
A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians

Aleksander Mądry∗ Slobodan Mitrović∗ Ludwig Schmidt∗
MIT

madry@mit.edu
EPFL

slobodan.mitrovic@epfl.ch
MIT

ludwigs@mit.edu

Abstract

Sparsity-based methods are widely used in ma-
chine learning, statistics, and signal processing.
There is now a rich class of structured sparsity
approaches that expand the modeling power of
the sparsity paradigm and incorporate constraints
such as group sparsity, graph sparsity, or hier-
archical sparsity. While these sparsity models
offer improved sample complexity and better in-
terpretability, the improvements come at a com-
putational cost: it is often challenging to optimize
over the (non-convex) constraint sets that capture
various sparsity structures. In this paper, we make
progress in this direction in the context of sepa-
rated sparsity – a fundamental sparsity notion that
captures exclusion constraints in linearly ordered
data such as time series. While prior algorithms
for computing a projection onto this constraint set
required quadratic time, we provide a perturbed
Lagrangian relaxation approach that computes
provably exact projection in only nearly-linear
time. Although the sparsity constraint is non-
convex, our perturbed Lagrangian approach is
still guaranteed to find a globally optimal solution.
In experiments, our new algorithms offer a 10×
speed-up already on moderately-size inputs.

1 Introduction

Over the past two decades, sparsity has become a widely
used tool in several fields including signal processing, statis-
tics, and machine learning. In many cases, sparsity is the
key concept that enables us to capture important structure
present in real-world data while making the resulting prob-
lem computationally tractable and suitable for mathemati-
∗Authors ordered alphabetically.

Proceedings of the 21st International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2018, Lanzarote, Spain. PMLR:
Volume 84. Copyright 2018 by the author(s).

cal analysis. Among the many applications of sparsity are
sparse linear regression, compressed sensing, sparse PCA,
and dictionary learning.

The first wave of sparsity-based techniques focused on the
standard notion of sparsity that only constrains the number
of non-zeros. Over time, it became apparent that extending
the notion of sparsity to encompass more complex struc-
tures present in real-world data can offer significant benefits.
Specifically, utilizing such additional structure often im-
proves the statistical efficiency in estimation problems and
the interpretability of the final result. There is now a large
body of work on structured sparsity that has introduced pop-
ular models such as group sparsity and hierarchical sparsity
[1, 2, 3, 4, 5, 6, 7, 8, 9]. These statistical improvements,
however, come at a computational cost: the resulting opti-
mization problems are often much harder to solve. The key
reason is that the combinatorial sparsity structures give rise
to non-convex constraints. Consequently, many of the result-
ing algorithms have significantly worse running time than
their “standard sparsity” counterparts. This trade-off raises
an important question: can we design algorithms for struc-
tured sparsity that match the time complexity of commonly
used algorithms for standard sparsity?

In this paper, we address this question in the context of the
separated sparsity model, a popular sparsity model for data
with a known minimum distance between large coefficients
[10, 11, 12, 13, 14]. In the one-dimensional case, such as
time series data, neuronal spike trains are a natural exam-
ple. Here, a minimum refractory period ensures separation
between consecutive spikes. In two dimensions, separation
constraints arise in the context of astronomical images or
super-resolution applications [12, 15].

We introduce new algorithms for separated sparsity that run
in nearly-linear time. This significantly improves over prior
work that required at least quadratic time, which is quickly
prohibitive for large data sets. An important consequence
of our fast running time is that it enables methods that uti-
lize separated sparsity yet are essentially as fast as their
counterparts based on standard sparsity only. For instance,
when we instantiate our algorithm in compressive sensing,
the running time of our method matches that of common
methods such as IHT or CoSaMP.

mailto:madry@mit.edu
mailto:slobodan.mitrovic@epfl.ch
mailto:ludwigs@mit.edu

A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians

Our algorithms stem from a primal-dual linear programming
(LP) perspective on the problem. Our theoretical findings
reveal a rich structure behind the separated sparsity model,
which we utilize to obtain efficient methods. Interestingly,
our final algorithm has a very simple form that can be inter-
preted as a Lagrangian relaxation of the sparsity constraint.
In spite of the non-convexity of the constraint, our algorithm
is still guaranteed to find the globally optimal solution.

We also show that these algorithmic and theoretical contribu-
tions directly translate into empirical efficiency. Specifically,
we demonstrate that, compared to the state of the art proce-
dures, our methods yield an order of magnitude speed-up
already on moderate-size inputs. We run experiments on
synthetic data and real world neuronal spike train signals.

2 Separated sparsity and applications

In this section, we formally define separated sparsity and
the corresponding algorithmic problems.

First, we briefly introduce our notation. As usual, [d] de-
notes the set {1, . . . , d}. We say that a vector θ ∈ Rd is
k-sparse if θ contains at most k non-zero coefficients. We
define the support of θ as the set of indices corresponding
to non-zero coefficients, i.e., supp(θ) = {i ∈ [d] | θi 6= 0}.
We let ‖θ‖ denote the `2-norm of a vector θ ∈ Rd.

Separated sparsity. For a support Ω ⊆ [d], let sep(Ω) =
mini6=j∈Ω|i− j| be the minimum separation of two indices
in the support. We define the following two sets of supports:
set M∆ = {Ω ⊆ [d] | sep(Ω) ≥ ∆}, and ∆-separated spar-
sity supports Mk,∆ = {Ω ∈ M∆ | |Ω| = k}. That is, Mk,∆ is
the set of support patterns containing k non-zeros with at
least ∆− 1 zero entries between consecutive non-zeros.

