Yuzhe Ma, Robert Nowak, Philippe Rigollet”, Xuezhou Zhang, Xiaojin Zhu

Supplemental Material

Lemma 7. For the large margin classifier 05, we have

(I—e)"+(e)" 0<€§%
P [R(és) > e] = (%)n_l % e (29)
0 e=1.

Proof. Therisk is R(Ag) = |Ag|. Define event E : {3(x, —1) € S A3(z, +1) € S}. P [\ég\ < e} can be decomposed into
two components depending on if E happens as (40) shows.

P {|é5| < e} -P {|é5| <e E] +P {|é5| < e,EC} . (40)

P {|és| < eE} P [|é5\ <el E} P [F). Note that P [E¢] = (4)"~1, P [|é5| <el E} isOife<landlife=1
because fg = +1 always holds given E° happens. Thus,
0 ife<1

P ||0s| <e E°| = 41
[‘ sl < ] (%)n—l ife=1. “D

Now we compute P [|és\ <, E} Let ny be the number of positive points in S. Define E; : {ny =i}. Note E; N E; = ()
ifi # j and E = U]} E;, thus

P [10s] < e, E] = an [165] < e Ei] = ZP 105 < e | B P [E]. 42)
=1 i=1

P [E;] = C()™. Note that P [\és\ <e| Ez} =P [\%| <e] El}. To compute it, we first compute F__,_ . (€1, €2 |

E)=P|-2_<e,v, <e | E]. Given E; happens, P [~z_ < ¢ | E]=1— (1 —¢)" Pand P [z, < &3 | Ej] =
1 — (1 —e3). Alsosince —z_ < ¢; and 7 < ey are independent given E; happens, thus

F oy o (er,e2|E)=Pl-a_<e,zy<el|E]=[1-1-e)""1-(1-e)] (43)
Take the derivative of F' gives
fow w662 | B) =i(n—i)(1—e)" 11— e) (44)

Note that |é5| < € & | —x1 — x2| < 2e. Therefore, we integrate f_,_ ., (€1, €2 | E;) over the region |e; — €] < 2e¢ to
obtain P [\és\ <e| Ei} However, note that 0 < €1, €5 < 1, thus for € > % the region |e; — €2| < 2¢ becomes the whole
[0,1] x [0, 1] and the integration is 1. Then (42) becomes P [|é5| <€, E} =S 'P[E|=P[E]=1- (2)"=1. For
€ < %, by (42) we have

n—1
P [|és| <e, E} =y P [Ei]/ i(n—i)(1 —e)" 11 — e2) " Ldeade;
i—1 ler—e2|<2e
n—1 1 ) .
- Z 0;1(5)”/ i(n—3)(1 —e)" 1 — e3)" " deade; (45)
p— |e1—e2]|<2e
n—1

1 E : : n—i— i—
= (5)”/ CZTL’L(TL—’L)(].—El) 1(1—62) 1d62d61.
ler—e2]<2e ;4
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Note that C7i(n — i) = n(n — 1)C7"2, (45) becomes

n—1
2 1 n n—2 n—i—1 -1
< = — — — —
P [16s] < . B] = ntn—1)(3) /| i ; 1:01 21— ) (1 — €)' deades
n—2

1 - —2—i i
:n(n—l)(f)"/ E O 2(1 — )" 271 — e3) ' deadey

2 ler—ea|<2e S0 (46)

1
=n(n— 1)(2)”/| - (2 — €1 — €2)" *deade,

1
=n(n— 1)(7)”[/ (2 — €1 — €2)" 2deade; — / (2 — €1 — €3)" 2deadey].
27 Jo,1x0,1] lex—ea|>2¢

Now we compute the two integration in (46)

1
/ (2 — €1 — €2)" *deade; / 2 — 6 — )" Hldey
[0,1]x[0,1] g T

X (47)
1 1 1 2" —2
= 2— )" (1—e)" Hdey = [-———=2— )"+ ———(1— )" [§= ——~.
[l —art =) e = o (2 - 9+ s ()] e s
0
For the second integration, note that it can decomposed as
1—2¢ 1 1 e1—2¢
/ (2 — €1 — )" 2deyde; = / / (2 — €1 — €2)"*deade; + / / (2 — €1 — €)" 2deade;.  (48)
|e1—ea|>2€
0 €1+2¢ 2e€ 0

Since the two sub-integration’s are identical because the two sub regions are symmetric. We only show the computation for
the first.

