Supplemental Material

Lemma 7. For the large margin classifier $\hat{\theta}_{S}$, we have

$$
\mathbf{P}\left[R\left(\hat{\theta}_{S}\right)>\epsilon\right]= \begin{cases}(1-\epsilon)^{n}+(\epsilon)^{n} & 0<\epsilon \leq \frac{1}{2} \tag{29}\\ \left(\frac{1}{2}\right)^{n-1} & \frac{1}{2}<\epsilon<1 \\ 0 & \epsilon=1\end{cases}
$$

Proof. The risk is $R\left(\hat{\theta}_{S}\right)=\left|\hat{\theta}_{S}\right|$. Define event $E:\{\exists(x,-1) \in S \wedge \exists(x,+1) \in S\} . \mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon\right]$ can be decomposed into two components depending on if E happens as (40) shows.

$$
\begin{equation*}
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon\right]=\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]+\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E^{c}\right] . \tag{40}
\end{equation*}
$$

$\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E^{c}\right]=\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon \mid E^{c}\right] \mathbf{P}\left[E^{c}\right]$. Note that $\mathbf{P}\left[E^{c}\right]=\left(\frac{1}{2}\right)^{n-1}, \mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon \mid E^{c}\right]$ is 0 if $\epsilon<1$ and 1 if $\epsilon=1$ because $\hat{\theta}_{S}= \pm 1$ always holds given E^{c} happens. Thus,

$$
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E^{c}\right]= \begin{cases}0 & \text { if } \epsilon<1 \tag{41}\\ \left(\frac{1}{2}\right)^{n-1} & \text { if } \epsilon=1 .\end{cases}
$$

Now we compute $\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]$. Let n_{+}be the number of positive points in S. Define $E_{i}:\left\{n_{+}=i\right\}$. Note $E_{i} \cap E_{j}=\emptyset$ if $i \neq j$ and $E=\cup_{i=1}^{n-1} E_{i}$, thus

$$
\begin{equation*}
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]=\sum_{i=1}^{n-1} \mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E_{i}\right]=\sum_{i=1}^{n-1} \mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon \mid E_{i}\right] \mathbf{P}\left[E_{i}\right] . \tag{42}
\end{equation*}
$$

$\mathbf{P}\left[E_{i}\right]=C_{i}^{n}\left(\frac{1}{2}\right)^{n}$. Note that $\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon \mid E_{i}\right]=\mathbf{P}\left[\left.\left|\frac{x_{-}+x_{+}}{2}\right| \leq \epsilon \right\rvert\, E_{i}\right]$. To compute it, we first compute $F_{-x_{-}, x_{+}}\left(\epsilon_{1}, \epsilon_{2} \mid\right.$ $\left.E_{i}\right)=\mathbf{P}\left[-x_{-} \leq \epsilon_{1}, x_{+} \leq \epsilon_{2} \mid E_{i}\right]$. Given E_{i} happens, $\mathbf{P}\left[-x_{-} \leq \epsilon_{1} \mid E_{i}\right]=1-\left(1-\epsilon_{1}\right)^{n-i}$ and $\mathbf{P}\left[x_{+} \leq \epsilon_{2} \mid E_{i}\right]=$ $1-\left(1-\epsilon_{2}\right)^{i}$. Also since $-x_{-} \leq \epsilon_{1}$ and $x_{+} \leq \epsilon_{2}$ are independent given E_{i} happens, thus

$$
\begin{equation*}
F_{-x_{-}, x_{+}}\left(\epsilon_{1}, \epsilon_{2} \mid E_{i}\right)=\mathbf{P}\left[-x_{-} \leq \epsilon_{1}, x_{+} \leq \epsilon_{2} \mid E_{i}\right]=\left[1-\left(1-\epsilon_{1}\right)^{n-i}\right]\left[1-\left(1-\epsilon_{2}\right)^{i}\right] . \tag{43}
\end{equation*}
$$

Take the derivative of F gives

$$
\begin{equation*}
f_{-x_{-}, x_{+}}\left(\epsilon_{1}, \epsilon_{2} \mid E_{i}\right)=i(n-i)\left(1-\epsilon_{1}\right)^{n-i-1}\left(1-\epsilon_{2}\right)^{i-1} . \tag{44}
\end{equation*}
$$

