R2 | 0.1x+ y ≤ 1},

X2 = {(x, y) ∈ R2 | 0.1x− y ≤ 1},

f(x, y) = −x− y, ∀(x, y) ∈ R2.

Clearly, f is Lipschitz continuous with Lipschitz con-
stant Lf =

√
2. Now, satisfying the conditions given in

(22), we choose γ1 = 1.5, γ2 = 3 and γ = 4. With this
F defined in (21) becomes:

F (x, y) = −x−y+4([0.1x+ y − 1]+ + [0.1x− y − 1]+)√
1.01

,

where [a]+ = max{a, 0} for any a ∈ R.
Note that (10, 0) is the only minima of f over X1 ∩X2.
But, (10, 0) can not be a minima of F as we have
F (20, 0) < F (10, 0). In fact, F does not have any
minima on R2 as F (x, 0)→ −∞ when x→∞. Hence,
the set of minima of F over Y need not be the same as
the set of minima of f over ∩mi=1Xi even if γ satisfies the
condition given in (22). Thus, the proof of Proposition
11 in [15] stands void.

We mention thatX1, X2 in the above example possesses
the following linear regularity property:

∀x ∈ R2 : dX(x) ≤ Υ max
1≤i≤2

dXi(x) , (23)

where X = X1 ∩X2 and Υ = 1/ sin(tan−1(0.1)). So,
for the above example one can be verify that setting
γ > ΥLf in (21) suffices for the set of minima of F
over Y to coincide with that of f over X1 ∩X2. This
is expected as per our proposition 2.

Claim 2: Proposition 11 in [15] claims that ∃γ̄ > 0
such that the set of minima of f over ∩mi=1Xi coincides
with the set of minima of F (as defined in (21)) over
Y for all γ ≥ γ̄.

Counter Example 2: We construct the following
counter example to show that the above claim of [15]
is false. Consider the following set-up:

n = 2, Y = R2, m = 2,

X1 = {(x, y) ∈ R2 | y ≥ x2},

X2 = {(x, y) ∈ R2 | y = 0},

f(x, y) = −2x, ∀(x, y) ∈ R2.

Clearly, f is Lipschitz continuous with Lipschitz con-
stant Lf = 2. We note that X1 ∩X2 = {(0, 0)}. There-
fore, (0, 0) is the only minima of f over X1 ∩X2. Fix
any γ > 0 in (21). Now, for all x ∈ R we have

F (x, x2) = −2x+ γx2.

Setting x = γ−1 we have

F (γ−1, γ−2) = −γ−1 < F (0, 0).

Therefore, (0, 0) is not a minima of F over R2 for any
γ > 0. Hence, @γ̄ > 0 such that (0, 0) is a minima of
F for any γ ≥ γ̄. This establishes that claim 2 is not
true in general.

One can verify that @Υ > 0 such that (23) holds where
X1, X2 are as in example 2. We mention that stan-
dard constraint qualification (SCQ) condition (2) is not
satisfied in this example. Recall that SCQ, although
a very mild requirement, is sufficient to ensure linear
regularity property when the intersection of the closed
convex sets is bounded.

9.3 Proof of Proposition 2

Recall that f∗ = minx∈C f(x). As f is Lipschitz contin-
uous on X with Lipschitz constant Lf , we have ∀ρ ≥ Lf :

∀ x,y ∈ X : f(y)− f(x) ≤ ρ ‖y− x‖,
⇒ ∀ x ∈ X : inf

y∈C
f(y)− f(x) ≤ ρ inf

y∈C
‖y− x‖,

⇒ ∀ x ∈ X : f∗ ≤ f(x) + ρ dC(x). (24)

Using regularity of hP from (6), we have ∀λ ≥ 0 :

fλ∗ = inf
x∈X

f(x)+λhP (x) ≥ inf
x∈X

f(x)+ λ

ΥP
dC(x). (25)

If λ ≥ ΥPLf then applying (24) in (25), we obtain
fλ∗ ≥ f∗. On the other hand, we have fλ∗ ≤ f∗ for all
λ ≥ 0 as C ⊂ X and hP is zero on C. Thus, fλ∗ = f∗
and a minima of f over C is also a minima of fλ over
X.