In order to employ separated sparsity in statistical problems,
we often want to add constraints based on the support set
Mk,∆ to optimization problems such as empirical risk mini-
mization. A standard way of incorporating constraints into
gradient-based algorithms is via a projection operator. In
the context of separated sparsity, this corresponds to the
following problem.

Problem 1 For a given input vector x ∈ Rd, our goal is to
project x onto the set Mk,∆, i.e., to find a vector x̂ such that

x̂ ∈ arg min
x′∈Rd : supp(x′)∈Mk,∆

‖x− x′‖ . (1)

Problem 1 is the main algorithmic problem we address in
this paper.

Sparse recovery. Structured sparsity has been employed
in a variety of machine learning tasks. In order to keep the
discussion coherent, we present our results in the context of
the well-known sparse linear model:

y = Xθ∗ + e (2)

where y ∈ Rn are the observations/measurements, X ∈
Rn×d is the design or measurement matrix, and e ∈ Rn is
a noise vector. The goal is to find a good estimate θ̂ of the
unknown parameters θ∗ up to the noise level.

The authors of [3] give an elegant framework for incorporat-
ing structured sparsity into the estimation problem outlined
above. They design a general recovery algorithm that relies
on a model-specific projection oracle. In the case of sepa-
rated sparsity, this oracle is required to solve precisely the
Problem 1 stated above.

3 The algorithm and our results

Given an arbitrary vector x ∈ Rd, Problem 1 requires us
to find a vector x̂ such that x̂ ∈ Mk,∆ and ‖x − x̂‖ is
minimized. We now slightly reformulate the problem. Let
c ∈ Rd be a vector such that ci = x2

i for all i. Then it is not
hard to see that this problem is equivalent to finding a set
of k entries in the vector c such that each of these entries
is separated by at least ∆ and the sum of these entries is
maximized. Hence our main algorithmic problem is to find
a set of k entries in an non-negative input vector c so that the
entries are ∆-separated and their sum is maximized. More
formally, our goal is to find a support Ŝ such that

Ŝ ∈ arg max
S∈Mk,∆

∑
i∈S

ci . (3)

In the following, we also consider a relaxed version of (3)
called PROJLAGR, which is parametrized by a trade-off
parameter λ and a vector c̃:

PROJLAGR(λ, c̃) := arg max
S∈M∆

∑
i∈S

c̃i + λ (k − |S|) .

Intuitively, PROJLAGR represents a Lagrangian relaxation
of the sparsity constraint in Equation (3).

3.1 Algorithm

Our main contribution is a new algorithm for Problem 1 that
we call Lagrangian Approach to the Separated Sparsity
Problem (LASSP). The pseudo code is given in Algorithm 1.

LASSP is a Las Vegas algorithm: it always returns a correct
answer, but the running time of the algorithm is randomized.
Concretely, LASSP repeats a main loop until a stopping
criterion is reached. Every iteration of LASSP first adds a
small perturbation to the coefficients c (see Line 3). This
perturbation has only a small effect on the solution but im-
proves the “conditioning” of the corresponding non-convex
Lagrangian relaxation PROJLAGR so that it returns a glob-
ally optimal solution that almost satisfies the constraint. As
we show in Section 5.2, we can solve this relaxation (Line 4)
in nearly-linear time. After the algorithm has solved the
Lagrangian relaxation, it obtains the final support Ŝ in line 5

Aleksander Mądry∗, Slobodan Mitrović∗, Ludwig Schmidt∗

by solving PROJLAGR on a slightly shifted λ̂ to ensure that
the constraint is satisfied with good probability.

Remark: We assume that the bit precision γ required to
represent the coefficients c is finite, and we provide our
results as a function of γ. For practical purposes, γ is
usually a constant. Since the solution to Equation (3) is
invariant under scaling by a positive integer and γ is finite,
without loss of generality we assume that c ∈ Zd.

Algorithm 1 LASSP:
Input: c ∈ Zd, k ∈ N+

Output: A solution Ŝ to (3)
1: repeat
2: Let X ∈ Zd be a vector such that Xi is chosen

uniformly at random from {0, . . . , d3 − 1}, ∀i
3: Define vector c̃ := d4c+X
4: Let λ̂ := arg minλ∈Z PROJLAGR(λ, c̃). In case of

ties, maximize λ̂.
5: Choose Ŝ ∈ PROJLAGR

(
λ̂− 1

d+1 , c̃
)

6: until
∣∣∣Ŝ∣∣∣ = k

7: return Ŝ

3.2 Main results

As our main result, in the following theorem we show that
LASSP runs in nearly linear time and solves Problem 1.

Theorem 1 Let c ∈ Rd, and let γ ∈ N+ be the maximal
number of bits needed to store any ci. There is an imple-
mentation of LASSP that for every c computes a solution ĉ
to Problem 1. With probability 1− 1/d, the algorithm runs
in time O(d(γ + log d)).

Combined with the framework of [3], we get the following.
Corollary 1 Let y, X , θ∗, and e be as in the sparse linear
model in Equation (2). We assume that supp(θ∗) ∈ Mk,∆
and that X satisfies the model-RIP for Mk,∆. There is an
algorithm that for every y and e returns an estimate θ̂ such
that

‖θ̂ − θ∗‖2 ≤ C‖e‖2 .

