A Supplementary Material

A. 1 Relaxation on Local Polytope

The relaxation of (1) over the local polytope is given by:

$$
\begin{array}{lll}
\min _{\mu} & \sum_{u \in V} \sum_{i \in L} \mu_{u}(i) c(u, i)+\sum_{e=(u, v)} \sum_{i, j} \mu_{e}(i j) \theta_{(u, v)}(i, j) \\
\text { s.t. } & \sum_{i} \mu_{u}(i)=1, & \forall i \in L . \\
& \sum_{j} \mu_{e}(i j)=\mu_{u}(i), & \forall e=(u, v) \in E, i \in L \\
& \sum_{i} \mu_{e}(i j)=\mu_{v}(j), & \forall e=(u, v) \in E, j \in L \\
& \mu_{u}(i) \geq 0, & \forall u \in V, i \in L \\
& \mu_{e}(i j) \geq 0, & \forall e \in E, i, j \in L
\end{array}
$$

For a Ferromagnetic Potts Model, the objective becomes:

$$
\min _{\mu} \sum_{u \in V} \sum_{i \in L} \mu_{u}(i) c(u, i)+\sum_{e=(u, v)} w(u, v) \sum_{i, j} \mu_{e}(i j) \mathbb{1}(i \neq j)
$$

Fix the values $\mu_{u}(i)$. We want to minimize

$$
\sum_{e=(u, v)} w(u, v) \sum_{i, j} \mu_{e}(i j) \mathbb{1}(i \neq j)
$$

subject to the constraints

$$
\begin{array}{ll}
\sum_{j} \mu_{e}(i j)=\mu_{u}(i), & \forall e=(u, v) \in E, i \in L \\
\sum_{i} \mu_{e}(i j)=\mu_{v}(j), & \forall e=(u, v) \in E, j \in L \\
\mu_{e}(i j) \geq 0, & \forall e \in E, i, j \in L
\end{array}
$$

Because $w(u, v) \geq 0$ and $\mu_{e}(i j) \geq 0$, we want to put as much mass on $\mu_{e}(i i)$ as possible without violating a constraint, since those terms do not appear in the objective. To that end, we set $\mu_{e}(i i)=\min \left(\mu_{u}(i), \mu_{v}(i)\right)$. Then using the first constraint, the objective becomes:

$$
\begin{aligned}
& \sum_{e=(u, v)} w(u, v) \sum_{i} \mu_{u}(i)-\min \left(\mu_{u}(i), \mu_{v}(i)\right) \\
= & \sum_{e=(u, v)} w(u, v)\left(1-\frac{1}{2} \sum_{i} \mu_{u}(i)+\mu_{v}(i)\right. \\
+ & \left.\sum_{i}\left|\mu_{u}(i)-\mu_{v}(i)\right|\right) \\
= & \sum_{e=(u, v)} w(u, v) \sum_{i}\left|\mu_{u}(i)-\mu_{v}(i)\right| \\
= & \sum_{e=(u, v)} w(u, v) \frac{\left|\mu_{u}-\mu_{v}\right|}{2}
\end{aligned}
$$

where we use multiple times that $\sum_{i} \mu_{u}(i)=1$. The LP objective is thus:

$$
\min _{\mu} \sum_{u \in V} \sum_{i \in L} \mu_{u}(i) c(u, i)+\sum_{e=(u, v)} w(u, v) \frac{\left|\mu_{u}-\mu_{v}\right|}{2}
$$

Identifying μ_{u} with \bar{u} and μ_{v} with \bar{v}, we obtain the LP (3).

A. 2 Proof of Lemma 1

Proof. This argument is similar to the one in Angelidakis et al. (2017). First, we verify the last two conditions in Lemma 1. Let $\alpha=\frac{2}{k \theta}=\frac{5}{3}$ and $\beta=k \theta=\frac{6}{5}$. The algorithm clearly returns a feasible solution (i.e. a valid labeling). Consider any two vertices u and v, and let $\Delta=d(u, v)$. There are two cases: $j(u)=j(v)$ and $j(u) \neq j(v)$. In the first case, let $j=j(u)=j(v)$. We have $P(u) \neq P(v)$ exactly when $\left.r \in\left(\min \left(\bar{u}_{i}, \bar{v}_{i}\right), \max \left(\bar{u}_{i}, \bar{v}_{i}\right)\right)\right]$ and $i \neq j . r$ is uniformly distributed in $(0, \theta)$, so the probability of this occurring is

$$
\mathbb{P}[P(u) \neq P(v)]=\frac{1}{k} \sum_{i: i \neq j} \frac{\left|\bar{u}_{i}-\bar{v}_{i}\right|}{\theta} \leq \frac{2}{k \theta} d(u, v)=\alpha \Delta .
$$

