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A Supplementary Material

A.1 Relaxation on Local Polytope

The relaxation of (1) over the local polytope is given
by:

min
µ

X

u2V

X

i2L

µu(i)c(u, i) +
X

e=(u,v)

X

i,j

µe(ij)✓(u,v)(i, j)

s.t.
X

i

µu(i) = 1, 8i 2 L.

X

j

µe(ij) = µu(i), 8e = (u, v) 2 E, i 2 L.

X

i

µe(ij) = µv(j), 8e = (u, v) 2 E, j 2 L.

µu(i) � 0, 8u 2 V, i 2 L.

µe(ij) � 0, 8e 2 E, i, j 2 L.

For a Ferromagnetic Potts Model, the objective be-
comes:

min
µ

X

u2V

X

i2L

µu(i)c(u, i)+
X

e=(u,v)

w(u, v)
X

i,j

µe(ij)1(i 6= j)

Fix the values µu(i). We want to minimize
X

e=(u,v)

w(u, v)
X

i,j

µe(ij)1(i 6= j)

subject to the constraints
X

j

µe(ij) = µu(i), 8e = (u, v) 2 E, i 2 L.

X

i

µe(ij) = µv(j), 8e = (u, v) 2 E, j 2 L.

µe(ij) � 0, 8e 2 E, i, j 2 L.

Because w(u, v) � 0 and µe(ij) � 0, we want to put
as much mass on µe(ii) as possible without violating a
constraint, since those terms do not appear in the ob-
jective. To that end, we set µe(ii) = min(µu(i), µv(i)).
Then using the first constraint, the objective becomes:

X

e=(u,v)

w(u, v)
X

i

µu(i)�min(µu(i), µv(i))

=
X

e=(u,v)

w(u, v)
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X

i

µu(i) + µv(i)

+
X

i

|µu(i)� µv(i)|
!

=
X

e=(u,v)

w(u, v)
X

i

|µu(i)� µv(i)|

=
X

e=(u,v)

w(u, v)
|µu � µv|

2
,

where we use multiple times that
P

i µu(i) = 1. The
LP objective is thus:

min
µ

X

u2V

X

i2L

µu(i)c(u, i) +
X

e=(u,v)

w(u, v)
|µu � µv|
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Identifying µu with ū and µv with v̄, we obtain the LP
(3).

A.2 Proof of Lemma 1

Proof. This argument is similar to the one in Angel-
idakis et al. (2017). First, we verify the last two
conditions in Lemma 1. Let ↵ = 2

k✓ = 5
3 and

� = k✓ = 6
5 . The algorithm clearly returns a feasi-

ble solution (i.e. a valid labeling). Consider any two
vertices u and v, and let � = d(u, v). There are two
cases: j(u) = j(v) and j(u) 6= j(v). In the first case,
let j = j(u) = j(v). We have P (u) 6= P (v) exactly
when r 2 (min(ūi, v̄i),max(ūi, v̄i))] and i 6= j. r is
uniformly distributed in (0, ✓), so the probability of
this occurring is

P[P (u) 6= P (v)] =
1

k

X

i:i 6=j

|ūi � v̄i|
✓

 2

k✓

d(u, v) = ↵�.

Note that we used ui  " < ✓ for i 6= j and for all
u. Now consider the case where j(u) 6= j(v). Here
d(u, v) � d(ej(u), ej(v))�d(u, ej(u))�d(v, ej(v)) by the
triangle inequality (ei is the ith standard basis vector
in Rk). So d(u, v) � 1 � 2" � 1 � 2/30 for k � 3.
So d(u, v) � 14/15, and ↵ = 5/3 so ↵� > 1 and the
bound trivially applies.

Next we verify the “co-appoximation” condition. First
consider the case where j(u) = j(v) = j. Then
d(u, v)  d(u, ej) + d(ej , v)  2"  1/15. As we
showed, P[P (u) 6= P (v)]  ↵�. So P[P (u) = P (v)] �
1 � ↵� � �

�1(1 � �), where the last inequality is

because 1���1

↵���1 = 1/6
5/3�5/6 = 1

5 � �. Now assume

j(u) 6= j(v). Note that if ūi � r and v̄i � r, u and v

are both added to Pi. So

P[P (u) = P (v)] � P[ui � r, vi � r]

=
1

k

kX

i=1

min(ūi, v̄i)

✓

.