Moreover, the algorithm runs in time Õ(TX + d), where
TX is the time of multiplying the matrices X and XT by a
vector.

The corollary shows that, up to logarithmic factors, the
running time is dominated by TX+d. This matches the time
complexity of standard sparse recovery and shows that we
can utilize separated sparsity without a significant increase
in time complexity. We validate these theoretical findings in
Section 7 by showing that LASSP runs significantly faster
than the state of the art algorithm used for sparse recovery
with separation constraints.

Our algorithm LASSP is randomized. However, we also de-
sign a deterministic nearly-linear time algorithm and prove

the following theorem. For clarity of exposition, the state-
ment of the deterministic algorithm and the proof of the
theorem are deferred to Appendix J.

Theorem 2 Let c ∈ Rd be the input vector and let γ be as
in Theorem 1. Then there is an algorithm that computes a
solution ĉ satisfying Equation (1) and runs in time O(d(γ +
log k) log d log ∆).†

3.3 Further results

In Appendix C we present a dynamic programming ap-
proach that for a specific, but also natural, family of in-
stances solves the separated sparsity problem in even linear
time.

We also consider a natural extension to the 2D-variant of
the separated sparsity projection problem and show that it
is NP-hard in Appendix D. Moreover, in Appendix E, we
extend our model to allow for blocks of separated variables
and show that our algorithms for Mk,∆ also applies to the
more general variant. Finally, separated sparsity can be
used to model signals in which a longer pattern is repeated
multiple times so that any two patterns are at least ∆ apart.
This model is called disjoint pulse streams [12]. Again, the
algorithmic core remains the same and algorithms for Mk,∆
can also be used for this generalization.

3.4 Additional related work

The papers [10, 14] are closely related to our work. The
paper [10] proposed the separated sparsity model, provided
a sample complexity upper bound, and gave an LP-based
model-projection algorithm. However, they resorted to a
black-box approach for solving the LP, that lead to a fairly
prohibitive O(d3.5) time complexity. Recently, [14] pro-
vided a faster dynamic program for this problem with a time
complexity of O(d2) and also showed a sample complex-
ity lower bound. The algorithmic aspect of these papers is
the main difference from our work: we exploit structure in
both the primal and dual formulations of the LP and give an
algorithm that provably runs in nearly-linear time.

Beside the papers addressing the core algorithmic question
of projecting onto separated sparse vectors, there is much of
work utilizing the sparsity model for applications in neural
signal processing [11, 12, 13] and recovery with coherent
dictionaries [16, 17]. In the latter application, the separated
sparsity constraint enforces that the signal representation
only consists of incoherent dictionary atoms. We expect that
our algorithmic techniques will also lead to improvements
in the context of these applications.

†After this work was done, it was pointed to us by Arturs
Backurs and Christos Tzamos that this problem exhibits concave
Monge property, which can be used to solve the problem in nearly-
linear time with different algorithm. For more information, we
point the reader to https://arxiv.org/abs/1802.06440.

https://arxiv.org/abs/1802.06440

A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians

4 Proof of correctness and the roadmap

We begin our analysis by proving that LASSP returns a cor-
rect result if the algorithm terminates. As we will see later,
establishing termination is the crucial part of the analysis.
The following lemma is a useful warm-up for understanding
how the different pieces of our algorithm fit together.

Lemma 1 When LASSP terminates, it outputs a support
Ŝ such that x restricted to Ŝ is a solution to Problem 1.

Proof. As we have argued above, the problems in Equa-
tions (1) and (3) are equivalent. So, we show that LASSP
outputs a solution to the problem in Equation (3).

Let Ŝ be the set returned by LASSP. By the condition of
the loop in Line 6, we have |Ŝ| = k. So, as Ŝ ∈ M∆ (see
the definition of PROJLAGR), we have Ŝ ∈ Mk,∆.

Now, towards a contradiction, assume that support Ŝ is not
a solution to the problem in Equation (3), while support
S? is. This implies that

∑
i∈S? ci >

∑
i∈Ŝ ci. Now since,

without loss of generality, we assumed that c ∈ Zd, the last
inequality implies

∑
i∈S? ci ≥ 1 +

∑
i∈Ŝ ci, and hence∑

i∈S?

d4ci ≥ d4 +
∑
i∈Ŝ

d4ci . (4)

Observe that for any support S ∈ Mk,∆, the term λ (k − |S|)
equals zero, and recall that Ŝ, S? ∈ Mk,∆. Furthermore, by
the definition of the random vector X in line 2 and from (4)∑

i∈S?

(
d4ci +Xi

)
≥

∑
i∈S?

d4ci ≥ d4 +
∑
i∈Ŝ

d4ci

>
∑
i∈Ŝ

(
d4ci +Xi

)
.

Since S? ∈ M∆, this chain of inequalities contradicts
Line 5 of LASSP which chooses Ŝ as an optimal solution
to PROJLAGR

(
λ̂− 1/(d+ 1), d4c+X

)
. This further im-

plies that x restricted to Ŝ is a solution to Problem 1. 2

4.1 Roadmap

Lemma 1 shows that LASSP outputs the right answer if
it terminates. But does LASSP terminate on every input?
Answering this question is the most intricate part of this
paper. We split the proof in two main pieces. The first part
is Section 5, where we provide an alternative view on the
separated sparsity problem based on linear programming
duality. The duality view paves the way towards proving
our main results. In particular, we show that the subroutines
in LASSP can be implemented quickly.