Note that $\left|\hat{\theta}_{S}\right| \leq \epsilon \Leftrightarrow\left|-x_{1}-x_{2}\right| \leq 2 \epsilon$. Therefore, we integrate $f_{-x_{-}, x_{+}}\left(\epsilon_{1}, \epsilon_{2} \mid E_{i}\right)$ over the region $\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon$ to obtain $\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon \mid E_{i}\right]$. However, note that $0 \leq \epsilon_{1}, \epsilon_{2} \leq 1$, thus for $\epsilon>\frac{1}{2}$, the region $\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon$ becomes the whole $[0,1] \times[0,1]$ and the integration is 1 . Then (42) becomes $\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]=\sum_{i=1}^{n-1} \mathbf{P}\left[E_{i}\right]=\mathbf{P}[E]=1-\left(\frac{1}{2}\right)^{n-1}$. For $\epsilon \leq \frac{1}{2}$, by (42) we have

$$
\begin{align*}
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right] & =\sum_{i=1}^{n-1} \mathbf{P}\left[E_{i}\right] \int_{\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon} i(n-i)\left(1-\epsilon_{1}\right)^{n-i-1}\left(1-\epsilon_{2}\right)^{i-1} d \epsilon_{2} d \epsilon_{1} \\
& =\sum_{i=1}^{n-1} C_{i}^{n}\left(\frac{1}{2}\right)^{n} \int_{\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon} i(n-i)\left(1-\epsilon_{1}\right)^{n-i-1}\left(1-\epsilon_{2}\right)^{i-1} d \epsilon_{2} d \epsilon_{1} \tag{45}\\
& =\left(\frac{1}{2}\right)^{n} \int_{\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon} \sum_{i=1}^{n-1} C_{i}^{n} i(n-i)\left(1-\epsilon_{1}\right)^{n-i-1}\left(1-\epsilon_{2}\right)^{i-1} d \epsilon_{2} d \epsilon_{1} .
\end{align*}
$$

Note that $C_{i}^{n} i(n-i)=n(n-1) C_{i-1}^{n-2}$, (45) becomes

$$
\begin{align*}
& \mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]=n(n-1)\left(\frac{1}{2}\right)^{n} \int_{\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon} \sum_{i=1}^{n-1} C_{i-1}^{n-2}\left(1-\epsilon_{1}\right)^{n-i-1}\left(1-\epsilon_{2}\right)^{i-1} d \epsilon_{2} d \epsilon_{1} \\
& =n(n-1)\left(\frac{1}{2}\right)^{n} \int_{\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon} \sum_{i=0}^{n-2} C_{i}^{n-2}\left(1-\epsilon_{1}\right)^{n-2-i}\left(1-\epsilon_{2}\right)^{i} d \epsilon_{2} d \epsilon_{1} \tag{46}\\
& =n(n-1)\left(\frac{1}{2}\right)^{n} \int_{\left|\epsilon_{1}-\epsilon_{2}\right| \leq 2 \epsilon}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1} \\
& =n(n-1)\left(\frac{1}{2}\right)^{n}\left[\int_{[0,1] \times[0,1]}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}-\int_{\left|\epsilon_{1}-\epsilon_{2}\right|>2 \epsilon}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}\right] .
\end{align*}
$$

Now we compute the two integration in (46)

$$
\begin{align*}
& \int_{[0,1] \times[0,1]}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}=\int_{0}^{1}\left[-\left.\frac{1}{n-1}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-1}\right|_{0} ^{1}\right] d \epsilon_{1} \tag{47}\\
& =\int_{0}^{1} \frac{1}{n-1}\left[\left(2-\epsilon_{1}\right)^{n-1}-\left(1-\epsilon_{1}\right)^{n-1}\right] d \epsilon_{1}=\left.\left[-\frac{1}{n(n-1)}(2-\epsilon)^{n}+\frac{1}{n(n-1)}\left(1-\epsilon_{1}\right)^{n}\right]\right|_{0} ^{1}=\frac{2^{n}-2}{n(n-1)} .
\end{align*}
$$

For the second integration, note that it can decomposed as

$$
\begin{equation*}
\int_{\left|\epsilon_{1}-\epsilon_{2}\right|>2 \epsilon}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}=\int_{0}^{1-2 \epsilon} \int_{\epsilon_{1}+2 \epsilon}^{1}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}+\int_{2 \epsilon}^{1} \int_{0}^{\epsilon_{1}-2 \epsilon}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1} . \tag{48}
\end{equation*}
$$

Since the two sub-integration's are identical because the two sub regions are symmetric. We only show the computation for the first.