To prove part [b] of the proposition it is enough to
show the following: if x∗λ is an optimal solution of (7)
then x∗λ ∈ C when λ > ΥPLf . Assume x∗λ /∈ C. So,
dC(x∗λ) > 0. Now, using (6) and λ > ΥPLf we have

fλ∗ = f(x∗λ) + λhP (x∗λ) ≥ f(x∗λ) + λ

Υp
dC(x∗λ)

> f(x∗λ) + Lf dC(x∗λ).

Now, applying 24 we obtain fλ∗ > f∗ which is a contra-
diction to the first part of the theorem. Thus, every
minimizer x∗λ of fλ over X must belong to C when
λ > ΥPLf . This together with the fact that fλ∗ = f∗
shows that x∗λ is also a minimizer of f over C.

Now, we focus on part [c] of the proposition. By defi-
nition of ε-optimal solution of (7), we have

f(xε) + λhP (xε) ≤ fλ∗ + ε. (26)

Now, applying (6) and using fλ∗ = f∗ from part [a], we
get

f(xε) + λ

ΥP
dC(xε) ≤ f∗ + ε. (27)
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Putting ρ = Lf in (24) we have

f(xε) + Lf dC(xε) ≥ f∗. (28)

Now, combining (27), (28) and using λ ≥ 2ΥPLf we
achieve

dC(xε) ≤
εΥP

λ−ΥPLf
≤ ε

Lf
.

Note that we also have f(xε) − f∗ ≤ ε from (26) as
hP is always non-negative. This proves that xε is also
an ε-optimal ε-feasible solution of (1). Now it remains
to show that f(PC(xε)) ≤ f∗ + ε. This follows from
Lipschitz continuity of f and (6) as shown below:

f(PC(xε)) ≤ [f(PC(xε))− f(xε)] + f(xε)
≤ Lf ‖PC(xε)− xε‖+ f(xε)
= Lf dC(xε) + f(xε)
≤ LfΥP hP (xε) + f(xε)
≤ λhP (xε) + f(xε) ≤ f∗ + ε.

9.4 Proof of Lemma 1

Let x,x ∈ Rn. To establish Lipschitz continuity of hP ,
we have

|hP (x)− hP (x′)|
= |P (dC1(x), . . . , dCm(x))− P (dC1(x′), . . . , dCm(x′))|
≤ P (dC1(x)− dC1(x′), . . . , dCm(x)− dCm(x′))
= P (|dC1(x)− dC1(x′)|, . . . , |dCm(x)− dCm(x′)|)
≤ P (‖x− x′‖, . . . , ‖x− x′‖)
= ‖x− x′‖P (1),

where the first inequality is a result of triangle inequal-
ity of norm P and the 2nd equality is due to P being
an absolute norm. Recall that an absolute norm is
monotonic, that is, the norm is monotonically non-
decreasing in the absolute values of its components.
Using this monotonicity property of P together with
(18) results in the 2nd inequality above. Thus, hP is
Lipschitz continuous on Rn and P (1) is a Lipschitz
constant.

Using the property that dual norm of an absolute norm
is also an absolute norm, we have P∗ as an absolute
norm. Now, to find a subgradient we first present the
following characterization of hP using dual norm P∗:

hP (x) = P (dC1(x), . . . , dCm(x))

= max
u∈Rm:P∗(u)≤1

m∑
i=1

uidCi(x) (29)

= max
u∈Rm+ :P∗(u)≤1

m∑
i=1

uidCi(x), (30)

where the last equality follows because dCi(x) ≥ 0∀i
and P∗ is an absolute norm. Since distance functions

are convex, (30) represents hP as maximum of a family
of convex functions. Therefore, if u∗ is a maximizer
of (29) or (30) and ξi denotes a subgradient of dCi at
x, then

∑m
i=1 u

∗
i ξi is a subgradient of hP at x. Now,

part 3 of Proposition 6 says we can use ξi = x−PCi (x)
‖x−PCi (x)‖ .