Lemma 2 Single iteration of LASSP can be implemented
to run in time O(d(γ + log d)).

The second part is Section 6, where we further study the
duality view on separated sparsity. We show that after per-
turbing the input instance in Line 3 of LASSP, the support
obtained with a shifted λ̂ in Line 5 has cardinality k with
high probability.

Lemma 3 Algorithm LASSP runs only a single iteration
with probability at least 1− 1/d.

Together with Lemma 1, these results yield Theorem 1.
5 Part I – To duality and further
We now analyze the running time of a single iteration of
LASSP. We provide a series of equivalences, as illustrated
in Figure 1, in order to exploit structure in the separated
sparsity problem. More precisely, we start with a linear pro-
gramming (LP) view on separated sparsity. It has already
been shown that this viewpoint yields a totally unimodular
LP [10], which implies that the LP has an integral solution.
Hence solving the LP solves the separated sparsity projec-
tion in Problem 1. However, prior work did not utilize this
connection to reason about the power of the Lagrangian
relaxation approach to the problem.

We begin our detailed analysis of the LP with the dual
program D. By strong duality, the value of D equals the
value of the primal LP. Then we cast D as minimization of
LP Dλ over λ. This reduction will play the central role in
our analysis and connect Dλ to Line 4 of LASSP.

5.1 The LP Perspective

We start with a linear programming view on problem (3) by
considering its LP relaxation denoted by P:

maximize cTu

subject to
d∑
i=1

ui = k

min{i+∆−1,n}∑
j=i

uj ≤ 1 ∀i = 1 . . . d

ui ≥ 0 ∀i = 1 . . . d

Given an LP A we use VALA to denote its optimal ob-
jective value. As already noted, P is totally unimodular
and thus there always exists an optimal solution to it that
is integral [18]. For completeness, we provide the proof of
total unimodularity in Appendix F.
Remark: This implies that a solution to P can be used to
obtain a solution to the separated sparsity model projection:
if u? is an optimal solution to P , we can derive the optimal
support of (3) from the non-zero entries among the LP vari-
ables u?1, . . . , u

?
d. It is unclear, however, if there is a way

to directly solve this LP fast, e.g. it is not known how to
solve P directly in time matching the running time of our
algorithm LASSP.

A key step in our approach is understanding the separated
sparsity structure from the dual point of view. The dual LP

Aleksander Mądry∗, Slobodan Mitrović∗, Ludwig Schmidt∗

Problem (3)

maxS2Mk;∆

P
i2S

ci
LP P,

TUM

dual LP D

, strong duality

minλ2Z Dλ

,

convexity

minλ2Z Pno�k (λ)

, strong duality

line 4 of LASSP
minλ2Z ProjLagr(λ; c) ,

TUM

+ TUMour algorithm

Figure 1: The values of the problems in the diagram are
equal. Every equivalence relation carries structural informa-
tion that we utilize in our analysis.

to P , denoted by D, is given as follows

minimize w0k +

d∑
i=1

wi

subject to w0 +
∑

j : j≥1 and
j≤i≤j+∆−1

wj ≥ ci ∀i = 1 . . . d

wi ≥ 0 ∀i = 1 . . . d

w0 ∈ R

Then, as P is integral, so is D.
Corollary 2 For an integer k and a vector of integers c,
there exists ŵ such that ŵ is an optimum of D and ŵ0 ∈ Z.

We also define Dλ as the LP D in which the variable w0 is
set to λ. Now, it is not hard to show the following lemma,
whose proof is deferred to Lemma 10 in Appendix F.

Lemma 4 Dλ is convex with respect to λ.

From the definition of D, the following equality holds
VALD = minλ∈R VALDλ. Furthermore, Corollary 2 im-
plies that it is sufficient to consider λ in Z only, i.e.

VALD = min
λ∈Z

VALDλ. (5)

Now, Lemma 4 implies that we can obtain VALD by apply-
ing ternary search over λ on function VALDλ.

5.2 Implementing one iteration of LASSP efficiently

We now derive the final connection between D and LASSP
which will enable us to obtain λ̂ at line 4 in nearly-linear
time. To that end, consider Pno-k(λ) defined as

maximize cTu+ λ(k − 1Tu)

subject to
min{i+∆−1,d}∑

j=i

uj ≤ 1 ∀i = 1 . . . d

ui ≥ 0 ∀i = 1 . . . d

Observe that compared to P , Pno-k(λ) does not contain
the sparsity constraint. Furthermore, the LP Pno-k(λ) is a
relaxed version of PROJLAGR (λ, c). Also, as P is, then
Pno-k(λ) is totally unimodular. Now this sequence of con-
clusions results in the following.

Corollary 3 Problems Pno-k(λ) and PROJLAGR (λ, c) are
equivalent.

To obtain the final connection, we consider LP given by

LP := min
λ∈R
Pno-k(λ).