$$
\begin{align*}
& \int_{0}^{1-2 \epsilon} \int_{\epsilon_{1}+2 \epsilon}^{1}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}=\int_{0}^{1-2 \epsilon}\left[-\left.\frac{1}{n-1}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-1}\right|_{\epsilon_{1}+2 \epsilon} ^{1}\right] d \epsilon_{1} \\
& =\int_{0}^{1-2 \epsilon}\left[-\frac{1}{n-1}\left(1-\epsilon_{1}\right)^{n-1}+\frac{2^{n-1}}{n-1}\left(1-\epsilon_{1}-\epsilon\right)^{n-1}\right] d \epsilon_{1} \tag{49}\\
& =\left.\left[\frac{1}{n(n-1)}\left(1-\epsilon_{1}\right)^{n}-\frac{2^{n-1}}{n(n-1)}\left(1-\epsilon_{1}-\epsilon\right)^{n}\right]\right|_{0} ^{1-2 \epsilon} \\
& =\frac{2^{n-1}}{n(n-1)}\left[\epsilon^{n}+(1-\epsilon)^{n}\right]-\frac{1}{n(n-1)}
\end{align*}
$$

Thus we have

$$
\begin{align*}
& \int_{\left|\epsilon_{1}-\epsilon_{2}\right|>2 \epsilon}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1}=2 \int_{0}^{1-2 \epsilon} \int_{\epsilon_{1}+2 \epsilon}^{1}\left(2-\epsilon_{1}-\epsilon_{2}\right)^{n-2} d \epsilon_{2} d \epsilon_{1} \tag{50}\\
& =\frac{2^{n}}{n(n-1)}\left[\epsilon^{n}+(1-\epsilon)^{n}\right]-\frac{2}{n(n-1)}
\end{align*}
$$

Combine (47) and (50), we can compute (46) as follows.

$$
\begin{align*}
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]= & =n(n-1)\left(\frac{1}{2}\right)^{n}\left[\frac{2^{n}-2}{n(n-1)}-\frac{2^{n}}{n(n-1)}\left(\epsilon^{n}+(1-\epsilon)^{n}\right)+\frac{2}{n(n-1)}\right] \\
& =\frac{2^{n}-2}{2^{n}}-\epsilon^{n}-(1-\epsilon)^{n}+\left(\frac{1}{2}\right)^{n-1} \tag{51}\\
& =1-\epsilon^{n}-(1-\epsilon)^{n}
\end{align*}
$$

Therefore we have

$$
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon, E\right]= \begin{cases}1-\epsilon^{n}-(1-\epsilon)^{n} & \text { if } \epsilon \leq \frac{1}{2} \tag{52}\\ 1-\left(\frac{1}{2}\right)^{n-1} & \text { if } \frac{1}{2}<\epsilon \leq 1\end{cases}
$$

Now combine (41) and (52) we have

$$
\mathbf{P}\left[\left|\hat{\theta}_{S}\right| \leq \epsilon\right]= \begin{cases}1-\epsilon^{n}-(1-\epsilon)^{n} & \text { if } \epsilon \leq \frac{1}{2} \tag{53}\\ 1-\left(\frac{1}{2}\right)^{n-1} & \text { if } \frac{1}{2}<\epsilon<1 \\ 1 & \text { if } \epsilon=1\end{cases}
$$

which is equivalent to (29).
Lemma 9. Let $n=4 m$, where m is an integer. Let S be an n-item iid sample drawn from $p_{\mathbb{Z}} . \forall \epsilon>0, \forall \delta \in(0,1)$, $\exists \mathbb{M}(\epsilon, \delta)=\max \left\{\frac{3 e}{\ln 4-1} \ln \frac{3}{\delta},\left(\frac{1}{\epsilon} \ln \frac{3}{\delta}\right)^{\frac{1}{2}}\right\}$ such that $\forall m \geq \mathbb{M}(\epsilon, \delta), \mathbf{P}\left[R\left(\hat{\theta}_{B_{m s}(S)}\right) \leq \epsilon\right]>1-\delta$.

