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Lemma 7. For the large margin classifier ˆ✓
S

, we have
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Proof. The risk is R(
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) = |ˆ✓
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|. Define event E : {9(x,�1) 2 S ^9(x,+1) 2 S}. P
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can be decomposed into
two components depending on if E happens as (40) shows.
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Now we compute P
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. Let n
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Take the derivative of F gives
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Note that Cn
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Now we compute the two integration in (46)
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For the second integration, note that it can decomposed as
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Since the two sub-integration’s are identical because the two sub regions are symmetric. We only show the computation for
the first.
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Thus we have
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Combine (47) and (50), we can compute (46) as follows.
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Therefore we have
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Now combine (41) and (52) we have
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2

1� (

1

2

)

n�1 if 1

2

< ✏ < 1

1 if ✏ = 1.

(53)

which is equivalent to (29).

Lemma 9. Let n = 4m, where m is an integer. Let S be an n-item iid sample drawn from pZ. 8✏ > 0, 8� 2 (0, 1),

9M(✏, �) = max{ 3e
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✏
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Proof. Let S
1
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2
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1

: {|S
1
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| � m}. Then we have
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i=0

C4m

i

(

1

2

)

4m. (54)

where we rule out all possible sequences of 4m points which lead to |S
1

| < m or |S
2

| < m. By standard result [37] (Lemma
A.5)
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where the 2nd-to-last inequality follows from the fact that e � (1 +

1

m�1

)

m�1. Note that by definition m � 3e
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, thus ( e
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. Since |S
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| = 4m, then either |S
1
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2

| � 2m. Without loss
of generality we assume |S

1

| � 2m. We then divide the interval [0, 1] equally into N = bm2

(ln

3
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of each segment is 1

N
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1

m

2 ) as Figure 4 shows. Note that m � 3e
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3
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> 3e ln 3

�

, thus N � b3emc > 2em > m.

0

1 2 3 N

-1 1

Figure 4: segments

Let N
o

be the number of segments that are occupied by the points in S
1

. Note that N
o

is a random variable. Let E
2

be the event that N
o

� m. Now we lower bound P [E
2

]. This is a variant of the coupon collector’s problem: there are
N distinct coupons, and in |S

1

| trials we want to collect at least m distinct coupons. Note that P [E
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2

] =

1 �
P
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i=1
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o

= i]. Let T
i
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1
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1
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i
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1

such that S
1
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upper bounded by i|S1|. Thus T

i
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i

i|S1| and we have
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Thus P [E
2

] � 1� �

3

. Applying union bound, P [E
1
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2
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3

.

Let E
3

be the following event: there exist a point x
2
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2

such that �x
2
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1
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1
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3
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1
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2
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1

� (�x
2

)|  1

N
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1
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1
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2

happen, we have |S
2
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N

o

� m. Since N = bm2
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2
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N
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We now bound 1
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We now have |x
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|s� + s

+

|  |x
1

+ x
2
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