Next, note that the dual of Pno-k(λ) is Dλ. Hence, the
strong duality implies VALDλ = VALPno-k(λ). That
together with VALD = minλ∈R VALDλ yields thatD and
LP coincide as functions in λ. Furthermore, since we can
solve D by applying ternary search over integral values of
λ and Dλ, we can solve LP by applying ternary search
over integral values of λ and function Pno-k(λ). But since
Pno-k(λ) and PROJLAGR (λ, c) are equivalent, we can also
obtain λ̂ at line 4 of LASSP by applying ternary search
over λ.

Now, it is very easy to see that for an optimal solution w?

of D we have w?0 ≤ maxi |ci|. It is also not hard to show
that there is an optimal solution such that w?0 ≥ −(k −
1) maxi |ci| (see Lemma 18). Therefore, in order to find
optimal λ̂ it suffices to execute O (log maxi |ci|+ log k) =
O(γ + log d) iterations of ternary search.

Every iteration of the ternary search invokes PROJLAGR,
which can be implemented to run in linear time.

Lemma 5 Given λ and ĉ ∈ Rd, there is an algorithm that
finds support Ŝ ∈ PROJLAGR (λ, ĉ) in time O(d).

Proof. Observe that for a fixed λ, solving PROJLAGR (λ, ĉ)
is equivalent to finding support S′ ∈ M∆ that max-
imize

∑
i∈S′ (ĉi − λ). Hence, we can reinterpret

PROJLAGR (λ, ĉ) as follows: given a vector c̃ := ĉ − λ1,
select a subset of [d] of indices (not necessarily k of them)
so that (i) every two indices are at least ∆ apart, and (ii) the
sum of the values of c̃ at the selected indices is maximized.

This task can be solved by standard dynamic program-
ming in the following way. For every i, we define si to
be the maximum value of the described task restricted
to the first i indices of c̃. Then, it is easy to see that
si+1 = max{si, si+1−∆ + c̃i+1}. Namely, we can either
decide not to select index i + 1, in which case the best is
already contained in si; or, we can decide to select index
i + 1 which has value c̃i+1 and for the rest we consider
si+1−∆. Therefore, sd can be obtained in time O(d). Now
it is easy to reconstruct the corresponding support in linear
time. For completeness, we provide a full algorithm and a
detailed proof in Lemma 12, Appendix G. 2

Putting all together proves Lemma 2.

A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians

6 Part II – Active constraints

Note that the chain of equivalences present in Figure 1
shows that minλ PROJLAGR(λ, c) outputs the sum of co-
ordinates of an optimal solution of problem 1. Prior to our
work, it was not even known how to obtain this value in time
faster than O(dk), while our result shows we can compute
it in nearly-linear time. So, it is natural to ask whether the
same relaxation also outputs a support of size k? The an-
swer is, unfortunately, no. To see that, consider the example:
c = (4, 7, 5, 0, 0, 5, 8, 5), ∆ = 2, and k = 3. For λ > 2
every solution u?λ to PROJLAGR(λ, c) is such that u?λ has
less than k non-zeros. On the other hand, for every λ ≤ 2
the exists a solution u?λ such that u?λ contains more than k
non-zeros. Therefore, there is no λ, neither λ− 1/(d+ 1),
for which PROJLAGR(λ, c) provably outputs a support of
cardinality k. This also suggests that the perturbation we
apply in lines 2-3 is essential!

Instead of studying lines 2-5 of LASSP directly, we shift
our focus to Dλ. In particular, we exhibit very close con-
nection between its structure and the sparsity of the primal
solution, which we present via the notion of "active con-
straints". Then we use these findings in our analysis to show
that slight perturbation of the input instance, while not af-
fecting the value of the solution, makes it possible to obtain
a solution to problem 3 by applying Lagrangian relaxation.

6.1 Solving Dλ

Observe that once we fixed the value of w0, all remaining
constraints in Dλ are “local” since they only affect a known
interval of length ∆. They are also ordered in a natural
way. As a result, we can solve Dλ by making a single pass
over these variables. Starting with w1 and all variables
set to 0, we consider each constraint from left to right and
increase the variables to satisfy these constraints in a lazy
manner. That is, if in our pass we reach a constraint with
index i that is still not satisfied, we increase the value of
wi until that constraint becomes satisfied and then move to
the next constraint. Given c and λ, algorithm Dual-Greedy,
i.e. Algorithm 2, formalizes this approach whose analysis
appears in Appendix F.

Algorithm 2 Dual-Greedy:
Input: c ∈ Zd, λ ∈ R
Output: an optimal solution w to D such that w0 = λ

1: w ← 0; w0 ← λ
2: sum∆ ← 0
3: for i := 1 . . . d do
4: if i−∆ ≥ 1 then sum∆ ← sum∆ − wi−∆

5: diff ← ci − (w0 + sum∆)
6: if diff > 0 then wi ← diff
7: sum∆ ← sum∆ + wi
8: return w

6.2 Tracking the change of Dλ

Next we introduce the key concept that we need for relating
the solution of dual to the sparsity of Lagrangian relaxation
of the primal: the notion of active constraints. Let w be a
vector obtained by Dual-Greedy(c, λ) and let w′ be a vector
obtained by Dual-Greedy(c, λ − ε), for some fixed λ ∈ Z
and small ε ∈ (0, 1). Then, the set of coordinates that are
for ε larger in w′ than in w are called active constraints.
Figure 2 provides an illustration of this concept. Intuitively,
the active constraints correspond to those variables ofD that
increase when w0 decreases by some small value. Hence,
one can interpret active constraints as gradients of Dλ with
respect to the variable λ. This concept appears to be very
useful in characterizing the optimal solution of D in an
alternative way. In particular, the following lemma holds.
Lemma 6 Let c ∈ Zd, λ ∈ Z, and w ←
Dual-Greedy(c, λ). Then, if w has exactly k active con-
straints the vector w is an optimal solution to D.