This completes the proof.

9.5 Split-Projection subgradient (SPS)
Algorithm

Algorithm 1 Split-Projection Subgradient (SPS) Al-
gorithm to solve (1) when f is nonsmooth
Input: λ > 0, number of iterations T .
Initialization: x(1) ∈ X.
for t = 1 to T do
Get subgradient f ′(x(t)) of f at x(t).
Get projections: PCi(x(t)), . . . ,PCm(x(t)).
Compute h′P (x(t)) using Lemma 1.
Set ξ(t) := f ′(x(t)) + λh′P (x(t)).
Choose step-size γt > 0.
Update x(t+1) := PX

(
x(t) − γtξt

)
.

end for
Output: x̂(T ) , [

∑T
t=1 γ

−1
t x(t)] / [

∑T
i=1 γ

−1
i ].

9.6 Proof of Proposition 3

We consider the SPS algorithm applied to problem
(1) with λ ≥ 2ΥPLf . Let D, maxx,x′∈X ‖x − x′‖ be
the diameter of the compact set X. Let the stepsizes
be chosen as γt = η√

t
, 1 ≤ t ≤ T , for some η > 0.

Note that SPS algorithm for problem (1) is nothing
but application of standard subgradient algorithm to
the exact penalty based reformulation (7). Therefore,
we apply the convergence rate guarantee of standard
subgradient method from Corollary 2 of [38] which
provides the following bound on the output x̂(T ):

fλ(x̂(T ))− fλ∗ ≤
3

4
√
T

(
D2

η
+ η[Lf + λP (1)]2

)
,

(31)
where [Lf + λP (1)] is a Lipschitz constant of fλ ≡
f + λhP . By minimizing the right hand side of (31) we
obtain optimal value of η as D

Lf+λP (1) . Now, substitut-
ing the optimal value of η in (31) we get:

fλ(x̂(T ))− fλ∗ ≤
3D[Lf + λP (1)]

2
√
T

.

Recall that λ ≥ 2ΥPLf . Thus, to produce an ε-optimal
solution of (7) we need O

(L2
fD

2

ε2

)
iterations of the SPS-

algorithm. As per Proposition 2 such ε-optimal solu-
tions of (7) are in fact ε-optimal ε-feasible solutions of
(1). This completes the proof.
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9.7 Proof of Proposition 4

For strongly convex case, we set stepsizes in the SPS al-
gorithm as γt = 2

µf (t+1) , 1 ≤ t ≤ T . Recall that SPS al-
gorithm is nothing but an instance of standard sub-
gradient algorithm applied to (7). Now, we quote the
following convergence rate guarantee of standard sub-
gradient method from Corollary 1 of [38]:

fλ(x̂(T ))− fλ∗ ≤
2
µfT

[Lf + λP (1)]2.

Also, we choose λ ≥ 2ΥPLf . Therefore, SPS algorithm
produces an ε-optimal solution of (7) in O

( L2
f

µfε

)
iter-

ations. Now, applying Proposition 2 we achieve the
desired O(1/ε) complexity for an ε-optimal ε-feasible
solution of (1).

9.8 Proof of Lemma 2

Applying Proposition 6 to Ci we have ∀x ∈ Rn :

dCi(x) = max
yi∈Rn:‖yi‖≤1

[x>yi − σA(yi)], (32)

where the maxima is achieved at a point with ‖yi‖ = 1.
Using the above characterization of dCi in (30) we get

hP (x) = max
u∈Rm+ :P∗(u)≤1, ‖yi‖=1 ∀i

m∑
i=1

ui[x>yi − σCi(yi)].