Note that we used $u_{i} \leq \varepsilon<\theta$ for $i \neq j$ and for all u. Now consider the case where $j(u) \neq j(v)$. Here $d(u, v) \geq d\left(e_{j(u)}, e_{j(v)}\right)-d\left(u, e_{j(u)}\right)-d\left(v, e_{j(v)}\right)$ by the triangle inequality (e_{i} is the i th standard basis vector in \mathbb{R}^{k}). So $d(u, v) \geq 1-2 \varepsilon \geq 1-2 / 30$ for $k \geq 3$. So $d(u, v) \geq 14 / 15$, and $\alpha=5 / 3$ so $\alpha \Delta>1$ and the bound trivially applies.

Next we verify the "co-appoximation" condition. First consider the case where $j(u)=j(v)=j$. Then $d(u, v) \leq d\left(u, e_{j}\right)+d\left(e_{j}, v\right) \leq 2 \varepsilon \leq 1 / 15$. As we showed, $\mathbb{P}[P(u) \neq P(v)] \leq \alpha \Delta$. So $\mathbb{P}[P(u)=P(v)] \geq$ $1-\alpha \Delta \geq \beta^{-1}(1-\Delta)$, where the last inequality is because $\frac{1-\beta^{-1}}{\alpha-\beta^{-1}}=\frac{1 / 6}{5 / 3-5 / 6}=\frac{1}{5} \geq \Delta$. Now assume $j(u) \neq j(v)$. Note that if $\bar{u}_{i} \geq r$ and $\bar{v}_{i} \geq r, u$ and v are both added to P_{i}. So

$$
\begin{aligned}
\mathbb{P}[P(u)=P(v)] & \geq \mathbb{P}\left[u_{i} \geq r, v_{i} \geq r\right] \\
& =\frac{1}{k} \sum_{i=1}^{k} \frac{\min \left(\bar{u}_{i}, \bar{v}_{i}\right)}{\theta} .
\end{aligned}
$$

Here we used that for all $i, \min \left(\bar{u}_{i}, \bar{v}_{i}\right) \leq \varepsilon<\theta$ since $j(u) \neq j(v)$. Then

$$
\begin{aligned}
& \mathbb{P}[P(u)=P(v)] \geq \frac{1}{k} \sum_{i=1}^{k} \frac{\bar{u}_{i}+\bar{v}_{i}-\left|\bar{u}_{i}-\bar{v}_{i}\right|}{2 \theta} \\
& \quad=\frac{1}{k \theta}(1-d(u, v))=\beta^{-1}(1-d(u, v)) .
\end{aligned}
$$

The approximation conditions hold.

Finally, we check the first two conditions of Lemma 1. First consider $\mathbb{P}[P(u)=i, i \neq j(u)]$. This can only occur when i is selected and u is assigned to P_{i}. So

$$
\mathbb{P}[P(u)=i, i \neq j(u)]=\frac{1}{k} \mathbb{P}\left[\bar{u}_{i} \geq r\right]=\frac{1}{k} \frac{\bar{u}_{i}}{\theta}=\frac{5}{6} \bar{u}_{i} .
$$

Now we compute $\mathbb{P}[P(u) \neq j(u)]$. A vertex u clearly can only be assigned a label $i \neq j(u)$ if such an i is selected and u is assigned to it; namely,

$$
\begin{aligned}
\mathbb{P}[P(u) \neq j(u)]=\frac{1}{k} \sum_{i: i \neq j(u)} \frac{\bar{u}_{i}}{\theta} & =\frac{1}{k \theta}\left(1-\bar{u}_{j(u)}\right) \\
& =\frac{5}{6}\left(1-\bar{u}_{j(u)}\right)
\end{aligned}
$$

This concludes the proof.

A. 3 Full Proof of Theorem 1

Here we reproduce the proof of Theorem 1 in more detail.
Theorem. On a (2,1)-stable instance of Uniform Metric Labeling with optimal integer solution g, the LP relaxation (3) is tight.

Proof. Assume for a contradiction that the optimal LP solution $\left\{\bar{u}^{L P}\right\}$ of (3) is fractional. To construct a stability-violating labeling, we will run Algorithm 2 on a fractional labeling $\{\bar{u}\}$ constructed from $\left\{\bar{u}^{L P}\right\}$ and the optimal integer solution g. We then use Lemma 1 to show that in expectation, the output of $\mathcal{R}(\{\bar{u}\})$ must be better than the optimal integer solution in a particular $(2,1)$-perturbation, which contradicts $(2,1)$ stability.