A full proof of a statement stronger than Lemma 6 along
with its proof appears in Lemma 13, Appendix H, while
in this section we provide a proof sketch. Let w(ε) =
Dual-Greedy(c, λ − ε), for some small ε ∈ (0, 1). By the
definition of active constraints and the fact that w has k
many, there are exactly k coordinates that are larger by ε in
w(ε) than in w. In addition, w(ε)0 = λ− ε and w0 = λ. It
is not hard to show that all the other coordinates of w(ε) and
w are the same, which we can express as

∑d
i=1 w(ε)i =

kε +
∑d
i=1 wi. Now, recall that the objective function of

dual D with respect to vector w equals w0k +
∑d
i=1 wi.

Then we have

w0k+

d∑
i=1

wi = (w0−ε)k+kε+

d∑
i=1

wi = w(ε)0k+

d∑
i=1

w(ε)i.

Hence, the objective values of dual D for vectors w(ε) and
w are equal, for all the values ε ∈ (0, 1). As D is convex
in the value of variable w0 and Dual-Greedy(c, λ) provides
an optimal solution to D such that w0 = λ, then w is an
optimal solution to D.

6.3 Wrapping up – perturbation and optimal sparsity

Now we use Lemma 6 to prove the following, which essen-
tially justifies line 5 of LASSP.

Lemma 7 Let c ∈ Zd, λ ∈ Z, and w̃ ←
Dual-Greedy(c, λ). Assume that w̃ has exactly k active con-
straints. Then, any optimal support S? of PROJLAGR(λ−
ε, c), for 0 < ε < 1/d, has cardinality exactly k.

So, if we produce λ as in Lemma 7, we will solve prob-
lem (3). These steps are implemented by lines 4-6 of
LASSP. However, as illustrated in the beginning of the
section, λ as in Lemma 7 might not exist. Intuitively, this

Aleksander Mądry∗, Slobodan Mitrović∗, Ludwig Schmidt∗

w0 = 2

c1 = 4 c2 = 6 c3 = 4 c4 = 3 c5 = 3 c8 = 2 c9 = 2

w5 = 1

c6 = 5 c7 = 6 c10 = 2

w1 = 2

w2 = 2
w6 = 2

w7 = 1

c1 = 4 c2 = 6 c3 = 4 c4 = 3 c5 = 3 c6 = 5 c7 = 6 c8 = 2 c9 = 2

w5 = 1 + ε w10 = ε

w0 = 2− ε

w1 = 2 + ε

c10 = 2

w2 = 2
w6 = 2

w7 = 1

Figure 2: A sketch of an instance of D: c = (4, 6, 4, 3, 3, 5, 6, 2, 2, 2) and ∆ = 3. The left and right figure depicts w
obtained by Dual-Greedy(c, 2) and Dual-Greedy(c, 2− ε) for 0 < ε < 1, respectively. Constraints 1, 5, and 10 are active,
i.e., if w0 on the left is decreased by ε then only w1, w5, and w10 increase by ε, as shown on the right. Every wi, for i ≥ 1,
covers ∆ c-poles to its right.

situation happens when the number of active constraints
jumps from a value smaller than k to a value larger than k
for a very small change of λ. In such a case, we are unable to
obtain λ as in Lemma 7. A key component of our analysis is
showing that there is an efficient way of randomly altering c,
and obtaining c̃, so that with high probability c̃ is such that:
λ̂ is obtained as at line 4; and, w̃ ← Dual-Greedy(c̃, λ̂) has
the same property as in Lemma 7. Lines 2 and 3 of LASSP
implement this random perturbation. Intuitively, the per-
turbation achieved by X variables adds noise to our input
instance so that the number of active constraints changes by
at most one as λ slides over the integer domain. Following
this intuition we obtain a proof of Lemma 3. However, due
to the space limitation, we present its proof in Appendix I.

We conclude the section by giving a proof of Lemma 7.

Proof of Lemma 7. Recall that by our assumption there
are exactly k active constraints defined by w̃. Then from
Lemma 6 it follows that w̃ is a minimizer of D, i.e.
VALDλ = VALD. By the integrality of D we have that
VALD ∈ Z. Let λ′ = λ − ε, for some 0 < ε < 1/d.
Then, it holds VALDλ′ = VALD as only the k variables
correponding to active constraints increased by ε while
w0 = λ′ decreased by ε. From the strong duality we also
have VALPno-k(λ′) = VALDλ′ = VALD.

Let ũ be an integral optimal solution ofPno-k(λ′). Following
the definition we have

VALPno-k(λ′) = (cT − λ1T)ũ+ λk + ε(1T ũ− k).