Here we used that for all i, min(ūi, v̄i)  " < ✓ since
j(u) 6= j(v). Then

P[P (u) = P (v)] � 1

k

kX

i=1

ūi + v̄i � |ūi � v̄i|
2✓

=
1

k✓

(1� d(u, v)) = �

�1(1� d(u, v)).

The approximation conditions hold.
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Finally, we check the first two conditions of Lemma
1. First consider P[P (u) = i, i 6= j(u)]. This can only
occur when i is selected and u is assigned to Pi. So

P[P (u) = i, i 6= j(u)] =
1

k

P[ūi � r] =
1

k

ūi

✓

=
5

6
ūi.

Now we compute P[P (u) 6= j(u)]. A vertex u clearly
can only be assigned a label i 6= j(u) if such an i is
selected and u is assigned to it; namely,

P[P (u) 6= j(u)] =
1

k

X

i:i 6=j(u)

ūi

✓

=
1

k✓

(1� ūj(u))

=
5

6
(1� ūj(u)).

This concludes the proof.

A.3 Full Proof of Theorem 1

Here we reproduce the proof of Theorem 1 in more
detail.

Theorem. On a (2,1)-stable instance of Uniform

Metric Labeling with optimal integer solution g,
the LP relaxation (3) is tight.

Proof. Assume for a contradiction that the optimal
LP solution {ūLP } of (3) is fractional. To construct a
stability-violating labeling, we will run Algorithm 2 on
a fractional labeling {ū} constructed from {ūLP } and
the optimal integer solution g. We then use Lemma
1 to show that in expectation, the output of R({ū})
must be better than the optimal integer solution in a
particular (2, 1)-perturbation, which contradicts (2, 1)-
stability.

Let {ūg} be the solution to (3) corresponding to g, and
define the following "-close solution {ū}: for every u

and every i, set ūi = (1� ")ūg
i + "ū

LP
i . Note that {ū}

is fractional and j(u) = g(u) for all u.

Recall that Eg is the set of edges cut by the optimal
solution g. Define the following (2, 1)-perturbation w

0

of the weights w:

w

0(u, v) =

(
w(u, v) (u, v) 2 Eg
1
2w(u, v) (u, v) 2 E \ Eg.

We refer to the objective with modified weights w0 as
Q

0 (that is, Q0 is the objective in the instance with
weights w0 and costs c).

Now let h = R({ū}). To compare g and h, we will
compute E[Q0(g) � Q

0(h)], where the expectation is
over the randomness of the rounding algorithm. By
definition,

E [Q0(g)�Q

0(h)] = E[Q0(g)�Q

0(h)|h = g] Pr(h = g)

+ E[Q0(g)�Q

0(h)|h 6= g] Pr(h 6= g).

The first term of the sum above is clearly zero. Fur-
ther, as {ū} is fractional, the guarantees in Lemma
1 imply that Pr(h 6= g) > 0. By (2, 1)-stability
of the instance, any labeling h 6= g must satisfy
Q

0(h) > Q

0(g). So stability and fractionality of the
LP imply E[Q0(g)�Q

0(h)] < 0.

If we compute E[Q0(g) � Q

0(h)] and simplify using
Lemma 1 and the definition of w0 (see the appendix
for a full derivation), we obtain:

Q

0(g)�Q

0(h) =
X

u2V�

c(u, g(u)) +
X

(u,v)2Eg\Eh

w

0(u, v)

�
X

u2V�

c(u, h(u))�
X

(u,v)2Eh\Eg

w

0(u, v).

Taking the expectation, we obtain:

E[Q0(g)�Q

0(h)] =
X

u2V

c(u, g(u)) Pr(h(u) 6= g(u))

+
X

(u,v)2Eg

w

0(u, v) Pr((u, v) not cut)

�
X

u2V

X

i 6=g(u)

c(u, i) Pr(h(u) = i)

�
X

(u,v)2E\Eg

w

0(u, v) Pr((u, v) cut).