Let $\left\{\bar{u}^{g}\right\}$ be the solution to (3) corresponding to g, and define the following ε-close solution $\{\bar{u}\}$: for every u and every i, set $\bar{u}_{i}=(1-\varepsilon) \bar{u}_{i}^{g}+\varepsilon \bar{u}_{i}^{L P}$. Note that $\{\bar{u}\}$ is fractional and $j(u)=g(u)$ for all u.
Recall that E_{g} is the set of edges cut by the optimal solution g. Define the following (2,1)-perturbation w^{\prime} of the weights w :

$$
w^{\prime}(u, v)= \begin{cases}w(u, v) & (u, v) \in E_{g} \\ \frac{1}{2} w(u, v) & (u, v) \in E \backslash E_{g}\end{cases}
$$

We refer to the objective with modified weights w^{\prime} as Q^{\prime} (that is, Q^{\prime} is the objective in the instance with weights w^{\prime} and costs c).

Now let $h=\mathcal{R}(\{\bar{u}\})$. To compare g and h, we will compute $\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right]$, where the expectation is over the randomness of the rounding algorithm. By definition,

$$
\begin{aligned}
\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right] & =\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h) \mid h=g\right] \operatorname{Pr}(h=g) \\
& +\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h) \mid h \neq g\right] \operatorname{Pr}(h \neq g) .
\end{aligned}
$$

The first term of the sum above is clearly zero. Further, as $\{\bar{u}\}$ is fractional, the guarantees in Lemma 1 imply that $\operatorname{Pr}(h \neq g)>0$. By (2,1)-stability of the instance, any labeling $h \neq g$ must satisfy $Q^{\prime}(h)>Q^{\prime}(g)$. So stability and fractionality of the LP imply $\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right]<0$.

If we compute $\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right]$ and simplify using Lemma 1 and the definition of w^{\prime} (see the appendix for a full derivation), we obtain:

$$
\begin{aligned}
Q^{\prime}(g)-Q^{\prime}(h) & =\sum_{u \in V_{\Delta}} c(u, g(u))+\sum_{(u, v) \in E_{g} \backslash E_{h}} w^{\prime}(u, v) \\
& -\sum_{u \in V_{\Delta}} c(u, h(u))-\sum_{(u, v) \in E_{h} \backslash E_{g}} w^{\prime}(u, v) .
\end{aligned}
$$

Taking the expectation, we obtain:

$$
\begin{aligned}
\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right] & =\sum_{u \in V} c(u, g(u)) \operatorname{Pr}(h(u) \neq g(u)) \\
& +\sum_{(u, v) \in E_{g}} w^{\prime}(u, v) \operatorname{Pr}((u, v) \text { not cut }) \\
& -\sum_{u \in V} \sum_{i \neq g(u)} c(u, i) \operatorname{Pr}(h(u)=i) \\
& -\sum_{(u, v) \in E \backslash E_{g}} w^{\prime}(u, v) \operatorname{Pr}((u, v) \text { cut })
\end{aligned}
$$

Applying Lemma 1 with $j(u)=g(u)$,

$$
\begin{aligned}
\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right] & \geq \frac{5}{6}\left(\sum_{u \in V} c(u, g(u))\left(1-\bar{u}_{g(u)}\right)\right. \\
& +\sum_{(u, v) \in E_{g}} w^{\prime}(u, v)(1-d(u, v)) \\
& -\sum_{u \in V} \sum_{i \neq g(u)} c(u, i) \bar{u}_{i} \\
& \left.-\sum_{(u, v) \in E \backslash E_{g}} 2 w^{\prime}(u, v) d(u, v)\right)
\end{aligned}
$$

Using the definition of w^{\prime},

$$
\begin{array}{r}
\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right] \geq \frac{5}{6}\left(\sum_{u \in V} c(u, g(u))+\sum_{(u, v) \in E_{g}} w(u, v)\right. \\
\left.-\sum_{u \in V} \sum_{i \in L} c(u, i) \bar{u}_{i}-\sum_{(u, v) \in E} w(u, v) d(u, v)\right)
\end{array}
$$

The first two terms are simply $Q(g)$, and the last two are the objective $Q(\{\bar{u}\})$ of the LP solution \bar{u}. Since $\bar{u}=(1-\varepsilon) \bar{u}^{g}+\varepsilon \bar{u}^{L P}$ and $Q\left(\left\{\bar{u}^{L P}\right\}\right) \leq Q\left(\left\{\bar{u}^{g}\right\}\right)$, the convexity of the LP objective implies $Q(\{\bar{u}\}) \leq$ $Q\left(\left\{\bar{u}^{g}\right\}\right)=Q(g)$. So $\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right] \geq 0$. But stability of the instance and fractionality of the LP solution implied $\mathbb{E}\left[Q^{\prime}(g)-Q^{\prime}(h)\right]<0$.