Proof. Let $S_{1}=\{x \mid(x, 1) \in S\}$ and $S_{2}=\{x \mid(x,-1) \in S\}$ respectively. Then we have $\left|S_{1}\right|+\left|S_{2}\right|=4 m$. Define event $E_{1}:\left\{\left|S_{1}\right| \geq m \wedge\left|S_{2}\right| \geq m\right\}$. Then we have

$$
\begin{equation*}
\mathbf{P}\left[E_{1}\right]=1-2 \sum_{i=0}^{m-1} C_{i}^{4 m}\left(\frac{1}{2}\right)^{4 m} \tag{54}
\end{equation*}
$$

where we rule out all possible sequences of $4 m$ points which lead to $\left|S_{1}\right|<m$ or $\left|S_{2}\right|<m$. By standard result [37] (Lemma A.5) $\sum_{k=0}^{d} C_{k}^{m} \leq\left(\frac{e m}{d}\right)^{d}$, we have

$$
\begin{equation*}
\mathbf{P}\left[E_{1}\right] \geq 1-2\left(\frac{4 e m}{m-1}\right)^{m-1}\left(\frac{1}{2}\right)^{4 m}=1-\frac{1}{2} \frac{e^{m-1}}{4^{m}}\left(\frac{m}{m-1}\right)^{m-1} \geq 1-\frac{1}{2}\left(\frac{e}{4}\right)^{m} \geq 1-\left(\frac{e}{4}\right)^{m} \tag{55}
\end{equation*}
$$

where the 2nd-to-last inequality follows from the fact that $e \geq\left(1+\frac{1}{m-1}\right)^{m-1}$. Note that by definition $m \geq \frac{3 e}{\ln 4-1} \ln \frac{3}{\delta}>$ $\frac{1}{\ln 4-1} \ln \frac{3}{\delta}$, thus $\left(\frac{e}{4}\right)^{m}<\frac{\delta}{3}$ and $\mathbf{P}\left[E_{1}\right]>1-\frac{\delta}{3}$. Since $\left|S_{1}\right|+\left|S_{2}\right|=4 m$, then either $\left|S_{1}\right| \geq 2 m$ or $\left|S_{2}\right| \geq 2 m$. Without loss of generality we assume $\left|S_{1}\right| \geq 2 m$. We then divide the interval [0, 1] equally into $N=\left\lfloor m^{2}\left(\ln \frac{3}{\delta}\right)^{-1}\right\rfloor$ segments. The length of each segment is $\frac{1}{N}=O\left(\frac{1}{m^{2}}\right)$ as Figure 4 shows. Note that $m \geq \frac{3 e}{\ln 4-1} \ln \frac{3}{\delta}>3 e \ln \frac{3}{\delta}$, thus $N \geq\lfloor 3 e m\rfloor>2 e m>m$.

Figure 4: segments

Let N_{o} be the number of segments that are occupied by the points in S_{1}. Note that N_{o} is a random variable. Let E_{2} be the event that $N_{o} \geq m$. Now we lower bound $\mathbf{P}\left[E_{2}\right]$. This is a variant of the coupon collector's problem: there are N distinct coupons, and in $\left|S_{1}\right|$ trials we want to collect at least m distinct coupons. Note that $\mathbf{P}\left[E_{2}\right]=1-\mathbf{P}\left[E_{2}^{c}\right]=$ $1-\sum_{i=1}^{m-1} \mathbf{P}\left[N_{o}=i\right]$. Let T_{i} be the number of all possible coupon sequences of S_{1} such that S_{1} occupies exactly i segments (i.e. distinct coupons). We have C_{i}^{n} ways of choosing i segments among a total of N. Also, for each choice of i segments, the number of all possible coupon sequences of S_{1} such that S_{1} fully occupies those i segments without empty is upper bounded by $i^{\left|S_{1}\right|}$. Thus $T_{i} \leq C_{i}^{n} i^{\left|S_{1}\right|}$ and we have

$$
\begin{equation*}
\mathbf{P}\left[N_{o}=i\right]=\frac{T_{i}}{N^{\left|S_{1}\right|}} \leq C_{i}^{n}\left(\frac{i}{N}\right)^{\left|S_{1}\right|} \tag{56}
\end{equation*}
$$

