Constant Space Algorithm for the Stochastic Multi-armed Bandit Problem : Supplementary File

Appendix

A Proof of Lemma 5.3

Proof. Assume the contrary, i.e. at the end of round $r=\left\lceil\left(\frac{2}{\epsilon}+1\right) \frac{\log 2 / \Delta}{\log \log 2 / \Delta}+2\right\rceil$, the best arm and the second best arm are still not differentiated, meaning for some $i \neq *$, we still have

$$
\bar{\mu}_{*}^{(r)}-g_{r} / 2<\bar{\mu}_{i}^{(r)}+g_{r} / 2
$$

By Lemma 5.2, we have $g_{r} \leq \Delta / 2$. Thus, we have

$$
\mu_{*} \leq \bar{\mu}_{*}^{(r)}+g_{r} / 2 \leq \bar{\mu}_{i}^{(r)}+3 g_{r} / 2 \leq \bar{\mu}_{i}^{(r)}+3 \Delta / 4
$$

where for the second step we use Lemma 4.3. Similarly, we have $\mu_{i} \geq \bar{\mu}_{i}^{(r)}-\Delta / 4$. Then, we have

$$
\Delta \leq \mu_{*}-\mu_{i} \leq\left(\bar{\mu}_{i}^{(r)}+3 \Delta / 4\right)-\left(\bar{\mu}_{a^{(r)}}^{(r)}-\Delta / 4\right)<\Delta
$$

which results in a contradiction.

B Proof of Theorem 6.1

Proof. We present the algorithm in Algorithm 2. The algorithm repeatedly calls the procedure in Algorithm 1 with increasing time horizons $T_{0}, T_{1}, \ldots, T_{L}$, where $L \leq \log \log T$. By setting $T_{l}=T_{l-1}^{2}$, we have $T_{l}=T_{0}^{\overline{2^{l}}}$. Then, by Theorem 4.1, we can upper bound the regret as

$$
\begin{aligned}
\bar{\Psi}_{T} & \lesssim \sum_{l=0}^{L} \sum_{i=1}^{K} \frac{\log \left(\Delta_{i} / \Delta\right) \log T_{l}}{\Delta_{i}} \\
& =\sum_{l=0}^{L} \sum_{i=1}^{K} \frac{2^{l} \log \left(\Delta_{i} / \Delta\right) \log T_{0}}{\Delta_{i}} \\
& \lesssim \sum_{i=1}^{K} \frac{2^{L} \log \left(\Delta_{i} / \Delta\right) \log T_{0}}{\Delta_{i}} \\
& \lesssim \sum_{i=1}^{K} \frac{\log \left(\Delta_{i} / \Delta\right) \log T}{\Delta_{i}}
\end{aligned}
$$

which proves the theorem.

C Discussion of Conjecture on the Lower Bound for Stochastic Bandits

For any given round r, for some $\alpha>0$, define:

$$
R_{\mathrm{in}}^{(r)}=\sum_{i: \Delta_{i}<\alpha g_{r}} \frac{1}{g_{r}}, \quad R_{\mathrm{out}}^{(r)}=\sum_{i: \Delta_{i}>\alpha g_{r}} \frac{1}{\Delta_{i}}
$$

That correspond to two terms in

$$
\begin{align*}
& \sum_{r=1}^{r_{i}} \Delta_{i} \cdot \frac{2 \log (1 / \delta)}{g_{r}^{2}}+\sum_{r=r_{i}+1}^{r_{\text {max }}} \Delta_{i} \cdot \frac{2 \log (1 / \delta)}{\left(\Delta_{i}-g_{r-1}\right)^{2}} \\
& +\Delta_{i} \cdot r_{\max } \tag{13}
\end{align*}
$$

which is the total regret provided within Section 5 . Consider the following example where there is a group of high-value arms and a group of low-value arms, and the size of the low-value arms is larger than the high-value arms.
Example C.1. Assume $1>E \gg \epsilon$, and $s>1 / 2$. Let $\Delta_{i}=\epsilon$ for $i=1 \ldots s K$, and $\Delta_{i}=E$ for $i=$ $s K+1 \ldots K$.

In this example, we can find that as $g_{r}<E / 2$, $R_{\mathrm{in}}^{(r)}=s K / g_{r}$, and $R_{\text {out }}^{(r)}=(1-s) K / E$. Since $g_{r} \lesssim E$ and $s>1 / 2$, we can find that $R_{\text {out }}^{(r)} \lesssim R_{\text {in }}^{(r)}$. This means that Example C. 1 will not harm us if we use Algorithm 1 because we know that $\sum_{r} R_{\text {in }}^{(r)} \lesssim$ $\sum_{i} 1 / \Delta_{i}$.

Then, we consider another example where the size of the group of the high-value arms is larger than low-value arms. Particularly, we consider
Example C.2. Assume $1>E \gg \epsilon$, and $s<1 / 2$, where $s /(1-s)<\epsilon / E$. Let $\Delta_{i}=\epsilon$ for $i=1 \ldots s K$, and $\Delta_{i}=E$ for $i=s K+1 \ldots K$.

We can find that in this example, as long as $\epsilon \lesssim g_{r} \lesssim$ $E, R_{\text {in }}^{(r)} \lesssim s K / \epsilon \lesssim(1-s) / E=R_{\text {out }}^{(r)}$. This means that this is the hard case for Algorithm 1 because $R_{\text {out }}^{(r)}$ is dominating. However, we can deal with this example with the following update rule

$$
g_{r+1}=\frac{g_{r}}{2 \max \{1,(1-s) / s\}}
$$

which is roughly $g_{r+1}=\frac{g_{r}}{2 \max \left\{1, R_{\text {out }}^{(r)} / R_{\text {in }}^{(r)}\right\}}$. Note that if s is unknown, we can estimate it by simply counting the number of arms not ruled out. With the new update rule, we can find that as long as $g_{r} \lesssim E$, we have $g_{r+1} \lesssim E s /(1-s) \lesssim \epsilon$. This means that in the next round, we are able to identify the highvalue arms. Therefore, the number of rounds is a constant.

Finally, we consider the following case where we conjectured to be the hard case:
Example C.3. Let $\Delta_{i}=i / K$ for $i=1,2, \ldots, K$.
First note that in this example, $R_{\text {in }}^{(r)} \approx n$ and $R_{\text {out }}^{(r)} \bar{\sim}$ $n \log 1 / g_{r}$, where we can find that $R_{\text {in }}^{(r)} \lesssim R_{\text {out }}^{(r)}$ for any r. If we use the trick we are dealing with Example C.2, we can find that the corresponding update rule becomes $g_{r+1}=\frac{g_{r}}{2 \log 1 / g_{r}}$. Such rule is exactly (9). Therefore, we conjecture that the additional $\frac{\log \left(\Delta_{i} / \Delta\right)}{\log \log \left(\Delta_{i} / \Delta\right)}$ factor is not improvable.