Applying Lemma 1 with j(u) = g(u),

E[Q0(g)�Q

0(h)] � 5

6

 
X

u2V

c(u, g(u))(1� ūg(u))

+
X

(u,v)2Eg

w

0(u, v)(1� d(u, v))

�
X

u2V

X

i 6=g(u)

c(u, i)ūi

�
X

(u,v)2E\Eg

2w0(u, v)d(u, v)

1

A

Using the definition of w0,

E[Q0(g)�Q

0(h)] � 5

6

0

@
X

u2V

c(u, g(u)) +
X

(u,v)2Eg

w(u, v)

�
X

u2V

X

i2L

c(u, i)ūi �
X

(u,v)2E

w(u, v)d(u, v)

1

A

The first two terms are simply Q(g), and the last two
are the objective Q({ū}) of the LP solution ū. Since
ū = (1 � ")ūg + "ū

LP and Q({ūLP })  Q({ūg}),
the convexity of the LP objective implies Q({ū}) 
Q({ūg}) = Q(g). So E[Q0(g)�Q

0(h)] � 0. But stabil-
ity of the instance and fractionality of the LP solution
implied E[Q0(g)�Q

0(h)] < 0.
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A.4 Generating Counterexamples

The following procedure can be used to find (�, �)-
stable instances.

1. Given a fixed number of nodes n and labels k,
randomly generate a graph G as follows:

(a) Connect any two nodes (u, v) with an edge
with probability connectProb.

(b) When connecting two nodes, choose the edge
weight w(u, v) uniformly at random from Z\
[0, weightMax].

2. For each node u, choose an index i uniformly at
random from {1 . . . k}. Draw c(u, i) uniformly at
random from Z\ [0, costMax]. Set c(u, j) = 0 for
j 6= i.

3. Find the optimal solution g to the instance
(G,w, c, L).

4. Let Eg be the set of edges cut by g, and consider
the following adversarial perturbation w

0 of w:

w

0(u, v) =

(
1
�w(u, v) (u, v) 2 E \ Eg

�w(u, v) (u, v) 2 Eg

Let Q

0 be the objective with these modified
weights.

5. Enumerate the kn�1 possible labelings not equal
to g. If any of them have Q

0(h)  Q

0(g), return
to step 1. Otherwise, print V,E,w, c.

Following this procedure, we can also enforce addi-
tional properties of the instance in step 5 before print-
ing it out. For instance, we can enforce that the LP
must be fractional on the instance, or that ↵-expansion
must not find the optimal solution. If these additional
conditions fail to hold, we return to step 1.

The examples in Section 6 were found with
connectProb = 0.5, weightMax = 4, costMax = 20,
and then modified for simplicity. Steps 3-5 were re-
peated for each modification to ensure the resulting
instances satisfied the correct stability conditions. In
Section 6, � = 1 and � = 2; in Section 6, � = 2 and
� = 1.

The following lemma proves that steps 3-5 are su�-
cient to verify stability.

Lemma A.1. Let w

⇤ be an arbitrary (�, �)-
perturbation of the weights w, and let w0 be the adver-
sarial perturbation for the optimal solution g. Then for
any labeling h, Q⇤(h)  Q

⇤(g) implies Q

0(h)  Q

0(g).
In other words, if a labeling h violates stability in any
perturbation, it violates stability in the adversarial per-
turbation w

0.

Proof. We show that Q⇤(g)�Q

⇤(h)  Q

0(g)�Q

0(h).
Let V� = {u 2 V | g(u) 6= h(u)}. Recall that Eg and
Eh are the sets of edges cut by g and h, respectively.
We compute

Q

0(g)�Q

0(h) =
X

u2V�

c(u, g(u)) +
X

(u,v)2Eg\Eh

w

0(u, v)

�
X

u2V�

c(u, h(u))�
X

(u,v)2Eh\Eg

w

0(u, v).

Using the definition of w0,

Q

0(g)�Q

0(h) =
X

u2V�

c(u, g(u)) +
X

(u,v)2Eg\Eh

�w(u, v)

�
X

u2V�

c(u, h(u))�
X

(u,v)2Eh\Eg

w(u, v)

�

.

Since w

⇤ is a valid (�, �)-perturbation, 1
�w(u, v) 

w

⇤(u, v)  �w(u, v). Then since all the c’s and w’s
are nonnegative,

Q

0(g)�Q

0(h) �
X

u2V�

c(u, g(u)) +
X

(u,v)2Eg\Eh

w

⇤(u, v)

�
X

u2V�

c(u, h(u))�
X

(u,v)2Eh\Eg

w

⇤(u, v)

= Q

⇤(g)�Q

⇤(h).