Now we have the following properties: ũ is integral;
0 < ε|1T ũ − k| < 1 whenever 1 ≤ |1T ũ − k| ≤ d;
c ∈ Zd; v ∈ Z; and VALPno-k(λ′) ∈ Z. Therefore, we
have 1T ũ− k = 0, and hence 1T ũ = k. Since we showed
the equivalence between Pno-k(λ′) and PROJLAGR(λ′, c)
the lemma follows. 2

7 Experiments
We empirically validate the claims outlined in the previous
sections. To that end, we compare LASSP with the O(dk)-

time dynamic program (DP) described in Section C as a
baseline. Note that this DP already has a better time com-
plexity than the best previously published algorithm from
[14]. Both algorithms are implemented in the Julia program-
ming language (version 0.5.0), which typically achieves
performance close to C/C++ for combinatorial algorithms.

7.1 Synthetic data

We perform experiments with synthetic data in order to
investigate how the algorithms scale as a function of the
input size. We study two different setups: (i) the running
time of the projection algorithms on their own, and (ii) the
overall running time of a sparse recovery algorithm using
the projection algorithms as a subroutine. For the latter,
we use the structure-aware variant of the popular CoSaMP
algorithm [19, 3].

Figures 3(a)-(b). For a problem of size d, we set the spar-
sity to k = d/50 and generate a random separated sparse
vector with parameter ∆ = (d − 5(k + 1))/k − 1. The
non-zero coefficients are i.i.d. ±1. For the projection-only
benchmark, we add Gaussian noise with σ = 1/10 to all
coordinates in order to make the problem non-trivial. For
each problem size, we run 10 independent trials and report
their mean.

Figure 3(a) shows the speed-up obtained by our nearly-linear
time projection relative to the DP baseline. We observe that
LASSP is up to 150× faster. This confirms our expectation
that LASSP scales gracefully with the problem size, while
the DP essentially becomes a quadratic-time algorithm.

Figure 3(b) compares the running times of CoSaMP with
three different projection operators. The first variant makes
no structural assumptions and uses hard thresholding as
projection operator. The other two variants use a projection
for the separated sparsity model, relying on the DP baseline
and LASSP, respectively. The results show that the version
of CoSaMP using LASSP instead of the DP is significantly
faster. Moreover, CoSaMP with a simple sparse projection
has similar running time to CoSaMP with our structured
projection. Finally, we note that CoSaMP with separated

A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians

200 400

50

100

150

Size d (in 102)

Sp
ee

d-
up

of
L

A
S

S
P

(a)

100 200 300
0

50

100

150

Size d (in 102)

R
un

ni
ng

tim
e

(s
)

(b)

LASSP
DP
no model

104.5 105 105.5
10−1

100

101

102

Size d

R
un

ni
ng

tim
e

(s
·1

0
2
)

(c)

LASSP
DP

−0.2

0

0.2

(d)

−0.2

0

0.2

(e)

−0.2

0

0.2

(f)

Figure 3: Separated sparsity experiments. In the top row we plot running times of our algorithm LASSP relative to the
previous work. Plots (a) and (c) are obtained by projecting signals on the separated sparsity model. Plot (b) compares the
running times of CoSaMP with three different projection operators. The variant "no-model" makes no structural assumptions
and uses hard thresholding as projection operator. In the bottom row, in (e) we plot the recovery of the signal (d) obtained
by the algorithm "no model". Plot (f) shows the recovery of LASSP. Both of the procedures use the same number of
measurements.

sparsity requires 1.5× fewer measurements to achieve the
same recovery quality as CoSaMP with standard sparsity.

Figure 3(c). We fix the sparsity k = 100 and vary the
length d of the signal. The signal is obtained in the same
way as for plots Figure 3(a)-(b). We observe that our algo-
rithm runs 10x faster than the baseline. Furthermore, the
plot shows that the running times of both the baseline DP
and LASSP scale linearly with the signal length d. This
behavior is expected for the DP. On the other hand, our
theoretical findings predict that the running time of LASSP
scales as d log d. This suggests that the empirical perfor-
mance of our algorithm is even (slightly) better than what
our proofs state.
In Appendix A we report results of additional experiments.

7.2 Neuronal signals

We also test LASSP on neuron spike train data from [12].
See Figure 3(d) for this input data. First, we run CoSaMP
with a “standard sparsity” projection. The recovered signal
is depicted in Figure 3(e). Next, we run the convolutional
sparsity CoSaMP of [12] and use our fast projection algo-
rithm. The recovered signal is given in Figure 3(f). For the
both experiments we use n = 250 measurements.

We also run the convolutional sparsity CoSaMP on neuron
spike train data of length 105, comparing the running time
of LASSP and DP as projection operators. CoSaMP with
LASSP runs 2× faster in this context. We do not compare
the running time relative to CoSaMP with a standard sparsity
projection as it requires 10× more measurements to achieve

accurate recovery.

8 Conclusions
We have designed a nearly-linear time algorithm for pro-
jecting onto the set of separated sparse vectors. The core
technique in our algorithm is Lagrangian relaxation. One of
the key insights here is that even though there are separated
sparsity instances for which the Lagrangian relaxation does
not provide an optimal solution, it is still possible to obtain
an optimal solution if the original input instance is only
slightly perturbed.Furthermore, this perturbation does not
change the final output, but rather drives the algorithm to
choose an optimal solution of interest even after the hard
sparsity constraint is relaxed. Our experiments show that
our algorithm is not only of theoretical significance, but also
outperforms the state of the art in practice. Exploring the
power of perturbed Lagrangian relaxations for other non-
convex constraint sets is an important direction for future
work. We believe that our framework will enable simple
and efficient algorithms for other problems as well.