Since $m \geq \frac{3 e}{\ln 4-1} \ln \frac{3}{\delta}>\log _{2} \frac{3}{\delta},\left|S_{1}\right| \geq 2 m$, and $N>2 e m$, thus

$$
\begin{align*}
\mathbf{P}\left[E_{2}^{c}\right] & =\sum_{i=1}^{m-1} \mathbf{P}\left[N_{o}=i\right] \leq \sum_{i=1}^{m-1} C_{i}^{n}\left(\frac{i}{N}\right)^{\left|S_{1}\right|} \leq \sum_{i=1}^{m-1} C_{i}^{n}\left(\frac{m}{N}\right)^{2 m} \tag{57}\\
& <\sum_{i=0}^{m} C_{i}^{n}\left(\frac{m}{N}\right)^{2 m} \leq\left(\frac{e N}{m}\right)^{m}\left(\frac{m}{N}\right)^{2 m}=\left(\frac{e m}{N}\right)^{m}<\left(\frac{e m}{2 e m}\right)^{m}=\left(\frac{1}{2}\right)^{m}<\frac{\delta}{3}
\end{align*}
$$

Thus $\mathbf{P}\left[E_{2}\right] \geq 1-\frac{\delta}{3}$. Applying union bound, $\mathbf{P}\left[E_{1}, E_{2}\right] \geq 1-\frac{2 \delta}{3}$.
Let E_{3} be the following event: there exist a point x_{2} in S_{2} such that $-x_{2}$, the flipped point, lies in the same segment as some point x_{1} in S_{1}. If E_{3} happens, then $\left|x_{1}+x_{2}\right|=\left|x_{1}-\left(-x_{2}\right)\right| \leq \frac{1}{N}$. Note that $\mathbf{P}\left[E_{3}\right] \geq \mathbf{P}\left[E_{1}, E_{2}, E_{3}\right]=$ $\mathbf{P}\left[E_{3} \mid E_{1}, E_{2}\right] \mathbf{P}\left[E_{1}, E_{2}\right]$. Now we lower bound $\mathbf{P}\left[E_{3} \mid E_{1}, E_{2}\right]$. Given E_{1} and E_{2} happen, we have $\left|S_{2}\right| \geq m$ and $N_{o} \geq m$. Since $N=\left\lfloor m^{2}\left(\ln \frac{3}{\delta}\right)^{-1}\right\rfloor \leq m^{2}\left(\ln \frac{3}{\delta}\right)^{-1}$, we have

$$
\begin{equation*}
\mathbf{P}\left[E_{3}^{c} \mid E_{1}, E_{2}\right]=\left(1-\frac{N_{o}}{N}\right)^{\left|S_{2}\right|} \leq\left(1-\frac{m}{N}\right)^{\left|S_{2}\right|} \leq\left(1-\frac{m}{N}\right)^{m} \leq e^{-\frac{m^{2}}{N}} \leq \frac{\delta}{3} \tag{58}
\end{equation*}
$$

Thus, $\mathbf{P}\left[E_{3} \mid E_{1}, E_{2}\right]=1-\mathbf{P}\left[E_{3}^{c} \mid E_{1}, E_{2}\right]>1-\frac{\delta}{3} . \mathbf{P}\left[E_{3}\right] \geq \mathbf{P}\left[E_{1}, E_{2}, E_{3}\right]=\mathbf{P}\left[E_{3} \mid E_{1}, E_{2}\right] \mathbf{P}\left[E_{1}, E_{2}\right] \geq$ $\left(1-\frac{\delta}{3}\right)\left(1-\frac{2 \delta}{3}\right)>1-\delta$. Thus with probability at least $1-\delta$, there exist $x_{2} \in S_{2}$ and $x_{1} \in S_{1}$ such that $\left|x_{1}+x_{2}\right| \leq \frac{1}{N}$. We now bound $\frac{1}{N}$. $N=\left\lfloor m^{2}\left(\ln \frac{3}{\delta}\right)^{-1}\right\rfloor \geq \frac{1}{2} m^{2}\left(\ln \frac{3}{\delta}\right)^{-1}$. Therefore $\frac{1}{N} \leq \frac{2}{m^{2}} \ln \frac{3}{\delta}$. Recall by definition $m \geq\left(\frac{1}{\epsilon} \ln \frac{3}{\delta}\right)^{\frac{1}{2}}$, thus $\frac{1}{N} \leq 2 \epsilon$.
We now have $\left|x_{1}+x_{2}\right| \leq 2 \epsilon$. Finally, since $\left\{s_{-}, s_{+}\right\}$selected by teacher $B_{m s}$ is the most symmetric pair, it must satisfy $\left|s_{-}+s_{+}\right| \leq\left|x_{1}+x_{2}\right| \leq 2 \epsilon$. Putting together, with probability at least $1-\delta, R\left(\hat{\theta}_{B_{m s}(S)}\right)=\frac{1}{2}\left|s_{-}+s_{+}\right| \leq \epsilon$.