A. 4 Generating Counterexamples

The following procedure can be used to find (β, γ) stable instances.

1. Given a fixed number of nodes n and labels k, randomly generate a graph G as follows:
(a) Connect any two nodes (u, v) with an edge with probability connectProb.
(b) When connecting two nodes, choose the edge weight $w(u, v)$ uniformly at random from $\mathbb{Z} \cap$ [0 , weightMax].
2. For each node u, choose an index i uniformly at random from $\{1 \ldots k\}$. Draw $c(u, i)$ uniformly at random from $\mathbb{Z} \cap[0$, costMax $]$. Set $c(u, j)=0$ for $j \neq i$.
3. Find the optimal solution g to the instance (G, w, c, L).
4. Let E_{g} be the set of edges cut by g, and consider the following adversarial perturbation w^{\prime} of w :

$$
w^{\prime}(u, v)= \begin{cases}\frac{1}{\beta} w(u, v) & (u, v) \in E \backslash E_{g} \\ \gamma w(u, v) & (u, v) \in E_{g}\end{cases}
$$

Let Q^{\prime} be the objective with these modified weights.
5. Enumerate the $k^{n}-1$ possible labelings not equal to g. If any of them have $Q^{\prime}(h) \leq Q^{\prime}(g)$, return to step 1. Otherwise, print V, E, w, c.

Following this procedure, we can also enforce additional properties of the instance in step 5 before printing it out. For instance, we can enforce that the LP must be fractional on the instance, or that α-expansion must not find the optimal solution. If these additional conditions fail to hold, we return to step 1.
The examples in Section 6 were found with connectProb $=0.5$, weightMax $=4$, costMax $=20$, and then modified for simplicity. Steps $3-5$ were repeated for each modification to ensure the resulting instances satisfied the correct stability conditions. In Section $6, \beta=1$ and $\gamma=2$; in Section $6, \beta=2$ and $\gamma=1$.

The following lemma proves that steps 3-5 are sufficient to verify stability.
Lemma A.1. Let w^{*} be an arbitrary (β, γ) perturbation of the weights w, and let w^{\prime} be the adversarial perturbation for the optimal solution g. Then for any labeling $h, Q^{*}(h) \leq Q^{*}(g)$ implies $Q^{\prime}(h) \leq Q^{\prime}(g)$. In other words, if a labeling h violates stability in any perturbation, it violates stability in the adversarial perturbation w^{\prime}.

Proof. We show that $Q^{*}(g)-Q^{*}(h) \leq Q^{\prime}(g)-Q^{\prime}(h)$. Let $V_{\Delta}=\{u \in V \mid g(u) \neq h(u)\}$. Recall that E_{g} and E_{h} are the sets of edges cut by g and h, respectively. We compute

$$
\begin{aligned}
Q^{\prime}(g)-Q^{\prime}(h) & =\sum_{u \in V_{\Delta}} c(u, g(u))+\sum_{(u, v) \in E_{g} \backslash E_{h}} w^{\prime}(u, v) \\
& -\sum_{u \in V_{\Delta}} c(u, h(u))-\sum_{(u, v) \in E_{h} \backslash E_{g}} w^{\prime}(u, v) .
\end{aligned}
$$

Using the definition of w^{\prime},

$$
\begin{aligned}
Q^{\prime}(g)-Q^{\prime}(h) & =\sum_{u \in V_{\Delta}} c(u, g(u))+\sum_{(u, v) \in E_{g} \backslash E_{h}} \gamma w(u, v) \\
& -\sum_{u \in V_{\Delta}} c(u, h(u))-\sum_{(u, v) \in E_{h} \backslash E_{g}} \frac{w(u, v)}{\beta} .
\end{aligned}
$$

Since w^{*} is a valid (β, γ)-perturbation, $\frac{1}{\beta} w(u, v) \leq$ $w^{*}(u, v) \leq \gamma w(u, v)$. Then since all the c 's and w 's are nonnegative,

$$
\begin{aligned}
Q^{\prime}(g)-Q^{\prime}(h) & \geq \sum_{u \in V_{\Delta}} c(u, g(u))+\sum_{(u, v) \in E_{g} \backslash E_{h}} w^{*}(u, v) \\
& -\sum_{u \in V_{\Delta}} c(u, h(u))-\sum_{(u, v) \in E_{h} \backslash E_{g}} w^{*}(u, v) \\
& =Q^{*}(g)-Q^{*}(h) .
\end{aligned}
$$