Note that ∀ui ≥ 0 : uiσCi(yi) = σCi(uiyi). There-
fore, making the variable transformation uiyi 7→ ỹi we
achieve the desired form:

hP (x) = max
ỹi∈Rn∀i:P∗(‖ỹ1‖,...,‖ỹm‖)≤1

m∑
i=1

[x>ỹi − σCi(ỹi)].

9.9 Proof of Lemma 3

From (7), (8) and (9) we have

fλ(x) = max
Y∈Yλ

P

L(x,Y)

and

fλ∗ = min
x
fλ(x) = min

x∈X
max

Y∈Yλ
P

L(x,Y)

= max
Y∈Yλ

P

min
x∈X

L(x,Y)

= max
Y∈Yλ

P

q(Y), (33)

where we define q(Y), minx∈X L(x,Y) and swapping
of min & max holds due to Min-Max Theorem [37].

We are given (xε,Yε) ∈ X× YλP such that

sup
x∈X,Y∈Yλ

P

[ L(xε,Y)− L(x,Yε) ] ≤ ε

⇒ [ sup
Y∈Yλ

P

L(xε,Y)− inf
x∈X

L(x,Yε)] ≤ ε

⇒ [fλ(xε)− q(Yε)] ≤ ε

⇒ [fλ(xε)− fλ∗ ] + [fλ∗ − q(Yε)] ≤ ε.

Now, from (33) we have q(Yε) ≤ maxY∈Yλ
P
q(Y) = fλ∗ .

Thus, we have fλ(xε) − fλ∗ ≤ ε. Therefore, xε is an
ε-optimal solution of (7). Now, by virtue of part-c of
Proposition 2 xε is an ε-optimal ε-feasible solution of
(1).

9.10 Proof of Lemma 4

By definition of proximal operator, we have

Proxγg(Y) = argmin
Y′∈Yλ

P

m∑
i=1

[
1

2γ ‖yi − y′i‖2 + σCi(y′i)
]
,

where YλP , {Y ∈ ⊗mi=1Rn |P∗(‖y1‖, . . . , ‖ym‖) ≤ λ}.
Utilizing monotonicity of norm P∗, we break the above
minimization problem as follows:

min
u∈Rm+ :P∗(u)≤1

m∑
i=1

[
1

2γ ‖yi − y∗i ‖2 + σCi(y∗i )
]
, (34)

where y∗i depends on u = (u1, . . . , um) ∈ Rm+ as given
below

y∗i = argmin
y′
i
∈Rn:‖y′

i
‖≤ui

1
2γ ‖yi − y′i‖2 + σCi(y′i)

= argmin
y′
i
∈Rn:‖y′

i
‖≤ui

max
xi∈Ci

1
2γ ‖yi − y′i‖2 + x>i y′i

= max
xi∈Ci

argmin
y′
i
∈Rn:‖y′

i
‖≤ui

1
2γ ‖yi − y′i‖2 + x>i y′i (35)

Now, for a fixed xi, the inner minimization w.r.t. y′i is
achieved at

y′∗i = min
{

1, ui
‖yi − γxi‖

}
[yi − γxi].

Substituting y′i with y′∗i in (35) we now find the value
of xi as

argmax
xi∈Ci

1
2γ ‖yi − y′∗i ‖2 + x>i y∗i

= argmax
xi∈Ci

‖(yi − γxi)− y′∗i ‖2 − ‖(yi − γxi)‖2

= argmin
xi∈Ci

‖yi − γxi‖2(1− [1−min{1, ui
‖yi − γxi‖

}]2).

The last minimization actually boils down to
argminxi∈Ci ‖yi − γxi‖ which is achieved at xi =
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PCi(γ−1yi). Now substituting this value of xi in y′∗i
and defining ŷi,yi − γPCi(γ−1yi) we have

y∗i = min {ui, ‖ŷi‖}
ŷi
‖ŷi‖

.