1-2¢ 1 1—2e¢ 1
/ / (2 -1 — )" Pdeade; = / 72— a—e)" pedda
0 €142 0
1—2¢ 1 2"_1
— _ 1— n—1 1— _ A\n—1
/[ n—l( €1) +n—1( €1 — €)' de (49)
0
1 2n—!
= [— (1 — n__ 2 @ (1- _\n71 |[1—2¢
[n(nfl)( 61) TL(?’L*].)( €1 6) } |0
on—l1 1
= —[e" 1-" — —.
n(n—1) [+ =97 n(n —1)
Thus we have
1-2¢ 1
/ (2 — €1 — 62)n_2d62d61 =2 / / (2 — €1 — 62)n_2d€2d€1
le1—ea|>2€ 0 €142 (50)
2m 2
= —[e" 1-" — —.
n(n—l)[6 -9 n(n —1)
Combine (47) and (50), we can compute (46) as follows.
1 2" —2 2m 2
Os| <e F| == —H(=)" " 1—¢e)"
[| sl<e ] n(n )(2) [n(n—l) n(n—l)(6 +(1-¢) )+n(n—1)}
72’“727 n _ _\n lnfl (51)
= e (- 9"+ ()
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Therefore we have

l—€"—(1—¢)" ife<i
P |0s| < e B| = . 12 (52)
Now combine (41) and (52) we have
l—€e"—(1—e)" ife<i
A 1
P [ids| <[ =<1~ (5 ifl<e<l (53)
1 ife =
which is equivalent to (29). O]

Lemma 9. Let n = 4m, where m is an integer. Let S be an n-item iid sample drawn from pgz. Ve > 0,Y6 € (0,1),
IMi(e, ) = max{ > In 2, (L 1n 2)2} such that Vm > M(e, 6), P [R(éBm(S)) <el>1-4

Proof. Let S; = {z | (z,1) € S} and Sz = {z | (z,—1) € S} respectively. Then we have |S1| + |S2| = 4m. Define
event £y : {|S1| > m A |S2| > m}. Then we have
m—1 1
477 477
P[El]_l—QZOC (P (54)

where we rule out all possible sequences of 4m points which lead to |S1| < m or |Sa| < m. By standard result [37] (Lemma
ALS) Zk 0 O < (<)4, we have

dem 1 le™ ™t m
P[E]>1—-2(——)"! =1-= —_—

(1] 21— 2( - ymt (i .
where the 2nd-to-last inequality follows from the fact that e > (1 + —5)™'. Note that by definition m > =245 In 3 >
i In 2, thus (£)™ % and P [E4] > 1—%. Since | S1|+]S2| = 4m, then either |S1| > 2m or |S3| > 2m. Without loss

of generality we assume |S1| > 2m. We then divide the interval [0, 1] equally into N = Lm (In 2)~!| segments. The length
of each segment is 1 = O(-17) as Figure 4 shows. Note that m > —2¢—1In 2 > 3eln 2, thus N > [3em| > 2em > m.

1. e, €\ m
S =1-() (55)

2= 5(5)

12 3 N

L I S B | |

-1 o 1
O(52)

Figure 4: segments

Let N, be the number of segments that are occupied by the points in S;. Note that N, is a random variable. Let 5
be the event that N, > m. Now we lower bound P [E>]. This is a variant of the coupon collector’s problem: there are
N distinct coupons, and in |.S;| trials we want to collect at least m distinct coupons. Note that P [Es] =1 — P [ES] =
1- Z:’:ll P [N, =i]. Let T; be the number of all possible coupon sequences of S; such that S; occupies exactly 4
segments (i.e. distinct coupons). We have C}’ ways of choosing ¢ segments among a total of V. Also, for each choice of ¢
segments, the number of all possible coupon sequences of .Sy such that .Sy fully occupies those i segments without empty is
upper bounded by i!51l. Thus T; < C7%il%tl and we have

PN, =i] = o < O (1) (56)
Since m > - ln > log, 2 5, 51| > 2m, and N > 2em, thus
m—1
P [E5] = ZC” |51‘<ZC”
i;l &0
S BALOEE %)m(ﬁ)% = (T < (e (< )
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Thus P [E»] > 1 — 3. Applying union bound, P [Ey, Eo] > 1 — 2.

Let F3 be the following event: there exist a point x5 in Sy such that —zo, the flipped point, lies in the same segment
as some point 21 in S;. If E3 happens, then |z + 22| = |21 — (—x2)| < ﬁ Note that P [E3] > P [Fy, Es, E5] =
P [Es | Ev, Es) P [E1, E3]. Now we lower bound P [E3 | Ey, Es]. Given Ey and Es happen, we have |Sz| > m and
N, >m. Since N = |[m?(In 2)71] < m?(In 2)~!, we have

M

m m

N, m , 1)
o Z0IS2| < Y < eT N <
) < (1 N) <e <3 (58)

c — (1 — 2282 « (1 =
P[ES | By, Es] = (1 N) < N

Thus, P [E3 | El,EQ] =1-P [Eg | El,Eg] > 11— g P [Eg] > P [El,Eg,Eg,] =P [E3 | El,EQ]P [El,EQ] >
(1- g)( — %) > 1 — 4. Thus with probability at least 1 — ¢, there exist x5 € Sy and z; € S; such that |z1 + x| < %
We now bound . N = |[m?(In2)~'| > 4m?(In 2)~'. Therefore &+ < -2 In 2. Recall by definition m > (% ln%)%,
thus % < 2e.

We now have |z1 + x2| < 2e. Finally, since {s_, sy } selected by teacher B, is the most symmetric pair, it must satisfy

[s— + s4| < |z1 + @2| < 2e. Putting together, with probability at least 1 — 6, R(&ABM(S)) =1ls_ +s4<e O