Acknowledgments.
We thank Arturs Backurs for insightful discussions. L.
Schmidt thanks Chinmay Hegde for providing a dataset for
some of our experiments. A. Mądry was supported in part by
an Alfred. P. Sloan Research Fellowship, Google Research
Award and the NSF grant CCF-1553428. S. Mitrović was
supported by Swiss NSF (grant number P1ELP2_161820).
Part of this work was carried out while S. Mitrović was
visiting MIT.

Aleksander Mądry∗, Slobodan Mitrović∗, Ludwig Schmidt∗

References

[1] M. Yuan and Y. Lin, “Model selection and estimation
in regression with grouped variables,” Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology), 2006.

[2] Y. Eldar and M. Mishali, “Robust recovery of signals
from a structured union of subspaces,” IEEE Trans-
actions on Information Theory, vol. 55, no. 11, pp.
5302–5316, 2009.

[3] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde,
“Model-based compressive sensing,” IEEE Transac-
tions on Information Theory, vol. 56, no. 4, pp. 1982–
2001, 2010.

[4] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach,
“Convex and network flow optimization for structured
sparsity,” The Journal of Machine Learning Research,
vol. 12, pp. 2681–2720, 2011.

[5] J. Huang, T. Zhang, and D. Metaxas, “Learning with
structured sparsity,” The Journal of Machine Learning
Research, vol. 12, pp. 3371–3412, 2011.

[6] N. S. Rao, B. Recht, and R. D. Nowak, “Universal
measurement bounds for structured sparse signal re-
covery.” in AISTATS, ser. JMLR Proceedings, vol. 22,
2012, pp. 942–950.

[7] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and
B. Yu, “A unified framework for high-dimensional
analysis of M -estimators with decomposable regular-
izers,” Statistical Science, vol. 27, no. 4, pp. 538–557,
11 2012.

[8] B. Bah, L. Baldassarre, and V. Cevher, “Model-based
sketching and recovery with expanders,” in SODA,
2014, pp. 1529–1543.

[9] C. Hegde, P. Indyk, and L. Schmidt, “A nearly-linear
time framework for graph-structured sparsity,” in
ICML. JMLR Workshop and Conference Proceed-
ings, 2015, pp. 928–937.

[10] C. Hegde, M. F. Duarte, and V. Cevher, “Compressive
sensing recovery of spike trains using a structured
sparsity model,” in SPARS’09-Signal Processing with
Adaptive Sparse Structured Representations, 2009.

[11] E. L. Dyer, M. F. Duarte, D. H. Johnson, and R. G.
Baraniuk, “Recovering spikes from noisy neuronal
calcium signals via structured sparse approximation,”
in LVA/ICA, 2010, pp. 604–611.

[12] C. Hegde and R. G. Baraniuk, “Sampling and recov-
ery of pulse streams,” IEEE Transactions on Signal
Processing, vol. 59, no. 4, pp. 1505–1517, 2011.

[13] E. L. Dyer, C. Studer, J. T. Robinson, and R. G. Bara-
niuk, “A robust and efficient method to recover neural
events from noisy and corrupted data,” in 6th Interna-
tional IEEE/EMBS Conference on Neural Engineering
(NER), 2013, pp. 593–596.

[14] S. Foucart, M. F. Minner, and T. Needham, “Sparse dis-
jointed recovery from noninflating measurements,” Ap-
plied and Computational Harmonic Analysis, vol. 39,
no. 3, pp. 558 – 567, 2015.

[15] Q. Huang and S. M. Kakade, “Super-resolution off the
grid,” in Conference on Neural Information Processing
Systems (NIPS), 2015, pp. 2665–2673.

[16] M. F. Duarte and R. G. Baraniuk, “Spectral compres-
sive sensing,” Applied and Computational Harmonic
Analysis, vol. 35, no. 1, pp. 111 – 129, 2013.

[17] T. Needham, “Dictionary-sparse and disjointed recov-
ery,” in International Conference on Sampling Theory
and Applications (SampTA), 2015, pp. 278–282.

[18] G. L. Nemhauser and L. A. Wolsey, Integer and Com-
binatorial Optimization. Wiley-Interscience, 1988.

[19] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal
recovery from incomplete and inaccurate samples,” Ap-
plied and Computational Harmonic Analysis, vol. 26,
no. 3, pp. 301–321, 2009.

[20] C. Hegde, P. Indyk, and L. Schmidt, “Approxima-
tion algorithms for model-based compressive sensing,”
IEEE Transactions on Information Theory, vol. 61,
no. 9, 2015.

[21] ——, “Nearly linear-time model-based compressive
sensing,” in ICALP, 2014, vol. 8572.

[22] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto,
“Optimal packing and covering in the plane are np-
complete,” Information processing letters, vol. 12,
no. 3, pp. 133–137, 1981.

[23] A. Schrijver, Combinatorial optimization: polyhedra
and efficiency. Springer Science & Business Media,
2002, vol. 24.

	Introduction
	Separated sparsity and applications
	The algorithm and our results
	Algorithm
	Main results
	Further results
	Additional related work

	Proof of correctness and the roadmap
	Roadmap

	Part I – To duality and further
	The LP Perspective
	Implementing one iteration of LASSP efficiently

	Part II – Active constraints
	Solving D
	Tracking the change of D
	Wrapping up – perturbation and optimal sparsity

	Experiments
	Synthetic data
	Neuronal signals

	Conclusions