This bring us to the problem of finding optimal ui by
solving (34) with y∗i as above. Since, P∗ is a monotonic
norm we can equivalently solve the following:

min
η∈Rm+ :P∗(η)≤1

m∑
i=1

[
1

2γ ‖yi − y∗i ‖2 + σCi(y∗i )
]
, (36)

where ηi = min{ui, ‖yi‖}, y∗i = ηi
‖ŷi‖ ŷi and ŷi = yi −

γPCi(γ−1yi). Using the definition of PCi(γ−1yi) we
find σCi(y∗i ) = PCi(γ−1yi)>y∗i which we substitute in
(36). Therefore (36) becomes

argmin
η∈Rm+ :P∗(η)≤1

m∑
i=1

[
1

2γ ‖yi − y∗i ‖2 + PCi(γ−1yi)>y∗i
]

= argmin
η∈Rm+ :P∗(η)≤1

m∑
i=1
‖ŷi − y∗i ‖2

= argmin
η∈Rm+ :P∗(η)≤1

m∑
i=1

∥∥∥∥ŷi −
ηi
‖ŷi‖

ŷi
∥∥∥∥2

= argmin
η∈Rm+ :P∗(η)≤1

m∑
i=1

[ ηi − ‖ŷi‖ ]2.

= argmin
η∈Rm:P∗(η)≤1

m∑
i=1

[ ηi − ‖ŷi‖ ]2.

where the last equality holds as P∗ is an absolute
norm. Thus, the optimal η is the projection of
(‖ŷ1‖, . . . , ‖ŷm‖) onto {η ∈ Rm : P∗(η) ≤ 1}. Let
(r1, . . . , rm) be the projection. Now, substituting the
optimal value of ηi in y∗i = ηi

‖ŷi‖ ŷi we achieve the
desired result.

9.11 Proof of Proposition 5

From [8] we have that iteration complexity of the Mirror
Prox-a (MPa) Algorithm is O(1/ε). Note that our
SMP algorithm is nothing but standard MPa algorithm
applied to problem (14). As (14) is the saddle-point
version of the primal problem (7), SMP ãlgorithm
will produce an ε-optimal solution of (7) in O(1/ε)
iterations. Now apply Proposition 2 which ensures
that ε-optimal solution of (7) is an ε-optimal ε-feasible
solution of the original problem (1).

9.12 Exact Penalty based Primal Dual
(EPPD) Algorithm

Before stating the algorithm we recall the following
notation: Y, (y1, . . . ,ym) ∈ ⊗mi=1Rn and the operator

A maps x to (x, . . . ,x) ∈ ⊗mi=1Rn. Let Mf > 0 be the
Lipschitz constant of the gradient of f and D be the
diameter of the set X. We set the stepsize parameters
τ, γ in the algorithm as follows:

γ = λ

D
, τ = 1

Mf +mγ
.

Algorithm 2 Exact Penalty based Primal Dual
(EPPD) Algorithm to solve (1) when f is smooth

Input: λ > 0, number of iterations T .
Initialization: x(0) ∈ X, Y(0) = 0.
Choose stepsize parameters τ, γ > 0.
for t = 0 to T − 1 do

x(t+1) := PX
(

x(t) − τ [∇f(x(t)) +
∑m
i=1 y(t)

i ]
)
.

Y(t+1) := Proxγg
(
Y(t) + γA[2x(t+1) − x(t)]

)
.

end for
Output: x̂(T ) , 1

T

∑T
t=1 x(t).

9.13 Exact Penalty based Accelerated Primal
Dual (EPAPD) Algorithm

Algorithm 3 Exact Penalty based Accelerated Primal
Dual (EPAPD) Algorithm to solve (1) when f is smooth
and strongly convex
Input: λ > 0, number of iterations T .
Initialization: x(0) ∈ X, Y(0) = 0,x(−1) = x(0).
for t = 0 to T − 1 do
Choose parameters τt, γt, θt.
Y(t+1) := Proxγg

(
Y(t) + γtA[x(t) + θt(x(t) − x(t−1))]

)
.

x(t+1) := PX
(

x(t) − τt
(1+µfτt) [∇f(x(t)) +

∑m
i=1 y(t+1)

i ]
)
.

end for
Output: x̂(T ) , 1

T

∑T
t=1 x(t).

Let µf > 0 be the modulus of strong convexity of f
and Mf > 0 be the Lipschitz constant of the gradient
of f . As in [33] we choose the algorithm parameters
τt, γt, θt based on the following recursions:

θ0 = 1, τ0 = 1
2Mf

, γ0 = Mf

m
,

θt+1 := 1√
1 + µfτt

,

τt+1 := θt+1τt,

γt+1 := γt/θt+1.

9.14 Split Mirror Prox (SMP) Algorithm

We recall from Lemma 4 that proximal operator
of g is computed through projections onto the sets
C1, . . . , Cm. The same projections were used to
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Algorithm 4 Split Mirror Prox (SMP) Algorithm to
solve (1) when f is given by (13)

Input: λ > 0, number of iterations T .
Initialization: x(1) ∈ X, z(1) ∈ Z, Y(1) = 0.
Choose stepsizes γx, γy, γz > 0.
for t = 1 to T do
• x̃(t) := PX

(
x(t) − γx[∇xΦ(x(t), z(t)) +

∑m
i=1 y(t)

i ]
)
.

• z̃(t) := PZ
(
z(t) + γz∇zΦ(x(t), z(t))

)
.

• Ỹ(t) := Proxγyg
(
Y(t) + γyAx(t)) .

• g′(Ỹ(t)) :=
(

PC1(
y(t)

1
γy

), . . . , PCm( y(t)
m

γy
)
)
.

• x(t+1) := PX
(

x(t) − γx[∇xΦ(x̃(t), z̃(t)) +
∑m
i=1 ỹ(t)

i ]
)
.

• z(t+1) := PZ
(
z(t) + γz∇zΦ(x̃(t), z̃(t))

)
.

• Y(t+1) := PYλ
P

(
Y(t) + γy[Ax̃(t) − g′(Ỹ(t))]

)
.

end for
Output: x̂(T ) , 1

T

∑T
t=1 x̃(t).

construct g′(Ỹ(t)) in the above algorithm. Hence,
every iteration of SMP algorithm requires project-
ing onto each Ci’s only once. Also, the last pro-
jection onto the set YλP can be computed as fol-
lows: PYλ

P
(Y) = (r1y1/‖y1‖, . . . , rmym/‖ym‖), where

(r1, . . . , rm) is the projection of (‖y1‖, . . . , ‖ym‖) onto
{u ∈ Rm |P∗(u) ≤ λ}. As done in standard mirror-
prox [8] we set the stepsize parameters γx, γy, γz based
on the diameters of the sets X,Z,YλP and the Lipschitz
constant of F .

9.15 Dealing with unknown Regularity
Constant

We note from Proposition 2 that setting λ ≥ 2ΥPLf
ensures that an ε-optimal solution of (7) is also an
ε-optimal ε-feasible solution of the original problem
(1). Here we state an algorithmic strategy to deal with
the case when the regularity constant ΥP is not known.
Proposed methods find an ε-optimal ε-feasible solution
of (1) by solving (7). We fix an ε > 0 and consider
a first-order method M for obtaining an ε-optimal
solution of (7). Let the number of iterations required
be Tλ = Cλa/εb, where C, a, b are positive constants.
When the regularity constant ΥP is not known we start
with λ = λ0 for some λ0 > 0 and run Tλ0 iterations
of M . If the output after Tλ0 iterations satisfy the
ε-feasibility then we are done; otherwise we double the
value of λ and run Tλ iterations of M with the new
value of λ. If we proceed in this way at one point we will
have λ ≥ 2ΥPLf and the algorithm will stop with an
ε-optimal ε-feasible solution of (1). It is easy to see that
the total number of iterations required to finally stop
is only a constant factor times the number of iterations

required if the regularity constant was known. Hence,
we achieve the same complexity of O(1/εb).
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